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Abstract—Many fault localization approaches such as spec-
trum based fault localization(SBFL) generated a fault localization
report based on which the programmer identifies the faults from
corrected program entities. Unfortunately, the bug identification
is quite tedious due to lack of sufficient context information.
Furthermore, in the process of continuous searching for errors,
the programmer’s previous judgment makes no contribution
for improving the efficiency of fault locating report. In this
paper, we proposed an interactive debugging framework on which
the programmer can iteratively identify faults with visualized
heuristic graph. We first analyze the type of running information
that is helpful for programmer’s fault identification. The heuristic
information is collected by program instrument, and modeled
by program slicing techniques. We organized this information
in the DOT format for visualization. In addition, we proposed
an algorithm which can dynamically adjust the fault locating
report using forward and backward slicing techniques based
on the feedback of programmers. Furthermore, we proposed
an enhanced algorithm that can adjust the fault locating report
based on more than one feedback from programmers. Since the
goal of fault-locating is to identify and fix faults in a program,
our framework is more practical in program debugging with
visualizing information.

Index Terms—Interactive debugging, fault localization, heuris-
tic information modeling, software testing

I. INTRODUCTION

The ultimate goal of fault localization is to help the de-

velopers to identify and fix the faults quickly and accurately.

Most of the existing fault localization technology outputs a

report by giving a suspicious candidate program entities set

or a ranking list of all program entities according to the

descending order of error-proneness[1], [2]. Unfortunately, the

entities in the report is treated as an independent entity and

the relationships between them are usually ignored[3]. They

are even not consecutive statements in the program. During

software development and maintenance process, it is often

difficult to determine whether the program statements are

faults when reviewing them in the fault localization report,

without any context information[4].

A recent study on debugging practice of professional soft-

ware developers reveals that modern fault localization tech-

niques are not widely used in practice [5]. Beyond fault

localization report, we need more heuristic information to

assist the developer to make a decision that an examined

program entity is buggy or not. For example, to provide the

execution context (e.g, data structure [6], data- and control-

flow [7]) of the current examined statement, as well as the

statements that are dependent on.

In addition, the previous fault localization technology often

provides a one-time positioning information, and can not

dynamically adjust the positioning report with the program-

mers previous work when debugging. This strategy will affect

the accuracy and efficiency of the applied fault localization

technology. It has been found that a lot of software faults are

always in the back end of the fault localization report list,

which weakens the effectiveness of the existing localization

technology in practice[8]. Existing research indicates that the

programmer’s feedback can be useful for identifying the rest

faults[9]. Therefore, we introduce a feedback mechanism in

the debugging process, namely interactive debugging. The

suspiciousness of unexamined statements are adjusted dy-

namically with slicing techniques with respect to the current

statement judgment made by the programmer.

Furthermore, the previous fault localization technology,

given direct results as a list of statements ranked by fault

proneness, does not provide the relationship between the

statements in the list[10], [11], [12]. the programmer needs

to examine the source program to understand the role of these

statements in the program so as to identify whether it is faulty

or not. In many cases, because the statements in the list are

not continuous in the source program, the programmer usually

need to analyze the statement before and after the relevant

statements, artificially explore the relationship between the

statements to locate these faults. These debugging methods

increase the effort of the programmer and the likelihood of

human mistakes at the same time. In addition, most exiting

fault localization approaches assume that each fault in source

file is one-line bug[13]. However, there are some bugs that

cross multiple lines of code in real-word software. We need

more information about the relationship between these lines

to identify the bug, because the impacts of these lines may

depend on each other. To this end, with the program analysis

technology applied, the accuracy of the relevant information

will be accurate and other intuitive diagrams to the program-

mer to help debugging more easily[14], [15], [16].

In this paper, we answered three research questions as

follow:

2017 International Conference on Software Analysis, Testing and Evolution

978-1-5386-3687-9/17 $31.00 © 2017 IEEE

DOI 10.1109/SATE.2017.14

45

2017 International Conference on Software Analysis, Testing and Evolution

978-1-5386-3687-9/17 $31.00 © 2017 IEEE

DOI 10.1109/SATE.2017.14

45

Authorized licensed use limited to: Nan Tong University. Downloaded on January 21,2025 at 13:19:21 UTC from IEEE Xplore.  Restrictions apply. 



