
SCIENCE CHINA
Information Sciences

September 2017, Vol. 60 092112:1–092112:15

doi: 10.1007/s11432-016-9057-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .

Cost-effective testing based fault localization with

distance based test-suite reduction

Xingya WANG1, Shujuan JIANG1*, Pengfei GAO1, Xiaolin JU2,3,

Rongcun WANG1 & Yanmei ZHANG1,3

1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
2School of Computer Science and Technology, Nantong University, Nantong 226019, China;

3Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

Received December 30, 2016; accepted March 29, 2017; published online July 28, 2017

Abstract The aim of testing based fault localization (TBFL) involves improving the efficiency of program

debugging by providing developers with a guide of ranked list of suspicious statements. However, collection

of testing information of the whole original test-suite is excessively expensive or even infeasible for developers

to conduct TBFL. Traditional test-suite reduction (TSR) techniques are utilized to reduce the size of test-

suite. However, they entail a time-consuming process of whole testing information collection. In this study, the

distance based test-suite reduction (DTSR) technique is proposed. As opposed to the whole testing information,

the distances among the test cases are used to guide the process of test-suite reduction in DTSR. Hence, it is only

necessary to collect the testing information for a portion of the test cases for TSR and TBFL. The investigation

on the Siemens and SIR benchmarks reveals that DTSR can effectively reduce the size of the given test-suite

as well as the time cost of TBFL. Additionally, the fault locating effectiveness of DTSR results is close to that

when the whole test-suite is used.

Keywords program debugging, fault localization, test-suite reduction, distance estimation, category partition

Citation Wang X Y, Jiang S J, Gao P F, et al. Cost-effective testing based fault localization with distance

based test-suite reduction. Sci China Inf Sci, 2017, 60(9): 092112, doi: 10.1007/s11432-016-9057-8

1 Introduction

Debugging is a tedious and time-consuming albeit essential activity during software development. Re-

searchers have proposed several types of approaches to improve the process of fault localization [1] to

reduce the effort for manual debugging. Among these approaches, testing based fault localization (TBFL)

is promising [2]. It relies on testing information (e.g., code coverage and execution result) obtained from

executing the program to automatically identify the most likely faulty parts, and thereby narrows search

areas.

Thus, TBFL was demonstrated as an effective method in several studies. However, several issues may

affect its performance. A very serious problem corresponds to the time-consuming process of collecting

coverage information. The performance of thousands of test cases on industrial software can involve

several hours or even days [3]. Therefore, collection of coverage information of all test cases is a slow

*Corresponding author (email: shjjiang@cumt.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-9057-8&domain=pdf&domain=pdf&date_stamp=2017-7-28
https://doi.org/10.1007/s11432-016-9057-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-9057-8

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:2

process that may not always be practically feasible. Another problem corresponds to the tedious process

of executing result inspections [4]. The execution of results is essential when a TBFL technique is applied

to statistically locate faulty parts. However, it is not easy to assert the executing result of an execution

when a failure is not as obvious as a program crash or invalid output formats [5]. Typically, it requires

manual inspection. Therefore, significant manual effort is expended in determining the results of all

executions, and this decreases the efficiency of TBFL.

A valid method to address these problems involves reducing test cases wherein tracing and inspection

is required. Extant studies proposed a few test-suite reduction (TSR) techniques to reduce the number

of test cases. These techniques always share a common framework. First, a few characters (e.g., high-

coverage [6], high-partition [4]) that can maintain the effectiveness of TBFL with the original test-suite

are summarized, and this is followed by generating a series of test requirements based on these characters.

Next, a heuristic algorithm (e.g., greedy algorithm) is used to output a reduced test-suite that can satisfy

all test requirements. Finally, it collects coverage information and executing results of the reduced test-

suite and provides the same to a TBFL for fault localization. The experimental results indicated that these

techniques effectively reduced the size of the original test-suite while not exerting an obvious negative

effect on TBFL. However, it is not possible to perform the characters summarization (such as determining

the code coverage of the original test-suite) and the following heuristic based test-suite reduction unless

all test executions were inspected. Thus, it is not possible for these techniques to decrease the size of

test cases wherein tracing and inspection is required. Therefore, TBFL continues to suffer from the low

efficiency on coverage information collection, and it is difficult to reduce the time cost of TBFL.

In this study, a distance based test-suite reduction (DTSR) approach was proposed to reduce the time

effort required for TBFL. The DTSR selected a subset of test cases that include maximum average pair-

wise distance as the output of TSR. It relied on the intuition that test diversity maintains the characters

of the original test-suite and that the distances among the test cases are reasonable to measure the test

diversity. With respect to the DTSR, only a small portion of test cases were needed to trace and inspect,

and the developers could only use the information associated with test executions for the reduced test-suite

and the failure-causing test case to locate the fault. Thus, the proposed approach effectively reduced the

time cost of testing information collection. The proposed approach was empirically compared to coverage

based test-suite reduction (CTSR) [4,6] and random based test-suite reduction (RTSR) on the reduction

rate Reduction, the fault localization effect Expense, and the time cost TimeCost. Experimental results

indicated that the proposed approach effectively reduced the size of original test-suite as well as the time

cost of TBFL while the reduced result did not affect the effectiveness of TBFL.

The rest of this study is organized as follows. Section 2 overviews the corresponding TSR techniques,

TBFL techniques, and the test requirements for TBFL. The test-suite reduction approach is described

in detail in Section 3. Experimental design and results analysis are presented in Section 4. The threats

to validity and related studies are discussed in Section 5. Finally, Section 6 concludes the article and

outlines directions for future research.

2 Preliminaries

This section presents an overview of TSR techniques as well as TBFL techniques, and summarizes three

test requirements that are applicable to TBFL.

2.1 Test-suite reduction

The aim of TSR [7] involves selecting a subset of original test-suite that maintain a few features similar to

the whole test-suite. These features are called test requirements. A set of test requirements is assumed,

and the TSR problem can be stated as follows

Given: a set of test requirements RS = {ri | i ∈ [1, n]} and a test-suite TS with subsets TSsubs =

{TSi | i ∈ [1, n]}, the value of isMeet(ri, t) corresponds to 1 where t ∈ TSi. Function isMeet(r, t) is used

to test whether r is satisfied by t. It corresponds to 1 if t satisfies r and otherwise corresponds to 0.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:3

Table 1 Notations widely used in suspiciousness calculation

Notation Value Description

np

∑n
j=1(1− rj) The number of passed test cases

nf

∑n
j=1 rj The number of failed test cases

ncp(si)
∑n

j=1 ci,j×(1 − rj) The number of passed test cases that can cover the statement si

ncf (si)
∑n

j=1 ci,j×rj The number of failed test cases that can cover the statement si

nup(si)
∑n

j=1(1− ci,j)×(1− rj) The number of passed test cases that cannot cover the statement si

nuf (si)
∑n

j=1(1 − ci,j)×rj The number of failed test cases that cannot cover the statement si

Problem: determining a representative set of test cases from TS such that executing the reduced

test-suite TSreduced satisfies all test requirements in RS.

