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Abstract The aim of testing based fault localization (TBFL) involves improving the efficiency of program
debugging by providing developers with a guide of ranked list of suspicious statements. However, collection
of testing information of the whole original test-suite is excessively expensive or even infeasible for developers
to conduct TBFL. Traditional test-suite reduction (T'SR) techniques are utilized to reduce the size of test-
suite. However, they entail a time-consuming process of whole testing information collection. In this study, the
distance based test-suite reduction (DTSR) technique is proposed. As opposed to the whole testing information,
the distances among the test cases are used to guide the process of test-suite reduction in DTSR. Hence, it is only
necessary to collect the testing information for a portion of the test cases for TSR and TBFL. The investigation
on the Siemens and SIR benchmarks reveals that DTSR can effectively reduce the size of the given test-suite
as well as the time cost of TBFL. Additionally, the fault locating effectiveness of DTSR results is close to that
when the whole test-suite is used.
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1 Introduction

Debugging is a tedious and time-consuming albeit essential activity during software development. Re-
searchers have proposed several types of approaches to improve the process of fault localization [1] to
reduce the effort for manual debugging. Among these approaches, testing based fault localization (TBFL)
is promising [2]. It relies on testing information (e.g., code coverage and execution result) obtained from
executing the program to automatically identify the most likely faulty parts, and thereby narrows search
areas.

Thus, TBFL was demonstrated as an effective method in several studies. However, several issues may
affect its performance. A very serious problem corresponds to the time-consuming process of collecting
coverage information. The performance of thousands of test cases on industrial software can involve
several hours or even days [3]. Therefore, collection of coverage information of all test cases is a slow
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process that may not always be practically feasible. Another problem corresponds to the tedious process
of executing result inspections [4]. The execution of results is essential when a TBFL technique is applied
to statistically locate faulty parts. However, it is not easy to assert the executing result of an execution
when a failure is not as obvious as a program crash or invalid output formats [5]. Typically, it requires
manual inspection. Therefore, significant manual effort is expended in determining the results of all
executions, and this decreases the efficiency of TBFL.

A valid method to address these problems involves reducing test cases wherein tracing and inspection
is required. Extant studies proposed a few test-suite reduction (TSR) techniques to reduce the number
of test cases. These techniques always share a common framework. First, a few characters (e.g., high-
coverage [6], high-partition [4]) that can maintain the effectiveness of TBFL with the original test-suite
are summarized, and this is followed by generating a series of test requirements based on these characters.
Next, a heuristic algorithm (e.g., greedy algorithm) is used to output a reduced test-suite that can satisfy
all test requirements. Finally, it collects coverage information and executing results of the reduced test-
suite and provides the same to a TBFL for fault localization. The experimental results indicated that these
techniques effectively reduced the size of the original test-suite while not exerting an obvious negative
effect on TBFL. However, it is not possible to perform the characters summarization (such as determining
the code coverage of the original test-suite) and the following heuristic based test-suite reduction unless
all test executions were inspected. Thus, it is not possible for these techniques to decrease the size of
test cases wherein tracing and inspection is required. Therefore, TBFL continues to suffer from the low
efficiency on coverage information collection, and it is difficult to reduce the time cost of TBFL.

In this study, a distance based test-suite reduction (DTSR) approach was proposed to reduce the time
effort required for TBFL. The DTSR selected a subset of test cases that include maximum average pair-
wise distance as the output of TSR. It relied on the intuition that test diversity maintains the characters
of the original test-suite and that the distances among the test cases are reasonable to measure the test
diversity. With respect to the DTSR, only a small portion of test cases were needed to trace and inspect,
and the developers could only use the information associated with test executions for the reduced test-suite
and the failure-causing test case to locate the fault. Thus, the proposed approach effectively reduced the
time cost of testing information collection. The proposed approach was empirically compared to coverage
based test-suite reduction (CTSR) [4,6] and random based test-suite reduction (RTSR) on the reduction
rate Reduction, the fault localization effect Expense, and the time cost TimeCost. Experimental results
indicated that the proposed approach effectively reduced the size of original test-suite as well as the time
cost of TBFL while the reduced result did not affect the effectiveness of TBFL.

The rest of this study is organized as follows. Section 2 overviews the corresponding TSR techniques,
TBFL techniques, and the test requirements for TBFL. The test-suite reduction approach is described
in detail in Section 3. Experimental design and results analysis are presented in Section 4. The threats
to validity and related studies are discussed in Section 5. Finally, Section 6 concludes the article and
outlines directions for future research.

2 Preliminaries

This section presents an overview of TSR techniques as well as TBFL techniques, and summarizes three
test requirements that are applicable to TBFL.

2.1 Test-suite reduction

The aim of TSR [7] involves selecting a subset of original test-suite that maintain a few features similar to
the whole test-suite. These features are called test requirements. A set of test requirements is assumed,
and the TSR problem can be stated as follows

Given: a set of test requirements RS = {r; | i € [1,n]} and a test-suite TS with subsets TSgups =
{TS; | i € [1,n]}, the value of isMeet(r;, t) corresponds to 1 where ¢ € TS,. Function isMeet(r, t) is used
to test whether r is satisfied by ¢. It corresponds to 1 if ¢ satisfies » and otherwise corresponds to 0.
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Table 1 Notations widely used in suspiciousness calculation

Notation Value Description

np Z?:l(l — 1) The number of passed test cases

ny Z?:1 T The number of failed test cases
Nep(Si) g e x(l—rj) The number of passed test cases that can cover the statement s;
ney(si) g cig Xy The number of failed test cases that can cover the statement s;
Nup(si) G (L= ci)x(L—=rj5) The number of passed test cases that cannot cover the statement s;
Ny £ (85) G (L= cij)xr; The number of failed test cases that cannot cover the statement s;

Problem: determining a representative set of test cases from TS such that executing the reduced
test-suite T'S;equcea satisfies all test requirements in RS.