• RQ 1: What are the types of heuristics information for

locating faults, and how can we collect and model this

information?

• RQ 2: To help the programmer identify software errors,

how to arrange and visualize the heuristic information in

a pattern similar to the developer’s reasoning?

• RQ 3: Based on the feedback of the developers during

program debugging, how can we dynamically adjust the

fault localization report to improve the efficiency and

effectiveness of fault-locating?

In the followed sections, we will illustrate the detailed

algorithms and strategies proposed in our approach. Section

II describes the heuristic information modeling including

the running behaviors of program and how visualize the

heuristic information with understandable graph. Section III

presents how to dynamically adjust the fault locating report

with considering of the feedbacks from programmers during

debugging. Section IV provides the full view of our approach.

We discuss related studies in Section V. We finally conclude

and mention future work in Section VI.

II. TRACING AND MODELING HEURISTIC INFORMATION

OF PROGRAM RUNS

In this section, we will answer the research questions RQ1
and RQ2. First, we describe the collecting and modeling

method of running information. Then, we discuss the analysis

algorithm of extracting the bug-related information for iden-

tifying bug and visualizing the heuristic information to assist

the programmer in debugging.

A. Tracing and modeling the program running

In order to assist the programmer to identify software

faults when debugging, it is necessary to provide program

information as much as possible with the program faulty

statements. This information can be divided into two types

of static information and dynamic information. The dynamic

information that the programmer is concerned with is the

program execution path, and the variable value change related

to the fault. While the static information includes the error

statement depends on other statement information.

For the collection of static information, our mainly work

is to construct the target program control flow chart(CFG).

Control flow diagram construction technology has been highly

developed. Therefor, no more details about the relevant tech-

nology described here. The resulting control flow graph will be

utilized for subsequent stage model analysis and visualization.

Dynamic information is mainly to guide the understanding

of the behavior of the program. The following information will

be tracked in our method: the path of the program execution.

Since all the statements in any basic block of the program

perform the same track, we use the basic block as part of the

execution trace. In addition, the predicates is also recorded

in the execution trace since the they determine which basic

block is to be executed next. Moreover, predicates are part of

the entities that are most prone to error.

During the software debugging process, the programmer

usually only concerned with statements that are closely re-

lated to the location of the program’s failure output, not all

statements in the program. In view of this, we do not have

to provide all the information without filtering. Instead, we

only provide a small number of statements and predicates

that are closely related to suspicious error statements. We

employ the queue to scroll through the recent execution of

the program’s dynamic information for program information

visualization during the interactive debugging phase. Figure 1

shows the data structure for describing the program execution

information tracking queue in our method and the variable

table used by the queue elements.

Basic 
Block

&
Predicate

*Var_name *Var_value
... ...
... ...

*Var_name *Var_value
... ...
... ...

Var_name
Var_value

ref_count

... ...

Var_value

ref_count

...

...

...

...

...

...

...

Var_value

ref_count

...

…

EnQueue DeQueue

Variable
table

… ……

Fig. 1. Model of runtime traces

For Figure 1, we should note that: (1) The queue stored

part of the execution sequence of basic blocks and predicates.

We do not save all the follow-up sequence for two reasons:

First, the program execution process may produce an infinite

sequence of execution, which conflicts the storage space limits;

Second, it is unnecessary to save all of the information at all.

We save the information which is to assist the programmer to

identify faults when debugging. Too much information on the

programmer’s judgment is not only helpless, but also harmful

to the efficiency of judgments, and even interfere with the pro-

grammer to make the right judgments. (2) The variable table

is to store the variables used by the base block or predicate in

the queue. To increase processing speed and decrease storage

space, our framework use the pointer to store the address of

the actual storage location of the variable. Also the value of

the variable is tracked by real-time recording. (3) In order to

track the value of the variable history information, we save

a certain period of time to change the value of the variable.