It is necessary to satisfy all test requirements, and thus TSreduced must contain at least one test case

from each TSi. It is assumed that one test case may satisfy more than one test requirement, and thus

it is intractable to determine a minimum test-suite that satisfies all test requirements. Therefore, TSR

must approximate the minimum cardinality [7].

2.2 Testing based fault localization

The intuition behind TBFL is that the statements that are primarily executed by passed test cases are less

likely to be faulty when compared with those primarily executed by failed test cases [8]. With respect

to each statement, a suspiciousness is assigned to indicate the likelihood that the statement contains

a fault. An increase in the suspiciousness increases the likelihood of the statement to contain a fault.

Subsequently, the statements with the highest rank are first examined while searching for the fault. If the

fault is not found after examining these statements, then developers examine the remaining statements

in order of decreasing rank.

It is assumed that a program PG consists of m executable statements and a test-suite TS containing n

test cases. The instrumented program is traced to gather coverage information and executing results. A

matrix Mcover = {ci,j | i ∈ [1,m], j ∈ [1, n]} is used to represent the coverage of m statements collected

after running n test cases. If a statement si is executed by test case tj , then ci,j corresponds to 1, and

otherwise corresponds to 0. A vector Vresult = {rj | j ∈ [1, n]} is used to represent the executing results.

If the test case tj leads to a failed execution, then rj corresponds to 1, otherwise it corresponds to 0. The

TBFL calculates the suspiciousness of each statement based on Mcover and Vresult.

Tarantula(s) =
ncf(s)/nf

ncf(s)/nf + ncp(s)/np

, (1)

HSSF(s) =
n2
cf (s)

n
−

ncf (s)×ncp(s)

n2
. (2)

Risk evaluation formula is used to compute statement suspiciousness and is the key to TBFL. Eqs. (1)

and (2) present two typical TBFL formulas Tarantula [8] and HSSF [9], respectively, which are used in the

experiment. Specifically, Tarantula is a representative TBFL approach that is widely used as a compara-

tive technique, and HSSF was theoretically proved as one of the most effective TBFL techniques [1,2,8,9].

Table 1 explains the notations used in Eqs. (1) and (2). For each notation, its value (column 2) and a

brief description (column 3) are presented.

2.3 Test requirements for testing based fault localization

Intuitively, an increase in the testing information increases the effect of TBFL [10]. A reduction in the

size of test-suite could reduce the testing information and affect the effectiveness of TBFL. Therefore,

random based test-suite reduction appears unreliable, and it is necessary for the reduced test-suite to

satisfy certain critical test requirements to mitigate the negative impact of less testing information. In

this section, three test requirements that are helpful in TBFL are summarized.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:4

2.3.1 Result requirement

In TBFL, the risk evaluation formulas are usually constructed by comparing the differences between the

failed executions and the passed executions [1]. If the reduced test-suite contains only failed (or passed)

test cases, then all statements may be assigned the same suspiciousness. As a result, the ranked list

that consists of same suspiciousness statements cannot provide a meaningful guide for fault localization.

Therefore, result requirement (RR) must be satisfied to guarantee that the reduced test-suite contains at

least one failed test case and one passed test case.

2.3.2 Coverage requirement

Coverage requirement (CR) is an often-used TSR requirement in areas of regression testing [11, 12] and

fault localization [6, 13]. The aim involves generating a reduced test-suite that covers the same set of

statements as the original test-suite. Additionally, cov(TS) is used to represent the number of covered

statements under the test-suite TS. An empirical study by Jiang et al. indicated that the reduced test-

suite that satisfies CR is more helpful in TBFL [13] when compared with the sampled cases. Therefore,

it is necessary to satisfy the coverage requirement to guarantee that the reduced result TSreduced covers

the same statements as the original test-suite TS, that is, cov(TSreduced) = cov(TS).

2.3.3 Partition requirement

Definition 1 (T -undistinguishable [4]). Given a program PG and a test-suite TS, two statements of

PG, namely s1 and s2 are T -undistinguishable only if each test case in TS: executes both s1 and s2, or

executes neither s1 nor s2.

Evidently, T -undistinguishable is reflexive, symmetric, and transitive. Based on classical set theory,

statements indicating a T -undistinguishable relationship belong to one equivalence class [4]. According

to the definition 1, statements belonging to the same equivalence class exhibit undistinguishable coverage

features. The suspiciousness of each statement is estimated based on its coverage feature, and thus

statements in a equivalence class are assigned the same suspiciousness. This may involve the wastage of

additional time to break the tie. Furthermore, par(TS) is used to represent the number of equivalence

classes under the test-suite TS. In the simplest circumstance where TS consists of only one test case t,

the following two equivalence classes are obtained, namely those covered by t and those that are not

covered. Thus, par(TS) corresponds to 2. An increase in the value of par(TS) increases the power of

TS to distinguish statements [4]. Thus, developers can reduce their efforts with respect to tie breaking.

Therefore, it is necessary to satisfy partition requirement (PR) to guarantee that TSreduced has the same

number of equivalence classes as TS, that is, par(TSreduced) = par(TS).

3 Our approach

This section overviews the proposed DTSR approach and details two important steps, namely distance

estimation and stopping criteria designation.

3.1 Overview

Figure 1 presents the framework of DTSR. As previously mentioned, the basis of DTSR corresponds to

maximizing the average pair-wise distance among the test cases in the reduced test-suite. Thus, it requires

a measure of distance for pairs of test cases and an optimization algorithm to minimize the output set

of test cases with respect to that measure. Therefore, DTSR works with the following two main phases:

(1) Distance matrix generation. Each matrix cell represents the distance value for pair-wise test cases

evaluated by a certain distance function. (2) Test-suite reduction. Selecting a subset of the original

test-suite that is most likely to satisfy all the test requirements. Generally, the problem corresponds to

an NP-hard problem [7]. Therefore, a greedy algorithm is adopted to determine an optimal solution.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:5

m_dis

t1

t1

d1,1 d1,2

d2,1

dn,1

d2,2

dn,2

d1,n

d2,n

dn,n

t2

t2

tn

tn...

...

...

...

...