It is necessary to satisfy all test requirements, and thus TS;equced must contain at least one test case
from each TS;. It is assumed that one test case may satisfy more than one test requirement, and thus
it is intractable to determine a minimum test-suite that satisfies all test requirements. Therefore, TSR
must approximate the minimum cardinality [7].

2.2 Testing based fault localization

The intuition behind TBFL is that the statements that are primarily executed by passed test cases are less
likely to be faulty when compared with those primarily executed by failed test cases [8]. With respect
to each statement, a suspiciousness is assigned to indicate the likelihood that the statement contains
a fault. An increase in the suspiciousness increases the likelihood of the statement to contain a fault.
Subsequently, the statements with the highest rank are first examined while searching for the fault. If the
fault is not found after examining these statements, then developers examine the remaining statements
in order of decreasing rank.

It is assumed that a program PG consists of m executable statements and a test-suite TS containing n
test cases. The instrumented program is traced to gather coverage information and executing results. A
matrix Meover = {¢i; | ¢ € [1,m], j € [1,n]} is used to represent the coverage of m statements collected
after running n test cases. If a statement s; is executed by test case t;, then ¢; ; corresponds to 1, and
otherwise corresponds to 0. A vector Viesuit = {7 | j € [1,n]} is used to represent the executing results.
If the test case t; leads to a failed execution, then r; corresponds to 1, otherwise it corresponds to 0. The
TBFL calculates the suspiciousness of each statement based on M over and Viesult-

arantula(s) = neg(s)/ny
Tarantula(s) Tes (8)/1f + Nep(5)/11p” (1)
HSSF () = ner(s) ey (8)Xngy(s) o)

n n

Risk evaluation formula is used to compute statement suspiciousness and is the key to TBFL. Egs. (1)
and (2) present two typical TBFL formulas Tarantula [8] and HSSF [9], respectively, which are used in the
experiment. Specifically, Tarantula is a representative TBFL approach that is widely used as a compara-
tive technique, and HSSF was theoretically proved as one of the most effective TBFL techniques [1,2,8,9].
Table 1 explains the notations used in Eqgs. (1) and (2). For each notation, its value (column 2) and a
brief description (column 3) are presented.

2.3 Test requirements for testing based fault localization

Intuitively, an increase in the testing information increases the effect of TBFL [10]. A reduction in the
size of test-suite could reduce the testing information and affect the effectiveness of TBFL. Therefore,
random based test-suite reduction appears unreliable, and it is necessary for the reduced test-suite to
satisfy certain critical test requirements to mitigate the negative impact of less testing information. In
this section, three test requirements that are helpful in TBFL are summarized.
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2.3.1 Result requirement

In TBFL, the risk evaluation formulas are usually constructed by comparing the differences between the
failed executions and the passed executions [1]. If the reduced test-suite contains only failed (or passed)
test cases, then all statements may be assigned the same suspiciousness. As a result, the ranked list
that consists of same suspiciousness statements cannot provide a meaningful guide for fault localization.
Therefore, result requirement (RR) must be satisfied to guarantee that the reduced test-suite contains at
least one failed test case and one passed test case.

2.3.2  Coverage requirement

Coverage requirement (CR) is an often-used TSR requirement in areas of regression testing [11,12] and
fault localization [6,13]. The aim involves generating a reduced test-suite that covers the same set of
statements as the original test-suite. Additionally, cov(TS) is used to represent the number of covered
statements under the test-suite T'S. An empirical study by Jiang et al. indicated that the reduced test-
suite that satisfies CR is more helpful in TBFL [13] when compared with the sampled cases. Therefore,
it is necessary to satisfy the coverage requirement to guarantee that the reduced result TS;equced cOvVers
the same statements as the original test-suite TS, that is, cov(TS;educed) = cov(TS).

2.3.3 Partition requirement

Definition 1 (7-undistinguishable [4]). Given a program PG and a test-suite TS, two statements of
PG, namely s; and sy are T-undistinguishable only if each test case in TS: executes both s; and ss, or
executes neither s; nor ss.

Evidently, T-undistinguishable is reflexive, symmetric, and transitive. Based on classical set theory,
statements indicating a T-undistinguishable relationship belong to one equivalence class [4]. According
to the definition 1, statements belonging to the same equivalence class exhibit undistinguishable coverage
features. The suspiciousness of each statement is estimated based on its coverage feature, and thus
statements in a equivalence class are assigned the same suspiciousness. This may involve the wastage of
additional time to break the tie. Furthermore, par(TS) is used to represent the number of equivalence
classes under the test-suite T'S. In the simplest circumstance where TS consists of only one test case ¢,
the following two equivalence classes are obtained, namely those covered by ¢ and those that are not
covered. Thus, par(TS) corresponds to 2. An increase in the value of par(TS) increases the power of
TS to distinguish statements [4]. Thus, developers can reduce their efforts with respect to tie breaking.
Therefore, it is necessary to satisfy partition requirement (PR) to guarantee that TS;cquced has the same
number of equivalence classes as TS, that is, par(TS;educed) = par(TS).

3 Our approach

This section overviews the proposed DTSR approach and details two important steps, namely distance
estimation and stopping criteria designation.