Different basic blocks may use the same variable, but its value

may change or remain unchanged when used. Therefore, we

record the variable value (Var value) and variable reference

counter (ref count). When the variable value changes, if the

new value does not exist in the variable table, then we create a

new value item and set the reference counter to 1. Otherwise, if

the new value already exists in the table, the reference counter

for the corresponding entry is incremented by 1. In practice,

we apply a hash function mapping which can quickly locate

and update the corresponding items in the table.
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B. Model analyzing and visualizing

The goal of visualization is to present the programmer

with heuristic information for identifying the current state-

ment. Too much or too little information does not contribute

to the programmer to make the right judgments. Following

the principle of localization, we should provide as much as

possible the content of the program that is closely linked to

the current statement. Therefore, an easy way is to provide

the control flow chart of function which the current reviewed

statements belong, and then add heuristic information on the

CFG. But this approach faces a dilemma: the size of the

current statement’s function is likely to be too large, leading to

a large amount of information given in the visualized graphics

model and not easy for the programmer to identify whether the

current statement is correct. In addition, the size of the current

function is likely to be too small (for example, only a few lines

of code), which in turn leads to too little information available,

and it is not conducive to the fact that the programmer to

identify the current statement.

Therefore, we proposed three strategies for visualization in

accordance with the size of the function which the current

reviewing statement contained:

1) When the function scale is moderate(for example, the

number of basic blocks is between a upper bound �, and

a lower bound ⊥), the control flow chart of the function

is given directly, and the dynamic behavior information

(such as the value of the variable) is added to the

corresponding program execution path in the control

flow chart.

2) When the size of the function is too large (for example,

the number of basic blocks above a certain upper bound

to �), the dynamic behavior (such as variable values,

etc.) are added to the control flow chart corresponding

to the program execution path to be displayed.

3) When the size of the function is too small (for example,

the number of basic blocks below a lower bound to

⊥), directly to present the function of the control flow

chart. Meanwhile, for the function of the upper level

call function analysis, analysis strategy which is now

given the three strategies. Finally, the dynamic behavior

information (such as variable values, etc.) added to

the control flow chart corresponding to the program

execution path to be displayed.

The choice of the above strategies 1 to 3 is based on the

scale of the function, where the upper bounds (�) and the

lower bounds (⊥) are two empirical values. Then we elaborate

the implementations of suspicious statement auxiliary debug-

ging information visualization algorithm with three strategies.

The following Algorithm 1 provides a specific implementa-

tion process.

In Algorithm 1, the input is the source code P , current the

statement ExaStmt under reviewed, a set of dynamic infor-

mation TraceInfo tracked during program running, whose

data structure contains a queue and the variable storage list

as shown in Figure 1 and a set of system settings parameters

Algorithm 1 Visualizing auxiliary information for debugging

Input:
< P,ExaStmt >;

< TraceInfo >;

< �,⊥,W >.

Output:
DOTFile.

1: get fun where ExaStmt ∈ fun;

2: size← sizeof(fun);
3: if size ∈ [⊥,�] then /* strategy 1 */

4: Aux← S1 Gen(fun,ExaStmt, TraceInfo,W);
5: end if
6: if size ∈ (0,⊥) then /* strategy 2 */

7: f ← fun ;

8: FunList← ∅ ;

9: while sizeof(f) ∈ (0,⊥) ∧ FunList.size < W do
10: FunList.add(f);
11: f ← getCallerof(f);
12: end while
13: Aux←S2 Gen(FunList, ExaStmt, TraceInfo,W);
14: end if
15: if size ∈ (�,∞) then /* strategy 3 */

16: Aux←S3 Gen(fun,ExaStmt, TraceInfo,W);
17: end if
18: DOTFile← GenerateDOT (Aux);
19: return DOTFile;

< �,⊥,W > which represent the maximum number of nodes

in the upper bound, lower bound, and final display window.