......

T

... ...

Treduced

...

Distance
estimation

Test-suite
reduction

Fault
localization

Ranked list

...

Figure 1 (Color online) Framework of distance based test-suite reduction.

Algorithm 1 outlines the details of the proposed approach (DTSR). It treats the program PG, the

original test-suite TS, the first failure detected test case tf1, a distance function DisFunc(), and a stopping

criterion stop cri as inputs. It finally outputs the reduced test-suite TSreduced.

Algorithm 1 Distance based test-suite reduction

Input: PG, TS, tf1, DisFunc(), stop cri;

Output: TSreduced.

1: // Phase 1: generate the distance matrix m dis.

2: for i = 1 to n do

3: for j = i to n do

4: m disi,j = m disj,i = DisFunc(ti, tj);

5: end for

6: end for

7: // Phase 2: reduce the original test-suite TS with a greedy algorithm.

8: TSreduced = {tf1}, TSunreduced = TS −{tf1};

9: while TSeduced cannot satisfy stop cri do

10: dismax = MIN VALUE, tselected = NULL;

11: for all tu ∈ TSunreduced do

12: dismin = MAX VALUE;

13: for all tr ∈ TSreduced do

14: if dismin > m disr,u then

15: dismin = m disr,u;

16: end if

17: end for

18: if dismax < dismin then

19: dismax = dismin, tselected = tu;

20: end if

21: end for

22: TSreduced = TSreduced ∪ tselected, TSreduced = TSreduced − tselected;

23: run PG with tselected and collect the testing information;

24: end while

25: output TSreduced.

First, DTSR (Phase 1: lines 1–6) computes the distance values for pairs of test cases and uses an

n×n matrix m dis to record the distance values. The distance between test case ti and tj is equal to the

distance between tj and ti, and thus it is only necessary for DTSR to compute one of the fore-mentioned

values. Next (Phase 2: lines 7–25), based on m dis and the given stop cri, the DTSR resorts to a greedy

algorithm to select a subset of test cases with maximum average pairwise distances. In each iteration

(lines 10–23), the test case tselected with the maximum distance with respect to the selected test cases

TSreduced is chosen, and the testing information including the coverage information and the executing

result is collected. A study by Jiang et al. [13] is followed, and the minimum distance between a test case

and any test cases in a test-suite is used as the distance between a test case and a test-suite (lines 12–17).

Test-suite reduction stops when the selected ones satisfy stop cri.

3.2 Distance estimation

This section presents two types of approaches for distance estimation.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:6

3.2.1 String distance based distance estimation

A test case can be assumed as a string as well as a vector of characters in a multidimensional space.

A numerical encoding approach is used to transfer it into a vector of numbers. This is followed by

calculating the distances between the test cases by using a certain distance metric. Several numerical

ways are utilized to encode these characters. However, for the purposes of scalability and simplicity,

ASCII is employed to encode these characters.

disHamming(vec1, vec2) =

n
∑

i=1

isEqual(vec1[i], vec2[i]), (3)

disCartesian(vec1, vec2) =

√

√

√

√

n
∑

i=1

(vec1[i]− vec2[i])2, (4)

disManhattan(vec1, vec2) =

n
∑

i=1

|vec1[i]− vec2[i]|. (5)

In this study, four distance metrics are selected, namely Hamming [14], Cartesian, Manhattan, and

Levenshtein [15], to estimate the distances among the test cases. Specifically, Hamming is used to estimate

the bit difference between two strings, and Cartesian and Manhattan indicate the linear distance and the

sum of the wheelbase of two points in the standard coordinate system, respectively. Eqs. (3)–(5) present

the formal definitions of Hamming, Cartesian, and Manhattan, respectively. Function isEqual(c1, c2) is

used to test whether c1 is equal to c2. If c1 is equal to c2, the value of isEqual(c1, c2) is 0, otherwise 1.

Hamming, Cartesian and Manhattan are originally proposed to compare two strings of identical

length. Thus, the strings of test cases should possess the same length. In this study, extant stud-

ies by Ledru et al. [3] are followed to complete the shorter string by a suffix that consists of charac-

ter NUL in which the ASCII value corresponds to 0. For example, given two strings, str1 = “abcd”

and str2 = “aac”, the shorter string str2 is first completed with NUL, and then ASCII encoding

is performed on the two strings. Finally, the two strings are translated into two numeric vectors,

namely vec1 = (97, 98, 99, 100) and vec2 = (97, 97, 99, 0), which are suitable for distance esti-

mation. The distances between vec1 and vec2 are as follows: disHamming(vec1, vec2) = 0 + 1 + 0 +

1 = 2, disCartesian(vec1, vec2) =
√

(97− 97)2 + (98− 97)2 + (99− 99)2 + (100− 0)2 = 100.0049 and

disManhattan(vec1, vec2) = |97− 97|+ |98− 97|+ |99− 99|+ |100− 0| = 101.

Levenshtein indicates the minimum number of character edit operations (i.e., substitution, deletion, and

insertion) necessary to transform one string into another. This is different from Hamming, Cartesian,

and Manhattan because Levenshtein can be applied to strings of arbitrary lengths. For example, the

Levenshtein distance between str1 and str2 corresponds to 2 since the following two operations change

str1 into str2, and this cannot be performed with fewer than two operations.

“bcde” ⇒ “bbde”(substitution of “b” for “c”),

“bbde” ⇒ “bbd”(deletion “e” at the end).

3.2.2 CPM based distance estimation

Category partition method (CPM) is a black-box (or specification) based test-generation technique that

generates test cases without using the knowledge of the internal structure of the program [16]. The

use of CPM creates test cases by refining the functional specification into a test specification. The test

specification defines categories C = {Ci | i ∈ [1, k]} as major properties that affect the behavior of the

functional unit under test. Each category is partitioned into subsets known as choices, which are defined

as “all the different kinds of values that are possible for the category” [17]. Each choice within a category

corresponds to a set of similar values that is assumed with respect to the type of information in the

category [18]. The created test cases should cover all possible choices to provide a sufficient verification

for the program to be analyzed.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:7

50 % 80 % 95 % ...

50 % 80 % 95 % 95 % 98 % 98 % 98 % ...

(a)

(b)

Figure 2 Sliding a 3-width window to a list of coverage rates. (a) Contents are different; (b) contents are similar.