3.1 Overview

Figure 1 presents the framework of DTSR. As previously mentioned, the basis of DTSR corresponds to
maximizing the average pair-wise distance among the test cases in the reduced test-suite. Thus, it requires
a measure of distance for pairs of test cases and an optimization algorithm to minimize the output set
of test cases with respect to that measure. Therefore, DTSR works with the following two main phases:
(1) Distance matrix generation. Each matrix cell represents the distance value for pair-wise test cases
evaluated by a certain distance function. (2) Test-suite reduction. Selecting a subset of the original
test-suite that is most likely to satisfy all the test requirements. Generally, the problem corresponds to
an NP-hard problem [7]. Therefore, a greedy algorithm is adopted to determine an optimal solution.
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Figure 1 (Color online) Framework of distance based test-suite reduction.

Algorithm 1 outlines the details of the proposed approach (DTSR). It treats the program PG, the
original test-suite T'S, the first failure detected test case ¢ 1, a distance function DisFunc(), and a stopping
criterion stop_cri as inputs. It finally outputs the reduced test-suite T'S;equced-

Algorithm 1 Distance based test-suite reduction

Input: PG, TS, ty;, DisFunc(), stop_cri;
Output: TS, equced-

1: // Phase 1: generate the distance matrix m_dis.
2: fori=1ton do

3: for j =i ton do

4: m_dis; ; = m_dis;; = DisFunc(t;, tj);

5: end for

6: end for

7: // Phase 2: reduce the original test-suite TS with a greedy algorithm.
8: TSreduced = {tf1}7 TSunreduced = TS 7{tf1};

9: while TS.quceq cannot satisfy stop_cri do

10:  dismax = MIN_VALUE;, tscjectea = NULL;

11: for all t,, € TSynreduced dO

12: dismin = MAX_VALUE;

13: for all t, € TS;equced dO

14: if dispin > m-disy then

15: dismin = m-disy,v;

16: end if

17: end for

18: if dismax < dismin then

19: dismax = diSmin, fselected = luj
20: end if

21: end for

22: TSreduced = TSreduced U tselected s TSreduced = TSreduced — lselected
23: run PG with tgejecteq and collect the testing information;
24: end while

25: output TS;cquced-

First, DTSR (Phase 1: lines 1-6) computes the distance values for pairs of test cases and uses an
nxn matrix m_dis to record the distance values. The distance between test case ¢; and ¢; is equal to the
distance between t; and ¢;, and thus it is only necessary for DTSR to compute one of the fore-mentioned
values. Next (Phase 2: lines 7-25), based on m_dis and the given stop_cri, the DTSR resorts to a greedy
algorithm to select a subset of test cases with maximum average pairwise distances. In each iteration
(lines 10-23), the test case tsclected With the maximum distance with respect to the selected test cases
TSreduced 18 chosen, and the testing information including the coverage information and the executing
result is collected. A study by Jiang et al. [13] is followed, and the minimum distance between a test case
and any test cases in a test-suite is used as the distance between a test case and a test-suite (lines 12-17).
Test-suite reduction stops when the selected ones satisfy stop_cri.

3.2 Distance estimation

This section presents two types of approaches for distance estimation.
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3.2.1 String distance based distance estimation

A test case can be assumed as a string as well as a vector of characters in a multidimensional space.
A numerical encoding approach is used to transfer it into a vector of numbers. This is followed by
calculating the distances between the test cases by using a certain distance metric. Several numerical
ways are utilized to encode these characters. However, for the purposes of scalability and simplicity,
ASCII is employed to encode these characters.

n

diSHamming (Vec1, vecg) = ZisEqual(vecl[i], vecs|i]), (3)
i=1

n

diScartesian (VEC1, Vecy) = Z(vecl[i] — veca[i])?, (4)
i=1
n

diSManhattan(Vecla VeCQ) = Z |VeC1 [’L] — Vecy [’LH (5)
i=1

In this study, four distance metrics are selected, namely Hamming [14], Cartesian, Manhattan, and
Levenshtein [15], to estimate the distances among the test cases. Specifically, Hamming is used to estimate
the bit difference between two strings, and Cartesian and Manhattan indicate the linear distance and the
sum of the wheelbase of two points in the standard coordinate system, respectively. Eqs. (3)—(5) present
the formal definitions of Hamming, Cartesian, and Manhattan, respectively. Function isEqual(cy, ¢2) is
used to test whether ¢ is equal to co. If ¢q is equal to ¢z, the value of isEqual(cq, ¢2) is 0, otherwise 1.

Hamming, Cartesian and Manhattan are originally proposed to compare two strings of identical
length. Thus, the strings of test cases should possess the same length. In this study, extant stud-
ies by Ledru et al. [3] are followed to complete the shorter string by a suffix that consists of charac-
ter NUL in which the ASCII value corresponds to 0. For example, given two strings, str; = “abed”
and stro = “aac”, the shorter string strp is first completed with NUL, and then ASCII encoding
is performed on the two strings. Finally, the two strings are translated into two numeric vectors,
namely vec; = (97, 98, 99, 100) and vece = (97, 97, 99, 0), which are suitable for distance esti-
mation. The distances between vec; and vecy are as follows: diSgamming(vec:, veca) = 04+ 1+ 0 +
1 = 2, diScartesian(vect, veca) = /(97 —97)2 + (98 — 97)2 + (99 — 99)2 + (100 — 0)2 = 100.0049 and
disManhattan (vec:, veca) = [97 — 97| + |98 — 97| + 99 — 99| + [100 — 0] = 101.

Levenshtein indicates the minimum number of character edit operations (i.e., substitution, deletion, and

insertion) necessary to transform one string into another. This is different from Hamming, Cartesian,
and Manhattan because Levenshtein can be applied to strings of arbitrary lengths. For example, the
Levenshtein distance between str; and stro corresponds to 2 since the following two operations change
stry into stro, and this cannot be performed with fewer than two operations.

