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Abstract—A large amount of risk evaluation formulas have
been proposed for spectrum-based fault localization (SBFL) in
prior studies. A recent study by Xie et al. developed an innovative
framework to theoretically analyze the effectiveness of those risk
evaluation formulas in SBFL. Xie et al.’s study was based on the
assumption that program has only one fault. In other words, they
investigated SBFL in the context of single-fault SBFL. However,
in practice, programs might have more than one faults. In this
paper, we first propose a novel theoretical analysis framework
for the risk evaluation formulas in the context of multi-faults
SBFL. Our framework is based on a new effort cost evaluation
L−Score. By applying our framework, we then conduct case
studies to investigate the efficiency of existing formulas in the
context of multi-faults SBFL.

Keywords—multi-fault localization; risk evaluation formulas;
efficiency analysis; testing; debugging

I. INTRODUCTION

Spectrum based fault localization(SBFL) has received ex-

tensive attention among so many researchers for its simplicity

and high efficiency [1]. This kind of technologies evaluated

the risk of each program entity (e.g., statement, basic block,

branch, predicate and function) with the coverage spectrum of

program executions and ranked these entities by the risk values

with a descending order. Then the developers inspected each

entity to identify software errors during debugging [2]. Typical

SBFL techniques include Tarantula [2], Ochiai [3], Naish [4],

SAFL [5], and so on (e.g., [6]). Generally, examining score,

the ratio of faults detected with examined codes, is used to

evaluate the efficiency of a fault localization technology.

Commonly, researchers evaluated the efficiency of SBFL

techniques with a series of benchmarks or some industry

programs by comparing their examining scores. To carry out

a fair comparison, it is of great concern to construct the

same experimental conditions, such as the same subjects,

the same seeded or real faults, the same test suites, etc.

However, these fair design efforts cannot avoid a critical

defect: the experimental results depend on the environment

settings, such as fault types, the composition of test suite,

even the composition of the program spectra, etc. A Recent

study by Pearson et al. claimed that the formula has relatively

little effect on how well a SBFL technique performs [7]. This

weakness has prevented the generalization and application of

these fault locating technologies in the industry.

Furthermore, costs of fault localization between two tech-

niques differed minor in many empirical studies. For example,

the experimental evaluation indicates that the costs of Ochiai
and Tarantula difference are less than 2% of codes [3], but

the scale of these subjects in their experiment is very small.

Usually, 2% of codes means only several statements, which

makes no actual effects in real program debugging.

All this raises the question that why the efficiency of

different risk formulas always makes no significant difference

in actual program debugging activities? Some researchers

began to conduct theoretical analysis to pursue the answer. An

early work by Lee et al. shows the equation between Taran-

tula and qe[8]. They further inspected more risk evaluation

formulas and proved some of them are equivalent. Later, Xie

et al. proposed a simple analytical framework, with which,

they analyzed 30 risk formulas, and found two groups (5

formulas) maximal formulas [1]. Using the theoretical analysis

framework, they conducted a further study on 30 risk formulas,

which were generated through Genetic Programming (GP) by

Yoo et al., and found 4 maximal formulas out of all these

compared ones [9], [10]. Recently, Naish et al. [11] proposed

an improved SBFL approach which categorizes program state-

ments into different classes by static program analysis and

assigns them different weights based on the likelihood of

being faulty statement, then evaluated the suspiciousness of

each statements according to these weights for fault locating.

Furthermore, W.K. Chan et al. extended Xie’s framework with

empirical results. They found that ER formulas are same on

different code level of abstraction, and non-ER formulas can

be more effective than ER formulas [12].

Illuminate by Xie’s framework, we introduced a method for

faults localization effort evaluation and proposed a new frame-

work that can analyze the risk evaluation formula theoretically

in the multi-fault locating scenario.

The main contributions of this paper can be summarized as:

• a new effort cost evaluation (L−Score) for the multi-fault

locating scenario.

• a framework that can theoretical analysis the efficiency

of risk evaluation formulas for multi-fault locating.

• case studies for the efficiency of existing formulas by

applying our framework.

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.58

304

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.58

304

Authorized licensed use limited to: Nan Tong University. Downloaded on January 21,2025 at 13:30:49 UTC from IEEE Xplore.  Restrictions apply. 



II. BACKGROUND

A. Spectrum based Fault Localization

In 2002, Jones et al. proposed a spectrum based fault

localization approach (named Tarantula) based on the as-

sumption that program executing spectrum could approximate

fault causality. Since then, researchers have proposed many

spectrum based fault localization approaches with different

forms of formulas to evaluate the suspiciousness of each

entities using its coverage of program executions [13], [6].

The information, collected for evaluating the suspiciousness

of each entities, is usually shown as follows:

Ai =< N i
CF , N

i
CS , N

i
UF , N

i
US >

where

• N i
CF : The number of failed test cases that can cover the

program entity ei;
• N i

CS : The number of passed test cases that can cover

the program entity ei;
• N i

UF : The number of failed test cases that cannot cover

the program entity ei;
• N i

US : The number of passed test cases that cannot cover

the program entity ei.