First we select the function fun which the current examined

statement ExaStmt belongs, measure the size (basic block

number) of the function (fun). Then comparing the size of

(fun) with the thresholds (⊥,�) set in advance, we choose

different strategies accordingly, such as strategy 1 (lines 3 to

5), strategy 2 (lines 6 to 14) or strategy 3 (lines 15 to 17).

We use a single function to denote the detailed process of

the above strategies, respectively. Finally, the final result has

been transformed to DOT format which can be visualized for

guiding programmer’s debugging activities.

The functions S1 Gen, S2 Gen and S3 Gen in Algorithm

1 extract the basic blocks and predicates associated with the

current reviewed statements, conduct the data dependencies

analysis of variables, and add the dynamic information ob-

tained in the execution of the program to the relevant basic

blocks and predicates of the nodes of the control flow graph

of the program. As we all known that slicing can be useful

to improve developer productivity[17], [18], especially for

developers dealing with very complex or unfamiliar code.

So we applied backward- and forward- slice techniques in

functions S1 Gen, S2 Gen and S3 Gen, respectively. In

addition, in order to avoid the final display of too much

auxiliary information, we calculate the distance between the

node and the current execution path, remove the nodes on

the original control flow diagram that are far from the current
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execution path. The distance can be calculated equation 1 as

follow.

dis(node∗, path)= min‖path∗‖ where

∀ path′=<node∗,· · · ,node>∧node ∈path (1)

Where path∗ represents a node from node∗ node to a series

of nodes to reach the last node node, and there is only one

node node in path∗ belongs to the current execution path

path. So the above distance can be regarded as the shortest

path.

Next, we will describe the three functions S1 Gen(),
S2 Gen(), and S3 Gen() in turn with Algorithm 2, Algo-

rithm 3 and Algorithm 4, respectively.

Algorithm 2 first constructs a segmental control flow chart

(SegCFG) from the function entry to the current examined

statement (ExaStmt) at line 1. Then, a backward slice, the

maximum size of which is limits by the parameter W, was

computed with respect to ExaStmt (line 2). The reference

variable is then calculated for each dependency statement

in the backward slice, then the values of the corresponding

variables, extracted from the trace information TraceInfo,

are added to the variable position of the corresponding node

in the control flow segment SegCFG (line 3 to 11). In the

algorithm 2, the variable node.stmt.v.values means that there

is a statement stmt which has a reference variable v. Similarly,

the function TraceInfo.getV alue(node, v) means that the

object TraceInfo have a method getV alues, which is to

get the value of variable (v) in the corresponding node (node).

Algorithm 2 S1 Gen(fun,ExaStmt, TraceInfo,W)

1: SegCFG← ConstructSegCFG(fun,ExaStmt);
2: BWS ← BackwardSlice(SegCFG,ExaStmt,W );
3: for each stmt ∈ BWS do
4: VAR← Ref(stmt);
5: for each node ∈ SegCFG do
6: for each v ∈ VAR ∧ v is referenced by node do
7: node.stmt.v.values←
8: TraceInfo.getV alues(node, v);
9: end for

10: end for
11: end for
12: return SegCFG;

Next, the function S2 Gen() is described in algorithm

3. First, the control flow graphs of all the functions in the

function list are calculated, and the control flow pieces are

concatenated into a large control flow picture segment in

the order of invocation and invocation (line 1 to 6). The

method fun.getCaller() returns the statements which current

function calls. The subsequent work (line 7 to 16) is similar

to that of the function S1 Gen().
Algorithm 4 describes the strategy of extracting and pre-

senting the auxiliary debugging information when the size of

the current function of the review statement is very large and

exceeds the limit threshold.