“bede” = “bbde” (substitution of “b” for “c”),

“bbde” = “bbd” (deletion “e” at the end).

3.2.2 CPM based distance estimation

Category partition method (CPM) is a black-box (or specification) based test-generation technique that
generates test cases without using the knowledge of the internal structure of the program [16]. The
use of CPM creates test cases by refining the functional specification into a test specification. The test
specification defines categories C' = {C; | i € [1,k]} as major properties that affect the behavior of the
functional unit under test. Each category is partitioned into subsets known as choices, which are defined
as “all the different kinds of values that are possible for the category” [17]. Each choice within a category
corresponds to a set of similar values that is assumed with respect to the type of information in the
category [18]. The created test cases should cover all possible choices to provide a sufficient verification
for the program to be analyzed.
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Figure 2 Sliding a 3-width window to a list of coverage rates. (a) Contents are different; (b) contents are similar.

In this study, CPM was applied to analyze the functional differences among the test cases as opposed to
generating new test cases. The use of CPM translates a test case into a vector of choices, where each cell
represents a functional unit that the test case is expected to test. Subsequently, the functional distances
were estimated by comparing the choice vectors. It is difficult to numerical encode a choice, and thus
Hamming was used to calculate the distance between two test cases. For example, given two test cases,
namely ¢; and ¢y, where ¢; is used to test the program under choices C7.1, Cs.1, and C3 1, and 5 is used
to test the program under choices C11 and C3.5. First, NUL is used to complete the shorter test case t,
to ensure that the two test cases possess the same length. Subsequently, CPM is used to translate ¢; and
to into two identical vectors, namely vec; = (C1.1,C2.1,C5.1) and vecs = (C1.1,NUL, C52). Hence, the
distance between vec; and vecs is as follows: discpa(vect, vecs) = disgamming(vect, vecg) = 04+1+1 = 2.

3.3 Stopping criteria designation

The stopping criterion should be designed to satisfy or approximately satisfy all TBFL test requirements.

Specifically, RR denotes that T'S;equced must contain both the failed test cases and the passed ones, i.e.,
TSreduced N TStaited 7# 0 and TSyeduced N TSpassed # 0. When compared with TSpassed, TStailed is always a
small part of the original test-suite, and thus it is easily ignored in the process of test case selection [4].
In order to solve this problem, T'S;cquced is initialized with the failure detected test case. Thus, T'S;educed
contains at least one failed test case.

Additionally, CR denotes that T'S;edquced should cover the same statements with the original test-suite
TS, and PR denotes that TS,cqucea should have the same equivalence classes with TS. The runtime
information of the whole test cases is unknown, and thus the coverage result, as well as the partition
result, of TS are also unknown. Thus, it cannot directly determine whether TS;equced satisfies CR or PR.

In this study, the sliding window technique was used to design the stopping criterion while facing CR.
This is because selecting another test case will not change the coverage result if a set of selected test cases
covers the same statements with the original test-suite. The sliding window technique works through the
following two steps: (1) Coverage list generation in which each of the unchecked test cases is selected
in turn during the test-suite reduction, and the coverage rate of each new test-suite is calculated and
recorded. Thus, a list of coverage rates Loy, is obtained. (2) Stopping criterion recognition in which a
window win is slid over L¢o, to verify whether the window contents are similar. If the contents of win are
different, then it is considered that T'S;equceq 18 less likely to satisfy CR. Conversely, if the contents of win
are similar, then TS,equceq is more likely to satisfy CR, and the test-suite reduction should be stopped.
It should be noted that an increase in the width of the window increases the satisfaction of CR.

The code coverage list Lco, shown in Figure 2 is used to illustrate the working of the sliding window.
A 3-width window wingz is assumed. As shown in Figure 2(a), all nodes (coverage rates) in wing are
different from each other. Thus, it is assumed that TS;equceq is unable to satisfy CR. Conversely, as
shown in Figure 2(b), all nodes in wins have the same code coverage. Thus, there is a high probability
that TS;equcea satisfies CR. In this case, it is unnecessary to select and run a next test case, and test-suite
reduction should stop.

Similarly, when the partitioned result of the selected test cases is similar to those of the original test-
suite, the partition result will not change when another test case is selected. Therefore, the sliding window
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Table 2 Experimental subjects

Program Description LOC #Fault #Test #Category #Choice
JTcas Altitude separation 181 41 1608 12 40
Tot_info Information measure 283 23 1079 8 24
Schedulel Priority scheduler 290 9 1200 7 24
Schedule2 Priority scheduler 317 10 1200 10 34
Print_tokens1 Lexical analyzer 478 7 1200 - -
Print_tokens2 Lexical analyzer 410 10 1200 - -
NanoXML XML parser 7160 32 237 - -
Siena Notification middleware 6098 10 567 - -

technique can also be used to design the stopping criterion while facing PR.

4 Empirical study

This section aims to answer the following research questions.
RQ1: What is the width that should be set to the window while designing the stopping criterion?
RQ2: Can the DTSR technique select a small subset from the original test-suite?
RQ3: Can the DTSR results maintain the effectiveness of TBFL?
RQ4: Can the DTSR technique reduce the time cost of TBFL?

4.1 Setup

4.1.1 Subjects

Table 2 summarizes the characteristics of Java programs used in the experiments. For each subject, its
name (column 1), a brief description (column 2), the number of code lines (column 3), faulty versions
(column 4), test cases (column 5), categories (column 6), and choices (column 7) are described. The
former six subjects correspond to Java versions [19] of Siemens that are translated from C versions, and
the rest are provided by SIR [20]. Each program consists of a base version, and dozens of faulty versions
in which faults were manually seeded. This resulted in 142 faulty versions. However, the given test-suite
did not detect any fault in the case of 13 faulty versions. Therefore, they were discarded since TBFL
requires failure-causing test cases. A total of 129 faulty versions were used in the experiment.