In this study, CPM was applied to analyze the functional differences among the test cases as opposed to

generating new test cases. The use of CPM translates a test case into a vector of choices, where each cell

represents a functional unit that the test case is expected to test. Subsequently, the functional distances

were estimated by comparing the choice vectors. It is difficult to numerical encode a choice, and thus

Hamming was used to calculate the distance between two test cases. For example, given two test cases,

namely t1 and t2, where t1 is used to test the program under choices C1.1, C2.1, and C3.1, and t2 is used

to test the program under choices C1.1 and C3.2. First, NUL is used to complete the shorter test case t2
to ensure that the two test cases possess the same length. Subsequently, CPM is used to translate t1 and

t2 into two identical vectors, namely vec1 = (C1.1, C2.1, C3.1) and vec2 = (C1.1,NUL, C3.2). Hence, the

distance between vec1 and vec2 is as follows: disCPM(vec1, vec2) = disHamming(vec1, vec2) = 0+1+1 = 2.

3.3 Stopping criteria designation

The stopping criterion should be designed to satisfy or approximately satisfy all TBFL test requirements.

Specifically, RR denotes that TSreduced must contain both the failed test cases and the passed ones, i.e.,

TSreduced∩TSfailed 6= ∅ and TSreduced∩TSpassed 6= ∅. When compared with TSpassed, TSfailed is always a

small part of the original test-suite, and thus it is easily ignored in the process of test case selection [4].

In order to solve this problem, TSreduced is initialized with the failure detected test case. Thus, TSreduced
contains at least one failed test case.

Additionally, CR denotes that TSreduced should cover the same statements with the original test-suite

TS, and PR denotes that TSreduced should have the same equivalence classes with TS. The runtime

information of the whole test cases is unknown, and thus the coverage result, as well as the partition

result, of TS are also unknown. Thus, it cannot directly determine whether TSreduced satisfies CR or PR.

In this study, the sliding window technique was used to design the stopping criterion while facing CR.

This is because selecting another test case will not change the coverage result if a set of selected test cases

covers the same statements with the original test-suite. The sliding window technique works through the

following two steps: (1) Coverage list generation in which each of the unchecked test cases is selected

in turn during the test-suite reduction, and the coverage rate of each new test-suite is calculated and

recorded. Thus, a list of coverage rates Lcov is obtained. (2) Stopping criterion recognition in which a

window win is slid over Lcov to verify whether the window contents are similar. If the contents of win are

different, then it is considered that TSreduced is less likely to satisfy CR. Conversely, if the contents of win

are similar, then TSreduced is more likely to satisfy CR, and the test-suite reduction should be stopped.

It should be noted that an increase in the width of the window increases the satisfaction of CR.

The code coverage list Lcov shown in Figure 2 is used to illustrate the working of the sliding window.

A 3-width window win3 is assumed. As shown in Figure 2(a), all nodes (coverage rates) in win3 are

different from each other. Thus, it is assumed that TSreduced is unable to satisfy CR. Conversely, as

shown in Figure 2(b), all nodes in win3 have the same code coverage. Thus, there is a high probability

that TSreduced satisfies CR. In this case, it is unnecessary to select and run a next test case, and test-suite

reduction should stop.

Similarly, when the partitioned result of the selected test cases is similar to those of the original test-

suite, the partition result will not change when another test case is selected. Therefore, the sliding window

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:8

Table 2 Experimental subjects

Program Description LOC #Fault #Test #Category #Choice

JTcas Altitude separation 181 41 1608 12 40

Tot info Information measure 283 23 1079 8 24

Schedule1 Priority scheduler 290 9 1200 7 24

Schedule2 Priority scheduler 317 10 1200 10 34

Print tokens1 Lexical analyzer 478 7 1200 – –

Print tokens2 Lexical analyzer 410 10 1200 – –

NanoXML XML parser 7160 32 237 – –

Siena Notification middleware 6098 10 567 – –

technique can also be used to design the stopping criterion while facing PR.

4 Empirical study

This section aims to answer the following research questions.

RQ1: What is the width that should be set to the window while designing the stopping criterion?

RQ2: Can the DTSR technique select a small subset from the original test-suite?

RQ3: Can the DTSR results maintain the effectiveness of TBFL?

RQ4: Can the DTSR technique reduce the time cost of TBFL?

4.1 Setup

4.1.1 Subjects

Table 2 summarizes the characteristics of Java programs used in the experiments. For each subject, its

name (column 1), a brief description (column 2), the number of code lines (column 3), faulty versions

(column 4), test cases (column 5), categories (column 6), and choices (column 7) are described. The

former six subjects correspond to Java versions [19] of Siemens that are translated from C versions, and

the rest are provided by SIR [20]. Each program consists of a base version, and dozens of faulty versions

in which faults were manually seeded. This resulted in 142 faulty versions. However, the given test-suite

did not detect any fault in the case of 13 faulty versions. Therefore, they were discarded since TBFL

requires failure-causing test cases. A total of 129 faulty versions were used in the experiment.

All subjects provided no information about the categories and the choices and also failed to provide any

test specifications. Hence, it was necessary to manually identify the categories and choices. The functional

units of Print token1 and Print token2 were not clear, and the internal structures of NanoXML and Siena

were quite complex. Thus, the CPM was performed by only analyzing the other four subjects.

4.1.2 Variables

For the purposes of comparison, CTSR techniques [4,6] and RTSR techniques were applied to the subjects.

The CTSR used the greedy algorithm to continue selecting a test case from the unselected test-suite at

each iteration until the selected cases satisfied the given test requirements. Specifically, cov denotes the

CTSR technique that satisfied both RR and CR, and par denotes the CTSR technique that satisfied both

RR and PR. The RTSR randomly selected a test case from the unselected test-suite and traced it at each

iteration until the selected ones satisfied the given test requirements. Similarly, the RTSR technique that

satisfied both RR and CR is denoted by randcov, and the RTSR technique that satisfied both RR and

PR is denoted by randpar. The TSR results were also applied to two typical TBFL techniques, namely

Tarantula [8] and HSSF [9], to evaluate the effectiveness of TBFL. To summarize, the empirical study

used nine TSR techniques and two TBFL techniques, thereby resulting in 18 pairs.

Reduction = sizeTselected
/sizeT × 100%, (6)

Expense = numexamined/numstmts × 100%, (7)

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:9

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

100

75

50

25

0
100

75

50

25

0

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

JTcas

Siena

JTcas

Siena

JTcas

Siena

JTcas

JTcas Tot_info

Schedule1 Schedule2

Siena

(a) (b)

(c) (d)

(e)

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Figure 3 Relativecov comparison on all subjects when using different distance measures. (a) Hamming; (b) Cartesian;

(c) Manhattan; (d) Levenshtein; (e) CPM.