Many evaluation formulas were proposed for creating the

rank list of all entities. The basic intuition behind these

formulas lies in the following observations: The more passed

test cases that executed a program entity, the less likely it

is for the entity to be faulty; The more failed test cases that

executed a program entity, the more likely it is for the entity

to be faulty;

B. Metrics for the Evaluation of Fault Localization

Most fault localization approaches do not stop examining

the code until one bug was identified. Intuitively, the percent-

age of code that needs to be examined can be represented in

the efficiency of the fault localization technology.

The T−Score evaluated the percentage of entities that need

not be examined. On the contrary, the EXAM−Score, also

named expense score, evaluated the percentage of entities that

need to be examined until the first bug is located[14].

EXAM =
Number of entities examined

Total number of entities
× 100% (1)

C. Theoretical Analysis Framework for Locating Single Fault

In [1], Xie et al. proposed a theoretical analysis framework

to compare the effectiveness of a group of risk evaluation

formulas. Next, we gave a brief discussion of their pioneering

work.

DEFINITION 1 (Mutually exclusive subsets): Given a n-

statements program P =< s1, s2, · · · , sn >, and a test

suite T = {t1, t2, · · · , tm}, and a risk evaluation for-

mula R. Suppose that statement Sf is the real fault in P ,

run P with test suite T and with four statistics Ai =<
N i

CF , N
i
CS , N

i
UF , N

i
US > of each statement collected, then

formula R can decompose the statements of P into three

mutually exclusive subsets as follow[1]:

1) SR
B = {si ∈ S | R(si) > R(sf ), 1 ≤ i ≤ n}

2) SR
F = {si ∈ S | R(si) = R(sf ), 1 ≤ i ≤ n}

3) SR
A = {si ∈ S | R(si) < R(sf ), 1 ≤ i ≤ n}

The meaning of three exclusive subsets can be explained

as follows: (1) SR
B consists of the statements whose suspi-

ciousness are higher than that of the real fault sf ; (2) SR
F

consists of the statements whose suspiciousness are equal to

of the real fault sf ; (3) SR
A consists of the statements whose

suspiciousness are lower than that of the real fault sf .

Obviously, the size of sets SR
B and SR

F greatly affects the

efficiency of the fault locating technology. The smaller of sets

SR
B and SR

F are, the more effective the technique is.

Based on Definition 1, the efficiency of two suspiciousness

formulas R1 and R2 for single fault locating scenarios can be

theoretically analyzed by comparing the size of set SR1
A , set

SR2
A , and the size of set SR1

F , set SR2
F . So we can compare

the efficiency of risk evaluation formulas for the single-fault

locating scenario.

III. AN ENHANCED THEORETICAL ANALYSIS

FRAMEWORK FOR MULTI-FAULT LOCATING

In this section, we first introduce the terminologies used

in the enhanced framework. Then we discuss an enhanced

theoretical analysis framework for multi-fault localization.

Furthermore, we also ignored the omission faults in the new

framework, since SBFL cannot assign suspiciousness to those

missing statements.

A. Preliminaries

DEFINITION 2 (Number of located faults - �L(α)� ): For

a rank list generated by one fault localization technique with

n statements composed. If the developer examined the top l
statements of the rank list and identified k faults, then α = l/n
denote the percentage of examined code, and L(α) = k denote

the number of located faults under the examining level α.

DEFINITION 3 (Better): For two risk evaluation formulas

R1 and R2, we denote the number of located faults as

L1(α) and L2(α) under the same code examine level α.

If L1(α) ≥ L2(α), then R1 is Better than R2, denoted as

R1(α) � R2(α) .

DEFINITION 4 (Congenial): For two risk evaluation for-

mulas R1 and R2, we denote the number of located faults as

L1(α) and L2(α) under the same code examine level α. If

L1(α) = L2(α), then R1 is Congenial with R2, denoted as

R1(α) ∼= R2(α) .

Furthermore, we can define a new equation L-score to

evaluate the efficiency of fault locating when examining the

rank list as shown in equation 2. Intuitively, the higher L-

Score is, the faster and more faults are located in multi-fault

locating.

L−Score = L(α)

α
× 100% (2)
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B. An Enhanced Theoretical Analysis Framework

For a n-statements program P =< s1, s2, · · · , sn >, a test

suite T = {t1, t2, · · · , tm}, and a fault locating technology

with risk evaluation formula R. First, run program P and trace

the executions, then decomposed the test suite T and program

P into two subsets respectively: Tp (passed test cases) and Tf

(failed test cases), Sp (statements covered by passed tests ) and

Sf (statements covered by failed tests), then applied R with

the collected information Ai =< N i
CF , N

i
CS , N

i
UF , N

i
US >,

the likelihood of fault of each statement were calculated to

form a rank list L. Multi-fault locating is to examine the top

l statements in the rank list L.