All subjects provided no information about the categories and the choices and also failed to provide any
test specifications. Hence, it was necessary to manually identify the categories and choices. The functional
units of Print_tokenl and Print_token2 were not clear, and the internal structures of NanoXML and Siena
were quite complex. Thus, the CPM was performed by only analyzing the other four subjects.

4.1.2 Variables

For the purposes of comparison, CTSR techniques [4,6] and RTSR techniques were applied to the subjects.
The CTSR used the greedy algorithm to continue selecting a test case from the unselected test-suite at
each iteration until the selected cases satisfied the given test requirements. Specifically, cov denotes the
CTSR technique that satisfied both RR and CR, and par denotes the CTSR technique that satisfied both
RR and PR. The RTSR randomly selected a test case from the unselected test-suite and traced it at each
iteration until the selected ones satisfied the given test requirements. Similarly, the RTSR technique that
satisfied both RR and CR is denoted by rand..,, and the RTSR technique that satisfied both RR and
PR is denoted by randp,,. The TSR results were also applied to two typical TBFL techniques, namely
Tarantula [8] and HSSF [9], to evaluate the effectiveness of TBFL. To summarize, the empirical study
used nine TSR techniques and two TBFL techniques, thereby resulting in 18 pairs.

Reduction = sizer

selected

/size, x 100%, (6)

Expense = nUMexamined/MUMgtmts X 100%, (7)
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Figure 3 Relativecoy comparison on all subjects when using different distance measures. (a) Hamming; (b) Cartesian;
(¢) Manhattan; (d) Levenshtein; (e) CPM.

TimeCost = TimeCostreduction + TimeCosteoliection + TimeCosteomputation- (8)

For each pair, the following three dependent variables were measured: Reduction, Expense, and Time-
Cost. Egs. (6)—(8) present these evaluation metrics. Specifically, Reduction indicates the size of test
cases that should be executed and inspected, and this is measured by calculating the ratio of the reduced
test-suite sizerg, ,,..a tO the original test-suite sizers. Furthermore, Expense represents the effectiveness
of a TBFL technique that is measured by the percentage of the statements that should be examined to de-
termine the fault. Finally, TimeCost represents time required for a process of fault locating that consists
of the time of three main steps in fault localization, namely test-suite reduction, coverage information
collection, and suspiciousness computation.

A test-suite and the first failure-detected test case t;; were considered as the input with the aim of
locating the fault detected by t¢1. Additionally, ¢, is unpredictable in practice, and thus the results of
TSR as well as TBFL are not unique. In order to reduce the coincidence of ¢tf; on TSR and TBFL, each
of the failed test cases of a faulty version very was considered as ¢y, and the average results were used
as the final results for very.

4.2 Results and analysis

First, an aim involves investigating a width that fits the design of the stopping criterion. Figures 3
and 4 present the results of Relativeco,, and Relativepa,, respectively, by comparing all subjects while
using different distance measures. The horizontal axis of each sub-figure represents the width of the
sliding window in the range of 2 to 100, and the vertical axis denotes Relative.,, that represents the ratio
between cov(TSyeducea) and cov(TS), or Relative,,, that represents the ratio between par(TSreduced) and
par(TS). From Figure 3, it is observed that a short width window provides a high Relative., for Siemens
with each distance metric. However, it is not high for SIRs. For example, Relative.o, of NanoXML only



Wang X Y, et al. Sci China Inf Sci  September 2017 Vol. 60 092112:10

100 100,

75 75
3 50 = 5
5 25 JTeas Tot_info Schedule! g > JTeas Tot_info Schedulel
g g
5100 2100
g s /_/ 8 75 /
250 £ 50
T: 25 Schedule2 Print_tokens] Print_tokens2 73 Zg Schedule2 Print_tokens] Print_tokens2
0
s 0 40 6 S0 100 Bipg 0 20 40 60 80 100
2 2
I~ [

43
o8

0
75
50 50
2 NanoXML Siena 25 NanoXML Siena

0
0 20 40 60 8 100 0 20 40 60 80 100 0 20 40 60 80 100 0O 20 40 60 80 100

() (b)

100 100
75 75
50 s 5
25 ITeas Tot_info Schedulel o 2
0

100

75 [—/—’_’ / //—/

Schedule2 Print_tokens]

Print_tokens!
rf 0 20 40 60 80 100

T
|
W

ate of relative coverage (%)
[ERV S
ERVR-RV IR

JTcas Schedulel

Tot_info

o
G

Schedule2

Print_tokens2

Print_tokens2
0 20 40 60 80 100

=
=)
S

Rate of relative coverage (%)
w
3

P
& 3

9
3

g s
50
NanoXML Siena 25 NanoXML Siena

0 20 40 60 8 100 0O 20 40 60 80 100 0 20 40 60 8 100 O 20 40 60 80 100

(©) (d)

100 / /__/
TTeas
0
100 /J_, K_/_f

Schedulel

.