TimeCost = TimeCostreduction +TimeCostcollection +TimeCostcomputation. (8)

For each pair, the following three dependent variables were measured: Reduction, Expense, and Time-

Cost. Eqs. (6)–(8) present these evaluation metrics. Specifically, Reduction indicates the size of test

cases that should be executed and inspected, and this is measured by calculating the ratio of the reduced

test-suite sizeTSreduced
to the original test-suite sizeTS. Furthermore, Expense represents the effectiveness

of a TBFL technique that is measured by the percentage of the statements that should be examined to de-

termine the fault. Finally, TimeCost represents time required for a process of fault locating that consists

of the time of three main steps in fault localization, namely test-suite reduction, coverage information

collection, and suspiciousness computation.

A test-suite and the first failure-detected test case tf1 were considered as the input with the aim of

locating the fault detected by tf1. Additionally, tf1 is unpredictable in practice, and thus the results of

TSR as well as TBFL are not unique. In order to reduce the coincidence of tf1 on TSR and TBFL, each

of the failed test cases of a faulty version verf was considered as tf1, and the average results were used

as the final results for verf .

4.2 Results and analysis

First, an aim involves investigating a width that fits the design of the stopping criterion. Figures 3

and 4 present the results of Relativecov and Relativepar, respectively, by comparing all subjects while

using different distance measures. The horizontal axis of each sub-figure represents the width of the

sliding window in the range of 2 to 100, and the vertical axis denotes Relativecov that represents the ratio

between cov(TSreduced) and cov(TS), or Relativepar that represents the ratio between par(TSreduced) and

par(TS). From Figure 3, it is observed that a short width window provides a high Relativecov for Siemens

with each distance metric. However, it is not high for SIRs. For example, Relativecov of NanoXML only

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:10

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

(a)

0 20 40 60 80 100

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

(b)

0 20 40 60 80 100

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0
0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

(c)

0 20 40 60 80 100

100

75
50

25

0
100

75
50

25

0
100

75
50

25

0 20 40 60 80 100 0 20 40 60 80 100

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

(d)

0 20 40 60 80 100 0 20 40 60 80 100

100

75

50

25

0
100

75

50

25

0

R
at

e
o
f

re
la

ti
v
e

co
v
er

ag
e

(%
)

(e)

JTcas Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

SienaNanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

Tot_info Schedule1

Schedule2 Print_tokens1 Print_tokens2

NanoXML

JTcas

Siena

JTcas

Siena

JTcas

Siena

JTcas Tot_info

Schedule1 Schedule2

Figure 4 Relativepar comparison on all subjects when using different distance measures. (a) Hamming; (b) Cartesian;

(c) Manhattan; (d) Levenshtein; (e) CPM.

corresponds to 49.40% while using a 5-width window in Hamming. Thus, it is necessary to determine a

longer width. The results indicate that a 20-width window provides a high Relativecov for all subjects.

In this case, the Relativecov of all subjects with each distance measure exceed 94% and increasing the

window width does not significantly increase Relativecov. From Figure 4, it is observed that a short

width window cannot provide a high Relativepar for both Siemens and SIRs with each distance metric.

Similarly, the results indicate that a 20-width window provides a high Relativepar for all subjects. In

this case, the Relativepar of all subjects with each distance measure exceeds 85% with the exception

of Schedule2 in which Relativepar exceeds 75% and increasing the window width does not significantly

increase Relativepar. Therefore, it is concluded that a 20-width window is fit for designing the stopping

criterion.

Table 3 presents the Reduction results of the proposed DTSR techniques (columns 6–10) and the

compared CTSR techniques (columns 2–3) and RTSR techniques (columns 4–5) while using a 20-width

window. Rows 10–12 show the average Reduction of the four former subjects, namely, the ave4, the

Siemens aveSiemens, and the SIR subjects aveSIR. They are distinguished because CPM is only used for

the former four subjects, and Siemens and SIRs belong to different scales [9]. This indicates that in most

cases, CTSR techniques correspond to the minimum Reduction, and RTSR techniques correspond to the

maximum Reduction. The DTSR falls in between CTSR and RTSR. An exception corresponds to CTSR

and DTSR when they are applied to NanoXML. A small percentage of test cases cannot satisfy the test

requirements given that NanoXML contains thousands of statements but a small amount of test cases.

Thus, CTSR exhibits a higher Reduction result. Moreover, the results suggest that CTSR is not very

different with respect to the DTSR. This indicates that DTSR techniques effectively reduce the size of

the original test-suite even without the whole testing information.

Tables 4 and 5 present the Tarantula Expense and the HSSF Expense, respectively, of DTSR techniques

(columns 6–10), as well as CTSR (columns 2–3) and RTSR techniques (columns 4–5) while using a 20-

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:11

Table 3 Reduction of the reduced test-suite when window width is 20

Program cov par randcov randpar Hamming Levenshtein Cartesian Manhattan CPM

JTcas 3.27 3.65 4.92 5.56 3.94 4.10 4.08 4.01 4.86

Tot info 3.85 4.92 6.58 8.18 4.24 4.73 4.50 4.62 6.50

Schedule1 3.71 4.92 6.64 9.10 3.88 4.20 4.03 4.26 6.50

Schedule2 3.71 7.10 5.69 8.70 3.56 3.95 4.84 3.62 6.73

Print tokens1 3.46 4.58 5.98 6.69 3.71 3.85 4.04 4.01 –

Print tokens2 4.08 5.50 6.22 8.63 4.56 4.71 4.67 4.59 –

NanoXML 47.52 57.58 90.67 83.19 17.91 18.81 20.41 31.57 –

Siena 8.48 11.62 17.70 21.99 7.23 8.72 7.16 7.19 –

ave4 3.52 4.47 5.65 6.98 3.99 4.28 4.27 4.18 5.70

aveSiemens 3.58 4.59 5.74 7.14 4.03 4.29 4.29 4.21 –

aveSIR 37.76 46.09 72.43 67.89 15.24 16.29 17.10 25.48 –

Table 4 Tarantula Expense of the reduced test-suite when window width is 20

Program cov par randcov randpar Hamming Levenshtein Cartesian Manhattan CPM Origin