Algorithm 3 S2 Gen(FunList, ExaStmt, TraceInfo,W )

1: SegCFG← ConstructSegCFG(FunList[0], ExaStmt);
2: for i from 1 to sizeof(FunList) do
3: CallerStmt← FunList[i− 1].getCaller();
4: SegCFG ′←ConstructSegCFG(FunList[i], CallerStmt);

5: SegCFG← SegCFG.Connect(SegCFG′)
6: end for
7: BWS ← BackwardSlice(SegCFG,ExaStmt,W );
8: for each stmt ∈ BWS do
9: VAR← Ref(stmt);

10: for each node ∈ SegCFG do
11: for each v ∈ VAR ∧ v is referenced by node do
12: node.stmt.v.values←
13: TraceInfo.getV alues(node, v);
14: end for
15: end for
16: end for
17: return SegCFG;

In Algorithm 4, the function fun() segmental control

flow diagram SegCFG is first calculated (line 1). Then

with the tracking information of program run obtained, the

path fragment SegPath, ended with current review statement

ExaStmt, is constructed whose length does not exceed W
(line 2). As the first step in the control flow diagram frag-

ment is too large. If the direct display to the programmer

these complex information, then it will not be conducive

to the programmer quickly get accurate, refined information.

Therefore, we need to delete the initial control flow diagram

fragment, remove the node with little relationship with current

Algorithm 4 S3 Gen(fun,ExaStmt, TraceInfo,W )

1: SegCFG← ConstructSegCFG(fun,ExaStmt);
2: SegPath←TraceInfo.ConstructPath(SegCFG,ExaStmt,W);

3: for each node ∈ SegCFG do
4: if dis(node, SegPath) > |Min Distance| then
5: SegCFG.remove(node);
6: SegCFG.delete(aEdges) where

7: < node, n′ > ∨ < n′, node >∈ aEdges ;

8: end if
9: end for

10: BWS ← BackwardSlice(SegCFG,ExaStmt,W );
11: for each stmt ∈ BWS do
12: VAR← Ref(stmt);
13: for each node ∈ SegCFG do
14: for each v ∈ VAR∧ v is referenced by node do
15: node.stmt.v.values←
16: TraceInfo.getV alues(node, v);
17: end for
18: end for
19: end for
20: return SegCFG;
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failed execution. For each node in the control flow diagram

SegCFG, we calculate the distance from the execution path

fragment SegPath to the node. If the distance exceeds the

threshold set by the system Min Distance, remove the node

from SegCFG and delete the edge associated with the node

(line 3 to 9). The subsequent work (line 10 to 19) is similar to

that of the function S1 Gen() and S2 Gen(). That is, with

respect to the current review statement ExaStmt, the back-

ward slices with the size of W were calculated based on the

pruned control flow chart, and then extract the actual variables

in the implementation of variable values, add the variable value

information to the node for subsequent visualization.

After answering the research questions (RQ1 and RQ2),

that is, to identify the debugging auxiliary information and

the debugging auxiliary information display two questions.

Next, we will discuss the third research question (RQ3) which

focuses on making full use of the programmer’s early work

during debugging.

III. SUSPICIOUS STATEMENTS RECOMMENDATION BY

DEBUGGING FEEDBACK

In this section, we will discuss how to dynamically adjust

the suspiciousness of statements based on the feedback by pro-

grammer to answer the last research question (RQ3) followed

by some basic assumptions.

A. Basic Assumptions

In the existing fault locating scenario applying SBFL tech-

nologies, the programmers determine whether the current

examined statement in a fault locating report (often a rank

list of statements with suspiciousness descending order) is

an erroneous statement or not with their personal experience

when debugging. Normally, they will repeat the process until

all statements are examined. However, the programmer’s judg-

ment on the previously examined statements has not been fully

utilized in the subsequent work during the debugging process.

We believe that the judgment of the programmer can guide the

adjustment of the order in which subsequent statements to be

examined. To this end, a strategy of dynamic adjustment state-

ment suspiciousness based on debugging feedback is proposed.

The strategy is based on the following three assumptions:

Assumption 1: Each judgment for the reviewed statements

made by the programmers is always right.

Assumption 2: If the programmer determines that the

current reviewed statement (s) is correct, the suspiciousness

of the statements in the backwards-slice of the s statement

is overestimated and should be lowered suspicious of these

statements.

Assumption 3: If the programmer determines that the

current reviewed statement (s) is faulty, the suspiciousness

of the statements in the forward-slice of the s statement

is overestimated and should be lowered suspicious of these

statements.