I~
o

[ )
o 3 G

Tot_info

e
S

Rate of relative coverage (%)

Noow
G 3

Schedule2

o

0 20 40 60 80 100 0 20 40 60 80 100

(e)

Figure 4 Relativepar comparison on all subjects when using different distance measures. (a) Hamming; (b) Cartesian;
(¢) Manhattan; (d) Levenshtein; (e) CPM.

corresponds to 49.40% while using a 5-width window in Hamming. Thus, it is necessary to determine a
longer width. The results indicate that a 20-width window provides a high Relative.,, for all subjects.
In this case, the Relativeco, of all subjects with each distance measure exceed 94% and increasing the
window width does not significantly increase Relatives,,. From Figure 4, it is observed that a short
width window cannot provide a high Relativep,, for both Siemens and SIRs with each distance metric.
Similarly, the results indicate that a 20-width window provides a high Relativep,, for all subjects. In
this case, the Relativey,, of all subjects with each distance measure exceeds 85% with the exception
of Schedule2 in which Relativep,, exceeds 75% and increasing the window width does not significantly
increase Relativep,y. Therefore, it is concluded that a 20-width window is fit for designing the stopping
criterion.

Table 3 presents the Reduction results of the proposed DTSR techniques (columns 6-10) and the
compared CTSR techniques (columns 2-3) and RTSR techniques (columns 4-5) while using a 20-width
window. Rows 10-12 show the average Reduction of the four former subjects, namely, the avey, the
Siemens avesjemens, and the SIR subjects avegir. They are distinguished because CPM is only used for
the former four subjects, and Siemens and SIRs belong to different scales [9]. This indicates that in most
cases, CTSR techniques correspond to the minimum Reduction, and RTSR techniques correspond to the
maximum Reduction. The DTSR falls in between CTSR and RTSR. An exception corresponds to CTSR
and DTSR when they are applied to NanoXML. A small percentage of test cases cannot satisfy the test
requirements given that NanoXML contains thousands of statements but a small amount of test cases.
Thus, CTSR exhibits a higher Reduction result. Moreover, the results suggest that CTSR is not very
different with respect to the DTSR. This indicates that DTSR techniques effectively reduce the size of
the original test-suite even without the whole testing information.

Tables 4 and 5 present the Tarantula Expense and the HSSF Expense, respectively, of DTSR techniques
(columns 6-10), as well as CTSR (columns 2-3) and RTSR techniques (columns 4-5) while using a 20-
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Table 3 Reduction of the reduced test-suite when window width is 20

Program cov par randcoy  randpar Hamming  Levenshtein  Cartesian  Manhattan CPM
JTcas 3.27 3.65 4.92 5.56 3.94 4.10 4.08 4.01 4.86
Tot_info 3.85 4.92 6.58 8.18 4.24 4.73 4.50 4.62 6.50
Schedulel 3.71 4.92 6.64 9.10 3.88 4.20 4.03 4.26 6.50
Schedule2 3.71 7.10 5.69 8.70 3.56 3.95 4.84 3.62 6.73
Print_tokensl 3.46 4.58 5.98 6.69 3.71 3.85 4.04 4.01 -
Print_tokens2 4.08 5.50 6.22 8.63 4.56 4.71 4.67 4.59 -
NanoXML 47.52  57.58 90.67 83.19 17.91 18.81 20.41 31.57 -
Siena 8.48 11.62 17.70 21.99 7.23 8.72 7.16 7.19 -
avey 3.52 4.47 5.65 6.98 3.99 4.28 4.27 4.18 5.70
aveSiomens 3.58  4.59 5.74 7.14 4.03 4.29 4.29 4.21 -
avesIr 37.76  46.09 72.43 67.89 15.24 16.29 17.10 25.48 -

Table 4 Tarantula Expense of the reduced test-suite when window width is 20

Program cov par randcoy randpar Hamming Levenshtein Cartesian Manhattan CPM  Origin
JTcas 17.14  16.77 17.31 17.38 17.16 16.95 17.40 17.08 17.44  16.96
Tot_info 25.72  19.64 24.75 23.83 19.37 21.31 23.82 24.38 21.16  21.20
Schedulel 7.08 6.45 7.42 7.48 7.99 6.79 6.54 8.09 6.46 6.90
Schedule2 33.87 34.34 34.10 35.38 36.26 32.76 33.65 36.43 30.38  33.05
Print_tokensl 27.83  24.01 28.86 29.33 37.39 26.40 29.12 27.73 - 26.05
Print_tokens2  24.18  24.11 31.66 28.78 32.25 29.86 27.26 26.24 - 27.38
NanoXML 7.61 7.54 10.26 6.10 8.15 5.75 6.74 6.63 - 7.44
Siena 4.17 4.55 4.15 4.07 4.79 4.43 4.67 4.67 - 4.20
avey 20.11  18.13 19.97 19.86 18.59 18.59 19.61 20.03 18.55  18.61
aveSiemens 21.13 19.22 21.90 21.53 21.48 20.40 21.15 21.28 - 20.11
avesIr 6.75 6.79 8.73 5.59 7.31 5.42 6.22 6.14 - 6.63
P4 0.1326 0.3620 0.0814  0.0406 0.2841 0.2203 0.1420 0.0441 0.2034 —
DSiemens 0.2588 0.0863 0.0140  0.0066 0.0789 0.1812 0.0691 0.0535 - -
PSIR 0.3056 0.1614 0.2556  0.2192 0.0293 0.2931 0.4382 0.4174 - -

width window. In order to evaluate the impact of reduced test cases on TBFL, the Tarantula experiment
and HSSF experiment were also performed on the original test-suite origin (column 11). Rows avey,
avesiemens, and avegrg present the average Expense of the four former subjects, the Siemens subjects
and the SIR subjects, respectively. It was observed that in most cases, par exhibited the best average
Expense. This indicated that partition requirement is necessary in TSR. The results also indicated that
origin did not exhibit the best results across all subjects. This indicated that the use of a larger size
test-suite may not provide a better fault locating result with Tarantula or HSSF while the redundant test
cases may exert a negative influence on suspiciousness estimation (e.g., more test cases of Coincidental
Correctness [21]). Additionally, the results show that HSSF is a better risk evaluation formula when
compared with Tarantula, and this is consistent with the theoretical analysis [9].