JTcas 17.14 16.77 17.31 17.38 17.16 16.95 17.40 17.08 17.44 16.96

Tot info 25.72 19.64 24.75 23.83 19.37 21.31 23.82 24.38 21.16 21.20

Schedule1 7.08 6.45 7.42 7.48 7.99 6.79 6.54 8.09 6.46 6.90

Schedule2 33.87 34.34 34.10 35.38 36.26 32.76 33.65 36.43 30.38 33.05

Print tokens1 27.83 24.01 28.86 29.33 37.39 26.40 29.12 27.73 – 26.05

Print tokens2 24.18 24.11 31.66 28.78 32.25 29.86 27.26 26.24 – 27.38

NanoXML 7.61 7.54 10.26 6.10 8.15 5.75 6.74 6.63 – 7.44

Siena 4.17 4.55 4.15 4.07 4.79 4.43 4.67 4.67 – 4.20

ave4 20.11 18.13 19.97 19.86 18.59 18.59 19.61 20.03 18.55 18.61

aveSiemens 21.13 19.22 21.90 21.53 21.48 20.40 21.15 21.28 – 20.11

aveSIR 6.75 6.79 8.73 5.59 7.31 5.42 6.22 6.14 – 6.63

p4 0.1326 0.3620 0.0814 0.0406 0.2841 0.2203 0.1420 0.0441 0.2034 –

pSiemens 0.2588 0.0863 0.0140 0.0066 0.0789 0.1812 0.0691 0.0535 – –

pSIR 0.3056 0.1614 0.2556 0.2192 0.0293 0.2931 0.4382 0.4174 – –

width window. In order to evaluate the impact of reduced test cases on TBFL, the Tarantula experiment

and HSSF experiment were also performed on the original test-suite origin (column 11). Rows ave4,

aveSiemens, and aveSIR present the average Expense of the four former subjects, the Siemens subjects

and the SIR subjects, respectively. It was observed that in most cases, par exhibited the best average

Expense. This indicated that partition requirement is necessary in TSR. The results also indicated that

origin did not exhibit the best results across all subjects. This indicated that the use of a larger size

test-suite may not provide a better fault locating result with Tarantula or HSSF while the redundant test

cases may exert a negative influence on suspiciousness estimation (e.g., more test cases of Coincidental

Correctness [21]). Additionally, the results show that HSSF is a better risk evaluation formula when

compared with Tarantula, and this is consistent with the theoretical analysis [9].

Additionally, in order to verify whether the original results are better than the TSR results, paired

Wilcoxon tests were applied between column origin and the rest of nine columns (columns 2–10) in

Tables 4 and 5, respectively. The last three rows indicate the p-values of the former four subjects p4,

the Siemens subjects pSiemens, and the SIR subjects pSIR. With respect to the CTSR results and DTSR

results, most of the p-values exceeded 0.05 (i.e., 11
12 in CTSR, 29

32 in DTSR). This indicates that the

hypothesis that the fault locating effectiveness of origin exceeds that of CTSR and DTSR should be

rejected in most cases. With respect to the RTSR results, a third of the p-values (4
12) were less than

0.05 and all of them corresponded to Siemens subjects. Furthermore, ave4 and aveSiemens of origin always

exceeded that of RTSR, and thus RTSR may affect the effectiveness of TBFL. Therefore, it is concluded

that the proposed DTSR techniques did not affect the effectiveness of TBFL.

Finally, the TimeCost of TBFL applied to the DTSR techniques and the compared CTSR and RTSR

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:12

Table 5 HSSF Expense of the reduced test-suite when window width is 20

Program cov par randcov randpar Hamming Levenshtein Cartesian Manhattan CPM Origin

JTcas 14.78 14.55 14.76 14.82 14.45 14.95 14.97 12.54 15.07 13.91

Tot info 20.32 13.45 19.31 17.04 18.23 17.64 20.28 20.37 13.74 18.49

Schedule1 6.95 6.84 7.47 6.72 7.74 6.58 6.95 8.40 6.33 6.47

Schedule2 37.86 34.57 35.53 40.94 41.97 32.25 37.31 39.29 32.91 33.48

Print tokens1 21.99 18.04 20.64 19.72 22.27 20.54 26.02 17.94 – 20.76

Print tokens2 23.85 22.52 32.78 24.33 25.64 20.15 21.35 24.04 – 23.17

NanoXML 3.77 3.55 4.53 3.71 6.93 4.54 5.66 4.47 – 5.40

Siena 4.42 5.06 4.92 4.85 5.00 5.48 4.50 4.48 – 5.41

ave4 17.69 15.26 17.22 17.02 17.37 16.44 17.72 16.83 15.41 16.26

aveSiemens 18.67 16.25 19.15 18.01 18.63 17.15 18.74 17.69 – 17.34

aveSIR 3.93 3.93 4.63 4.00 6.45 4.78 5.37 4.47 – 5.40

p4 0.0600 0.3227 0.0137 0.2132 0.1509 0.3395 0.0458 0.1273 0.2311 –

pSiemens 0.0224 0.1642 0.0847 0.1997 0.0645 0.1369 0.0726 0.2152 – –

pSIR 0.0763 0.1905 0.0867 0.1481 0.3333 0.2759 0.3386 0.0017 – –

JTcas Tot_info Schedule1 Schedule2 Print_tokens1 Print_tokens2 NanoXML Siena
0

12000

8000

4000

Reduction

Collection

Computation

T
im

eC
o
st

 o
f

fa
u
lt

 l
o
ca

li
za

ti
o
n
 (

s)

Figure 5 (Color online) TimeCost (s) of the fault localization when window width is 20.

techniques are presented. Figure 5 shows the TimeCost when a 20-width window is used. The horizontal

axis represents the subjects, and the vertical axis represents the TimeCost of fault localization. Without

loss of generality, the time overhead of Tarantula was measured as the representative of TBFL techniques.

The TSR techniques compared in this figure are as follows: two CTSR techniques (cov and par), two

RTSR techniques (randcov and randpar), and five proposed DTSR techniques (Hamming, Levenshtein,

Cartesian, Manhattan, and CPM). For further comparison, the TimeCost of applying the original test-

suite to Tarantula were provided. Thus, for each subject, ten different TimeCost values were collected

and recorded by applying 9 TSR outputs and the original test-suite on Tarantula.