The assumption 1 is also called skilled programmer hy-

pothesis. Because the judgments of the examined statements

by the programmers at present are mainly based on the subjec-

tive of the experience, the complexity of human mental work

determines that the judgment result may be wrong and the

error probability varies from person to person. Although we

can build a dynamic feedback model based on the probability

of debugging personnel, but that will significantly increase the

complexity of the debugging model. In general, the probability

of an experienced programmer error is low. For the sake of

analysis, we assume that developers are skilled, and their

judgment during debugging will not go wrong. In other words,

Assumption 1 holds.

The existing statistical fault localization techniques usually

presuppose that every statement in the program is likely to go

wrong. It is well known from PIE (Propagation -Injection -

Execution) model that software fault caused the program to

enter an error internal state, and the error state may pass

through the program execution path to the program exit[19].

During the propagation process, if a statement is wrong, then

the suspicious value of the statement from the beginning of

the program to the software fault, which associated with the

software fault, is overvalued and should be lowed (Assumption

2); Correspondingly, if a statement is correct, then the suspi-

ciousness of all the relevant statements from the statement to

the program exit is also overestimated and should be adjusted

to proper values (Assumption 3).

B. Dynamic recommendation for suspicious statement based
on debugging feedback

Let us consider one statement identification scenario. We

modified the suspiciousness of the remained statements with

two strategies as follows:

(1) When the programmer identifies that the current re-

viewed statement s is correct, the suspiciousness of the

remained statements (s) can be updated with the followed

formula.

R
′
s = Rs × (1− Rs∑

si∈Ω Ri
) (2)

where Ω is the backward slice of statement s, Ri is the

suspiciousness of the statement si.
(2) When the programmer identifies that the current re-

viewed statement s is faulty, the suspiciousness of the re-

mained statements (s) can be updated with the followed

formula.

R
′
s = Rs × (1− Rs∑

si∈Ψ Ri
) (3)

where Ψ is the forward slice of statement s, Ri is the

suspiciousness of the statement si.
Due to the huge scale and expensive computing of precise

dynamic slices, we applied an improved dynamic slice algo-

rithm, named limited preprocessing (LP) algorithm, which is

proposed by Zhang et al. [20] for backward and forward slices

computing. The LP algorithm is practical because it never runs

out of memory and is also fast.

The algorithm 5 shows the steps of dynamic adjusting

the suspiciousness. Statement Stop, the top element of the

examining list, has the highest suspiciousness. The function
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Algorithm 5 Feedback Based Suspiciousness Updating

Input:
RankList;

Output:
newRankList;

1: < Stop, Rtop >← RankList.pop;

2: assert← Feedback(Stop);
3: if assert is Right then
4: Ω← BackwardSlice(Stop);

5: ρ← Rtop∑
si∈Ω Ri

;

6: for each si ∈ Ω ∧ si ∈ RankList do
7: Ri ← Ri × (1− ρ);
8: RankList.Update(si, Ri);
9: end for

10: end if
11: if assert is Wrong then
12: Ψ← ForwardSlice(Stop);

13: ρ′ ← Rtop∑
si∈Ψ Ri

;

14: for each si ∈ Ψ ∧ si ∈ RankList do
15: Ri ← Ri × (1− ρ′);
16: RankList.Update(si, Ri);
17: end for
18: end if
19: newRankList← RankList.Sort();
20: return newRankList;

Feedback(Stop) returns the judgment on the current statement

Stop made by the programmer (line 2). When the programmer

determines that the current statement Stop is correct, the

suspiciousness of all the statements in the Stop’s backward

slice should be lowered(line 3 to 10). That is, we first calculate

the Stop’s backward slice Ω, then calculate the ratio (ρ) of

suspiciousness of Stop with the sum of all the statement’s

suspiciousness in backward slice, and the new suspiciousness

of remained statements are finally updated with formula 2.

Similarly, When the programmer determines that the current

statement Stop is wrong, the suspiciousness of all the state-

ments in the Stop’s forward slice should be lowered(line 11

to 18).