Additionally, in order to verify whether the original results are better than the TSR results, paired
Wilcoxon tests were applied between column origin and the rest of nine columns (columns 2-10) in
Tables 4 and 5, respectively. The last three rows indicate the p-values of the former four subjects py,
the Siemens subjects psiemens, and the SIR subjects psir. With respect to the CTSR results and DTSR
results, most of the p-values exceeded 0.05 (i.e., % in CTSR, g—g in DTSR). This indicates that the
hypothesis that the fault locating effectiveness of origin exceeds that of CTSR and DTSR should be
rejected in most cases. With respect to the RTSR results, a third of the p-values (14—2) were less than
0.05 and all of them corresponded to Siemens subjects. Furthermore, ave, and avegjemens 0f origin always
exceeded that of RTSR, and thus RTSR may affect the effectiveness of TBFL. Therefore, it is concluded
that the proposed DTSR techniques did not affect the effectiveness of TBFL.

Finally, the TimeCost of TBFL applied to the DTSR techniques and the compared CTSR and RTSR
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Table 5 HSSF Expense of the reduced test-suite when window width is 20

Program cov par randcoy randpar Hamming Levenshtein Cartesian Manhattan CPM  Origin
JTcas 14.78 14.55 14.76 14.82 14.45 14.95 14.97 12.54 15.07 13.91
Tot_info 20.32 13.45 19.31 17.04 18.23 17.64 20.28 20.37 13.74 18.49
Schedulel 6.95 6.84 7.47 6.72 7.74 6.58 6.95 8.40 6.33 6.47
Schedule2 37.86  34.57 35.53 40.94 41.97 32.25 37.31 39.29 3291  33.48

Print_tokensl  21.99 18.04 20.64 19.72 22.27 20.54 26.02 17.94 - 20.76

Print_tokens2  23.85 22.52 32.78 24.33 25.64 20.15 21.35 24.04 - 23.17

NanoXML 3.77 3.55 4.53 3.71 6.93 4.54 5.66 4.47 - 5.40
Siena 4.42 5.06 4.92 4.85 5.00 5.48 4.50 4.48 - 5.41
avey 17.69 15.26 17.22 17.02 17.37 16.44 17.72 16.83 15.41 16.26

avesiomens ~ 18.67 16.25  19.15  18.01 18.63 17.15 18.74 17.69 - 17.34
avesir 3.93 3.93 4.63 4.00 6.45 4.78 5.37 4.47 - 5.40
D4 0.0600 0.3227 0.0137  0.2132 0.1509 0.3395 0.0458 0.1273 0.2311 -
PSiemens 0.0224 0.1642 0.0847  0.1997 0.0645 0.1369 0.0726 0.2152 - -
PSIR 0.0763 0.1905 0.0867  0.1481 0.3333 0.2759 0.3386 0.0017 - -
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Figure 5 (Color online) TimeCost (s) of the fault localization when window width is 20.

techniques are presented. Figure 5 shows the TimeCost when a 20-width window is used. The horizontal
axis represents the subjects, and the vertical axis represents the TimeCost of fault localization. Without
loss of generality, the time overhead of Tarantula was measured as the representative of TBFL techniques.
The TSR techniques compared in this figure are as follows: two CTSR techniques (cov and par), two
RTSR techniques (randcoy and randp,), and five proposed DTSR techniques (Hamming, Levenshtein,
Cartesian, Manhattan, and CPM). For further comparison, the TimeCost of applying the original test-
suite to Tarantula were provided. Thus, for each subject, ten different TimeCost values were collected
and recorded by applying 9 TSR outputs and the original test-suite on Tarantula.

Additionally, TimeCost was measured by considering the time cost of TimeCostyeduction (green area),
TimeCosteotiection (grey area), and TimeCoSteomputation (red area). It was observed that TBFL spends
maximum time on coverage information collection and spent minimum time on suspiciousness compu-
tation. An exception occurred in Levenshtein when it was applied to Tot_info. Levenshtein is a high
complexity string distance estimation approach with a cost (in time and memory) that corresponds to
O(m x n) where m and n denote lengths of the two strings. The test-suite of Tot_info was constructed
by thousands of long strings, and thus generating the distance matrix of TSro¢_info definitely significantly
increased the time cost on TSR. Other subjects do not exhibit this problem. All traces were necessary
to conduct a fault localization by using CTSR results as well as the original test-suite, and this entailed
more time than those of DTSR and RTSR. However, the time of DTSR was not significantly different
from the time of RTSR on Siemens programs. Siemens corresponded to small-scale programs, and thus
a small number of test cases satisfied the test requirements. Therefore, both DTSR and RTSR spent
shorter time on coverage information collection. The reduced results of DTSR were fewer than those of
RTSR. However, they exhibited similar fault locating time. However, DTSR required a slightly lower
time when compared with those of other TSR techniques on subjects NanoXML and Siena. This result
indicated that the proposed DTSR techniques effectively improve the efficiency of TBFL.
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5 Discussion

5.1 Threats to validity

Internal validity is an issue with respect to the proposed approach due to the errors that affect the
experimental results without developers’s knowledge. The main issues with respect to internal validity are
as follows. First, the compared techniques used in this experiment constitute issues. In the experiment,
the CTSR techniques are selected and implemented based on the description of Yu et al. [6] and Hao et
al. [4]. Second, the TBFL techniques used in the experiment correspond to a potential issue. In order
to avoid this, two typical TBFL techniques are selected, namely Tarantula [8] and HSSF [9], which are
widely used in TBFL studies. Third, the initial failed test case may impact the results of the TSR and
the TBFL. This is reduced by using each of the failed test cases as the initial failed test case. Finally,
the manual analysis of the program specification constitutes an issue because the experimental results
of CPM technique may be affected by the capacity of the researcher who identifies the categories and
choices. This is avoided by involving multiple researchers to perform the category partition. This is
further reduced by involving software developers to identify the categories and choices.