Additionally, TimeCost was measured by considering the time cost of TimeCostreduction (green area),

TimeCostcollection (grey area), and TimeCostcomputation (red area). It was observed that TBFL spends

maximum time on coverage information collection and spent minimum time on suspiciousness compu-

tation. An exception occurred in Levenshtein when it was applied to Tot info. Levenshtein is a high

complexity string distance estimation approach with a cost (in time and memory) that corresponds to

O(m × n) where m and n denote lengths of the two strings. The test-suite of Tot info was constructed

by thousands of long strings, and thus generating the distance matrix of TSTot info definitely significantly

increased the time cost on TSR. Other subjects do not exhibit this problem. All traces were necessary

to conduct a fault localization by using CTSR results as well as the original test-suite, and this entailed

more time than those of DTSR and RTSR. However, the time of DTSR was not significantly different

from the time of RTSR on Siemens programs. Siemens corresponded to small-scale programs, and thus

a small number of test cases satisfied the test requirements. Therefore, both DTSR and RTSR spent

shorter time on coverage information collection. The reduced results of DTSR were fewer than those of

RTSR. However, they exhibited similar fault locating time. However, DTSR required a slightly lower

time when compared with those of other TSR techniques on subjects NanoXML and Siena. This result

indicated that the proposed DTSR techniques effectively improve the efficiency of TBFL.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:13

5 Discussion

5.1 Threats to validity

Internal validity is an issue with respect to the proposed approach due to the errors that affect the

experimental results without developers’s knowledge. The main issues with respect to internal validity are

as follows. First, the compared techniques used in this experiment constitute issues. In the experiment,

the CTSR techniques are selected and implemented based on the description of Yu et al. [6] and Hao et

al. [4]. Second, the TBFL techniques used in the experiment correspond to a potential issue. In order

to avoid this, two typical TBFL techniques are selected, namely Tarantula [8] and HSSF [9], which are

widely used in TBFL studies. Third, the initial failed test case may impact the results of the TSR and

the TBFL. This is reduced by using each of the failed test cases as the initial failed test case. Finally,

the manual analysis of the program specification constitutes an issue because the experimental results

of CPM technique may be affected by the capacity of the researcher who identifies the categories and

choices. This is avoided by involving multiple researchers to perform the category partition. This is

further reduced by involving software developers to identify the categories and choices.

There are also threats to external validity of the study wherein the results may not be generalized to

all systems. In the experiment, the effects of TSR on TBFL were evaluated by using only 8 programs,

and thus it was possible to definitively state that the findings are applicable for programs in general. The

study attempted to address a few of the uncertainties by evaluating a variety of programs with diverse

sizes. Another external validity threat is that the faults correspond to seeded faults that are carefully

designed by Do et al. [20]. Seeded faults are widely used in several previous studies although they do not

constitute naturally occurring faults.

Construct validity is also a threat to the proposed approach due to the complexity of the proposed

DTSR techniques. When compared with CTSR [4, 6] and RTSR, the DTSR requires additional calcu-

lations of the distances among the test cases, and this increases the complexity of fault localization.

However, although a program may contain several faulty versions, the program usually contains only one

test-suite. Thus, it is only necessary to perform a calculation of distances among the test cases. An

increase in the number of faulty versions decreases the average distance calculation time. Conversely,

the program should be repeatedly modified and executed during program debugging. Thus, the time for

program tracing exceeds that of distance calculation. Therefore, the additional step is not a threat to

the proposed approach.

5.2 Related work

The proposed approach is related to TSR because the approach provides strategies on TSR to improve the

efficiency of program debugging. Additionally, the goal of TSR in this study involves selecting test cases

as inputs to TBFL, and the study is also related to testing based fault localization. Both fore-mentioned

studies are briefly reviewed.

5.2.1 Test-suite reduction

The aim of TSR involves reducing the size of a given test-suite by identifying and eliminating redundant

test cases during software maintenance. The random technique corresponds to a straightforward way to

test-suite reduction although it cannot guarantee the quality of reduced test-suite [4, 22]. In addition to

this technique, most existing TSR approaches are based on structural coverage such as statement cover-

age [11], branch coverage [12] and MC/DC [23], or black-box information such as input difference [24],

category partition result [25], and service interaction [26]. Rothermel and Harrold [27] surveyed test-suite

selection techniques and introduced a framework to evaluate different techniques. Wong et al. [28] sug-

gested that TSR techniques could lower the number of executed test cases without significantly reducing

fault detection capabilities of test-suites. However, Rothermel et al. [29] examined costs and benefits of

TSR techniques, and their results indicated that TSR could severely compromise fault detection capabil-

ities of test-suites.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:14

The present study corresponds to TSR because the aim of the proposed approach involves reducing

the size of the given test-suite. Traditional TSR techniques aim at facilitating fault detection while the

aim of the proposed approach involves facilitating fault localization. The proposed approach corresponds

to distance based test-suite reduction and does not require collecting coverage information of the whole

test-suite. Thus, it can effectively reduce the TSR time cost.

5.2.2 Testing based fault localization

Testing based fault localization (TBFL) approaches mainly differ in the granularity of execution collected

(e.g., program statement [8,9], predicate [30]), and in the strategies employed for suspicion computation [1,

2]. The present study is different from extant studies on TBFL because the proposed approach focuses on

reducing efforts on coverage information collection. The DTSR approach was applied to two typical fault

localization approaches [8, 9]. The results indicate that the time needed for TBFL is effectively reduced

while the effectiveness of TBFL is maintained.

A few studies focused on evolving test-suite (e.g., test-suite generation [10], test-suite reduction [4,6,31])

to aid in locating faults. Baudry [10] analyzed the type of information needed for TBFL and proposed

the TfD criterion (test for diagnosis) to improve the quality of a test-suite. Yu et al. [6] proposed

two TSR techniques, namely statement based and vector based techniques, to investigate the impact of

test-suite composition on the effectiveness of TBFL. The results revealed that TBFL always exhibited

a worse performance if a test-suite was reduced by a statement based technique. In contrast, TBFL

always exhibited the same performance if a test-suite was reduced by vector based technique. Hao et

al. [4] emphasized the test oracle problem in TBFL. Developers spend a considerable amount of time on

inspecting results due to the lack of expected outputs. Thus, they proposed three strategies to reduce the

size of test-suite. Vidacs et al. [31] proposed a combined approach to satisfy test requirements of fault

detection and fault localization. The results indicated that the combined approach obtained a significant

tradeoff between the capability of the fault detection and fault localization. In a manner similar to

the above four studies, the aim of the present study involves improving the performance of TBFL by

improving the quality of the given test-suite. The currents study is different from extant studies because

the proposed approach relies on the distances and categories among the test cases as opposed to the

testing information of all test cases. This avoids the expensive process of coverage information collection

with respect to the complete test-suite.

6 Conclusion

In this study, the distance based test-suite reduction (DTSR) technique is proposed to enhance the

efficiency of testing based fault localization and to verify its effectiveness by performing an empirical

study. Given the use of DTSR, it is only necessary to trace and inspect test cases in the reduced test-

suite while conducting a testing based fault localization. This aids developers in avoiding the costly

process of running the entire information collection. The results of the empirical study indicate that the

proposed approach enables developers to select a small subset of test cases while continuing to achieve

effective fault locating results. A future study will involve applying the proposed approach to an increased

number of subjects and conducting more detailed empirical studies.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61673384, 61502497, 61562015), Guangxi Key Laboratory of Trusted Software (Grant Nos. kx201609, kx201532),

Scientific Research Innovation Project for Graduate Students of Jiangsu Province (Grant No. KYLX 1390), Sci-

ence and Technology Program of Xuzhou (Grant No. KC15SM051), and China Postdoctoral Science Foundation

(Grant No. 2015M581887).