C. An improved suspiciousness updating algorithm based on
group feedback

However, the programmer can only confirm a statement at

a time in the algorithm 5, which results in lower debugging

efficiency. In the actual software debugging process, the pro-

grammer may confirm a set of statements at one time, which

can be divided into two collections (Good and Bad). The

correct statements set was denoted as Good, and the faulty

statements set was denoted as Bad. We need to further refine

the algorithm 5 to deal with multiple statements feedback

situations, as showed by the algorithm 6.

The role of line 3 to line 10, and line 11 to line 18 in the

algorithm 6 are similar with the role of line 3 to line 10, and

Algorithm 6 Group Feedback Based Suspiciousness Updating

Input:
RankList;

Output:
newRankList;

1: < Stop, Rtop >← RankList.pop;

2: < Good,Bad >← Feedback(Stop);
3: for each Sgood ∈ Good ∧ Sgood ∈ RankList do
4: Ω← BackwardSlice(Sgood);

5: ρ← Rgood∑
si∈Ω Ri

;

6: for each si ∈ Ω ∧ si ∈ RankList do
7: Ri ← Ri × (1− ρ);
8: RankList.Update(si, Ri);
9: end for

10: end for
11: for each Sbad ∈ Bad ∧ Sbad ∈ RankList do
12: Ψ← ForwardSlice(Sbad);

13: ρ′ ← Rbad∑
si∈Ψ Ri

;

14: for each si ∈ Ψ ∧ si ∈ RankList do
15: Ri ← Ri × (1− ρ′);
16: RankList.Update(si, Ri);
17: end for
18: end for
19: RankList← RankList.Remove(Good,Bad);
20: newRankList← RankList.Sort();
21: return newRankList;

line 11 to line 18 in the algorithm 5. In algorithm 6, line 5

and line 13 obtain the ratio for adjusting suspiciousness of

remained statements, respectively.

Unlike the algorithm 5, the algorithm 6 iterates over mul-

tiple statements which are identified by the programmer as a

feedback with two sets Good and Bad. In addition, the line 19

of the algorithm 6 is used to remove the identified statements

in sets Good and Bad from suspicious rank-list because there

is no need to re-confirm.

Further analysis of the algorithm 5 and the algorithm 6, we

have found that the order in which the two algorithms handle

the feedback of the programmer may affect the sorted list of

the final generated suspicious statements. At present, we do

not even know clearly the extent of its specific impact. One

of the main reasons is that the effect of these two algorithms

depends on whether the judgment given by the programmer is

correct, which makes it difficult for us to analyze theoretically

and practically.

IV. PROTOTYPE PRESENTATION

The intuition of behind our approach lies that the heuristic

information of program running are helpful for understanding

software logic and identifying the root cause of failure run.

In addition, the programmer’s previous judgments may be

useful for the identification of successor faults. Lighten by

the intuition, we first construct a visualized heuristic digram
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based on the traced running of tests to help the programmer to

identify the current examined entities(such as program state-

ments), then adjust the previous fault-locating report for next

fault identification progress based on the judgment made by

the programmer previously. Figure 2 illustrates the overview of

the proposed interactive debugging with heuristic information.

Our framework mainly with two phases: Heuristic information

visualization and Improving fault localization report dynami-

cally.
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Fig. 2. Overview of the interactive debugging with heuristic information

Our approach is a cycle iterative processes mainly composed

of three stages as follows:

1) Information Collecting and Modeling: This stage is

mainly based on the program slicing and other analytical

techniques to collect the auxiliary program information

for locating faults, and then construct the model of the

relationship between program entities.

2) Model Analysis and Presentation: This stage analyzes

the relationship between the program entities in the

relationship model, filters the program entities, and

visualizes the heuristic information for fault locating.

3) Dynamic Adjustment of Suspiciousness Based on
Feedback: According to the programmer’s feedback,

this stage dynamically adjusts the suspiciousness of the

unexamined program entity to ensure that the most

suspicious program entity is always recommended for

review by the programmer first during the software

debugging process.