There are also threats to external validity of the study wherein the results may not be generalized to
all systems. In the experiment, the effects of TSR on TBFL were evaluated by using only 8 programs,
and thus it was possible to definitively state that the findings are applicable for programs in general. The
study attempted to address a few of the uncertainties by evaluating a variety of programs with diverse
sizes. Another external validity threat is that the faults correspond to seeded faults that are carefully
designed by Do et al. [20]. Seeded faults are widely used in several previous studies although they do not
constitute naturally occurring faults.

Construct validity is also a threat to the proposed approach due to the complexity of the proposed
DTSR techniques. When compared with CTSR [4,6] and RTSR, the DTSR requires additional calcu-
lations of the distances among the test cases, and this increases the complexity of fault localization.
However, although a program may contain several faulty versions, the program usually contains only one
test-suite. Thus, it is only necessary to perform a calculation of distances among the test cases. An
increase in the number of faulty versions decreases the average distance calculation time. Conversely,
the program should be repeatedly modified and executed during program debugging. Thus, the time for
program tracing exceeds that of distance calculation. Therefore, the additional step is not a threat to
the proposed approach.

5.2 Related work

The proposed approach is related to TSR because the approach provides strategies on TSR to improve the
efficiency of program debugging. Additionally, the goal of TSR in this study involves selecting test cases
as inputs to TBFL, and the study is also related to testing based fault localization. Both fore-mentioned
studies are briefly reviewed.

5.2.1 Test-suite reduction

The aim of TSR involves reducing the size of a given test-suite by identifying and eliminating redundant
test cases during software maintenance. The random technique corresponds to a straightforward way to
test-suite reduction although it cannot guarantee the quality of reduced test-suite [4,22]. In addition to
this technique, most existing TSR approaches are based on structural coverage such as statement cover-
age [11], branch coverage [12] and MC/DC [23], or black-box information such as input difference [24],
category partition result [25], and service interaction [26]. Rothermel and Harrold [27] surveyed test-suite
selection techniques and introduced a framework to evaluate different techniques. Wong et al. [28] sug-
gested that TSR techniques could lower the number of executed test cases without significantly reducing
fault detection capabilities of test-suites. However, Rothermel et al. [29] examined costs and benefits of
TSR techniques, and their results indicated that TSR could severely compromise fault detection capabil-
ities of test-suites.
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The present study corresponds to TSR because the aim of the proposed approach involves reducing
the size of the given test-suite. Traditional TSR techniques aim at facilitating fault detection while the
aim of the proposed approach involves facilitating fault localization. The proposed approach corresponds
to distance based test-suite reduction and does not require collecting coverage information of the whole
test-suite. Thus, it can effectively reduce the TSR time cost.

5.2.2 Testing based fault localization

Testing based fault localization (TBFL) approaches mainly differ in the granularity of execution collected
(e.g., program statement [8,9], predicate [30]), and in the strategies employed for suspicion computation [1,
2]. The present study is different from extant studies on TBFL because the proposed approach focuses on
reducing efforts on coverage information collection. The DTSR approach was applied to two typical fault
localization approaches [8,9]. The results indicate that the time needed for TBFL is effectively reduced
while the effectiveness of TBFL is maintained.

A few studies focused on evolving test-suite (e.g., test-suite generation [10], test-suite reduction [4,6,31])
to aid in locating faults. Baudry [10] analyzed the type of information needed for TBFL and proposed
the TfD criterion (test for diagnosis) to improve the quality of a test-suite. Yu et al. [6] proposed
two TSR techniques, namely statement based and vector based techniques, to investigate the impact of
test-suite composition on the effectiveness of TBFL. The results revealed that TBFL always exhibited
a worse performance if a test-suite was reduced by a statement based technique. In contrast, TBFL
always exhibited the same performance if a test-suite was reduced by vector based technique. Hao et
al. [4] emphasized the test oracle problem in TBFL. Developers spend a considerable amount of time on
inspecting results due to the lack of expected outputs. Thus, they proposed three strategies to reduce the
size of test-suite. Vidacs et al. [31] proposed a combined approach to satisfy test requirements of fault
detection and fault localization. The results indicated that the combined approach obtained a significant
tradeoff between the capability of the fault detection and fault localization. In a manner similar to
the above four studies, the aim of the present study involves improving the performance of TBFL by
improving the quality of the given test-suite. The currents study is different from extant studies because
the proposed approach relies on the distances and categories among the test cases as opposed to the
testing information of all test cases. This avoids the expensive process of coverage information collection
with respect to the complete test-suite.

6 Conclusion

In this study, the distance based test-suite reduction (DTSR) technique is proposed to enhance the
efficiency of testing based fault localization and to verify its effectiveness by performing an empirical
study. Given the use of DTSR, it is only necessary to trace and inspect test cases in the reduced test-
suite while conducting a testing based fault localization. This aids developers in avoiding the costly
process of running the entire information collection. The results of the empirical study indicate that the
proposed approach enables developers to select a small subset of test cases while continuing to achieve
effective fault locating results. A future study will involve applying the proposed approach to an increased
number of subjects and conducting more detailed empirical studies.
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