Conflict of interest The authors declare that they have no conflict of interest.

Wang X Y, et al. Sci China Inf Sci September 2017 Vol. 60 092112:15

References

1 Wong W E, Gao R Z, Li Y H, et al. A survey on software fault localization. IEEE Trans Softw Eng, 2016, 42: 707–740

2 Xie X Y, Chen T Y, Kuo F C, et al. A theoretical analysis of the risk evaluation formulas for spectrum-based fault

localization. ACM Trans Softw Eng Meth, 2013, 22: 402–418

3 Ledru Y, Petrenko A, Boroday S, et al. Prioritizing test cases with string distances. Automat Softw Eng, 2012, 19:

65–95

4 Hao D, Xie T, Zhang L, et al. Test input reduction for result inspection to facilitate fault localization. Automat Softw

Eng, 2010, 17: 5–31

5 Gong L, Lo D, Jiang L X, et al. Diversity maximization speedup for fault localization. In: Proceedings of the 27th

International Conference on Automated Software Engineering, Essen, 2012. 30–39

6 Yu Y B, Jones J A, Harrold M J. An empirical study of the effects of test-suite reduction on fault localization. In:

Proceedings of the 30th International Conference on Software Engineering, Leipzig, 2008. 201–210

7 Shi A, Yung T, Gyori A, et al. Comparing and combining test-suite reduction and regression test selection. In:

Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, Bergamo, 2015. 237–247

8 Jones J A, Harrold M J, Stasko J. Visualization of test information to assist fault localization. In: Proceedings of the

24th International Conference on Software Engineering, Orlando, 2002. 467–477

9 Ju X L, Jiang S J, Chen X, et al. HSFal: effective fault localization using hybrid spectrum of full slices and execution

slices. J Syst Softw, 2014, 90: 3–17

10 Baudry B. Improving test suites for efficient fault localization. In: Proceedings of the 28th International Conference

on Software Engineering, Shanghai, 2006. 82–91

11 Rothermel G, Harrold M J. Empirical studies of a safe regression test selection technique. IEEE Trans Softw Eng,

1998, 24: 401–419

12 Wang R C, Qu B B, Lu Y S. Empirical study of the effects of different profiles on regression test case reduction. IET

Softw, 2015, 9: 29–38

13 Jiang B, Zhai K, Chan W K, et al. On the adoption of MC/DC and control-flow adequacy for a tight integration of

program testing and statistical fault localization. Inform Softw Tech, 2013, 55: 897–917

14 Hamming R W. Error detecting and error correcting codes. BELL Labs Tech J, 1950, 29: 147–160

15 Levenshtein V I. Binary codes capable of correcting deletions, insertions and reversals. Dokl Akad Nauk Sssr, 1965,

10: 707–710

16 Chen T Y, Poon P L, Tang S F, et al. On the identification of categories and choices for specification-based test case

generation. Inform Softw Tech, 2004, 46: 887–898

17 Zhang X Y, Towey D, Chen T Y, et al. Using partition information to prioritize test cases for fault localization. In:

Proceedings of the 39th Annual Computer Software and Applications Conference, Taichung, 2002. 121–126

18 Ostrand T J, Balcer M J. The category-partition method for specifying and generating fuctional tests. Commun ACM,

1988, 31: 676–686

19 Santelices R, Jones J A, Yu Y B, et al. Lightweight fault-localization using multiple coverage types. In: Proceedings

of the 31st International Conference on Software Engineering, Vancouver, 2009. 56–66

20 Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: an infrastructure and

its potential impact. Empir Softw Eng, 2005, 10: 405–435

21 Masri W, Assi R A. Prevalence of coincidental correctness and mitigation of its impact on fault localization. ACM

Trans Softw Eng Meth, 2014, 23: 294–304

22 Zhang Z Y, Chen Z Y, Gao R Z, et al. An empirical study on constraint optimization techniques for test generation.

Sci China Inf Sci, 2017, 60: 012105

23 Fang C R, Chen Z Y, Xu B W. Comparing logic coverage criteria on test case prioritization. Sci China Inf Sci, 2012,

55: 2826–2840

24 Jiang B, Zhang Z Y, Chan W K, et al. Adaptive random test case prioritization. In: Proceedings of the 24th

International Conference on Automated Software Engineering, Auckland, 2009. 233–244

25 Zhang X F, Xie X Y, Chen T Y. Test case prioritization using adaptive random sequence with category-partition-based

distance. In: Proceedings of the 2016 International Conference on Software Quality, Reliability and Security, Vienna,

2016. 374–385

26 Chen L, Wang Z Y, Xu L, et al. Test case prioritization for web service regression testing. In: Proceedings of the 5th

International Symposium on Service-Oriented System Engineering, Nanjing, 2010. 173–178

27 Rothermel G, Harrold M J. Analyzing regression test selection techniques. IEEE Trans Softw Eng, 1996, 22: 529–551

28 Wong W E, Horgan J R, London S, et al. Effect of test set minimization on fault detection effectiveness. In: Proceedings

of the 17th International Conference on Software Engineering, Washington, 1995. 41–50

29 Rothermel G, Harrold M J, Ronne J V. Empirical studies of test-suite reduction. Softw Test Verif Rel, 2002, 12:

219–249

30 Wang X Y, Jiang S J, Ju X L, et al. Mitigating the dependence confounding effect for effective predicate-based

statistical fault localization. In: Proceedings of the 39th Annual Computer Software and Applications Conference,

Taichung, 2015. 105–114

31 Vidacs L, Beszedes A, Tengeri D, et al. Test suite reduction for fault detection and localization: a combined approach.

In: Proceedings of the 2014 IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering,

Antwerp, 2014. 204–213

	Introduction
	Preliminaries
	Test-suite reduction
	Testing based fault localization
	Test requirements for testing based fault localization
	Result requirement
	Coverage requirement
	Partition requirement

	Our approach
	Overview
	Distance estimation
	String distance based distance estimation
	CPM based distance estimation

	Stopping criteria designation

	Empirical study
	Setup
	Subjects
	Variables

	Results and analysis

	Discussion
	Threats to validity
	Related work
	Test-suite reduction
	Testing based fault localization

	Conclusion