As Figure 2 shows, the input to our approach is the program

source code with a set of failed test cases and the initial fault

localization report. First, running information was tracked and

modeled when the program reviewed runs with failing test

cases. Second, program slices will be computed with the high-

est suspicious program entity as criteria, which will be under

reviewed by the programmer. Then, a segment of the control

flow graph (segment-CFG) will be built with static program

analysis considering the slices. Next, heuristic information

formed as dot formates can be computed combining with both

segment-CFG and the tracked dynamic information. Then, the

programmer can make a judgment that whether the current

reviewed entity is faulty or not. Meanwhile, the judgment will

be fed back to our framework for the subsequent fault locating.

In detail, our framework will adjust the suspiciousness of the

remained entities and generate a new fault localization report,

which is useful for the identified of faults.

V. RELATED WORK

Our work was inspired by the PIE model which illustrated

the defect propagation path[19]. Generally, statistical fault

localization techniques construct a rank list composed of

program entities which guide the developer to identify the

elements to be faulty or not [1], [2], [21]. Researchers are just

trying to provide developers with an intuitive bug report[2].

Unfortunately, few of them can provide heuristic information

to help the developer to identify the root cause of the faults.

It is a known fact that program slices present the depen-

dencies between program entities [17]. It is considered to be

helpful for program understanding and fault locating [4]. In

the early years, Zhang et al. proposed three dynamic slice

algorithms which are more precise [20]. In this paper, we

selected one of these algorithms called LP as the basis for

our forward slicing and backward slicing.

Interactive debugging is the closest means to real software

maintenance practices. Researcher fight countless ways for

improving the efficiency and effectiveness of debugging [3],

[6], [9]. Early, Myers et al. propose a method that displaying

the related data structure while debugging [6]. Hao et al.

applied a check-point mechanism to SBFL approach which

improved the effectiveness compared with existing fault local-

ization approaches [3]. Recently, Lin et al. proposed a light-

weight human feedbacks based debugging approach which can

recommend suspicious execution trace [9].

Unlike the above, our approach traces one failure execution

of the program, then provide not only the data dependency

information, but also the control dependency information, and

provide a heuristic graph to help the developer identifying

bugs. We also provided a feedback based debugging approach

which can adjust the suspiciousness of program entities adap-

tively.

VI. CONCLUSIONS AND FUTURE WORK

The motivation of this study was to provide heuristic

information that can help the developer to identify bugs in real

program debugging more efficiently. To this end, we first pro-

posed a practical method of modeling and visualizing heuristic

information extracted from runtime traces. Furthermore, in

order to avoid showing too much or too little inspiration

information to the developers, we put forward three strate-

gies to help ensure that the information is reasonable. Then,

considering the full use of developer feedback, we proposed

an effective algorithm to dynamically improve and reduce the

suspicious degree of the corresponding program statement. In

addition, we proposed a kind of reinforcement algorithm to

adjust the statements’ suspicious in batches according to a set

of feedback from the developer, thus increasing the efficiency

of program debugging.

Our work is preliminary but it is very practical in program

debugging. We need further discussion of the advantages and
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weakness of our approach. For example, our approach requires

repeated computation of slices, including forward slices and

back slices. This will cost a lot of computation time. Thus,

increasing the waiting time for the actual debugging. In the

future, there will be some aspects to improve and study. (1) our

algorithms should be improved to reduce the slice calculation

time. For example, some dependencies can be calculated and

stored in the central information repository in advance, which

is obtained directly when the algorithm calculates slices later.

(2) besides algorithm improving, we also need to find a way to

get the optimal width of code examination window. The reason

lies that human attention is very limited. During program

debugging, too much or too little information is not conducive

to the developer to make the right decision. (3) a meaningful

work is to mine the history of software development for

obtaining the defect related clues. As we all know, the are

many source control systems such as github, which contains

the information throughout software development. We can

make use of the information stored in the software repository,

such as commitment, bug fixing, etc., to help build the inspired

information about the current debugging version.
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