DEFINITION 5 (Mutually exclusive subsets under the dy-
namic examining level α): For a n-statements program P =<
s1, s2, · · · , sn >, applying suspiciousness formula R to gen-

erate the rank list L. Under the examining level α (α = l/n),
the l (Top l) examined statements in list L can be decomposed

into three mutually exclusive subsets as follow:

1) SR
X(α) = {si ∈ Sα | si ∈ Sf ∧ si /∈ Sp }

2) SR
Y (α) = {si ∈ Sα | si ∈ Sf ∧ si ∈ Sp }

3) SR
Z (α) = {si ∈ Sα | si /∈ Sf ∧ si ∈ Sp }

where SR
X(α) consists of the statements that only covered

by failed test cases. SR
Y (α) consists of the statements that

covered by both failed test cases and passed test cases. SR
Z (α)

consists of the statements that only covered by passed test

cases. If α = 100%, the exclusive subsets in definition 5 can

be simply denoted as SX , SY and SZ . The value of four

statistics N i
CF , N

i
CS , N

i
UF , N

i
US and the suspiciousness can

be derived easily as shown in Table I.

TABLE I
VALUE OF STATISTICS AND SUSPICIOUSNESS OF EACH STATEMENT

si NCF NCS NUF NUS suspiciousness

si ∈ SX NF 0 0 NS R(Ai) = RX

si ∈ SY [1, NF ] [1, NS ] [0, NF ) [0, NS) R(Ai) = V ar
si ∈ SZ 0 NS NF 0 R(Ai) = RZ

THEOREM 1: For any risk evaluation formula R = f(Ai),
the suspiciousness of all statements in subsets SX and SZ are

constants RX and RZ respectively.

PROOF. First, the suspiciousness of each statement is only

decided by the four statistics N i
CF , N

i
CS , N

i
UF and N i

US .

Second, as shown in Table I, the four statistics of sets SX

and SZ are changeless respectively. Therefore, for a given test

suite, the suspiciousness of statement in subsets SX and SZ

are two constants calculated by the evaluation formula R.

With theorem 1, we can make the proposition as follow:

PROPOSITION 1: There is no difference of the efficiency

of different fault localization techniques, where the examining

level α <
||SX ||
n

or
||SX ∪ SY ||

n
≤ α ≤ ||SX ∪ SY ∪ SZ ||

n
.

PROOF. As shown in table I, the suspiciousness of state-

ments in SX and SZ are two invariants RX and RY , respec-

tively. That is to say, the sequence of statements in both set SX

and set SZ have nothing to do with the risk evaluation formula.

Therefore, different fault evaluation formulas make no differ-

ence of the efficiency of fault locating when the examining

level α <
||SX ||
n

or
||SX ∪ SY ||

n
≤ α ≤ ||SX ∪ SY ∪ SZ ||

n
.

The risk evaluation formula R can affect the sort of the

statements in the subset SY in the rank list L when the

examining level
||SX ||
n

≤ α ≤ ||SX ∪ SY ||
n

.

Intuitively speaking, a statement is more likely to be faulty

if it is only executed by failed test cases. On the contrary, a

statement is more likely to be correct if it is only executed

by passed test cases. Based on definition 5 and theorem 1,

two similar cases are discussed in detail in the next two

subsections.

C. WellRanked List Analysis

DEFINITION 6 (WellRanked formula): For a risk evaluation

formula R, We called R as WellRanked formula (denote as

R̂ ), if R satisfies with the condition: RX > R(yi) > RZ ,

where R(yi) is the suspiciousness of statement yi (yi ∈ SY ),

the constants RX and RZ are the suspiciousness of statements

in SX and SZ , respectively.

For a WellRanked formula R, We called the rank list

generated by R as WellRanked list. There are three possible

cases of examination for faults locating as shown in Figure

1, when we examined the rank list (L) generated by the

WellRanked formula formula R.

SX

SZ

SY

Rank List

SX

SZ

SY

Rank List Rank List

SX

SZ

SY

a

a   

a

a

b   c   

Fig. 1. Possible examinations on WellRanked list.

Considering the subgraph (a) and (c) in Figure 1 with Table

I, we can now establish two lemmas as follows.

LEMMA 1: For two WellRanked formula R1 and R2, and

the examining level α (α ≤ ||SX ||
n ), the efficiency of R1 and

R2 are congenial, denote as R1(α) ∼= R2(α).

PROOF. Due to the examining level satisfying α ≤ ||SX ||
n ,

the developer only needs to examine the statements in the

subset SX . With theorem 1, we know that the suspiciousness

of statements in SX is constants. That is to say, the order of

statements in SX of the rank lists generated by R1 and R2

are same with each other, then the number of faults located

are same with each other, too. Then we have L1(α) = L2(α).
Therefore, R1(α) ∼= R2(α) is hence established.

LEMMA 2: For two WellRanked formula R1 and R2, and

the examine level α (
||SX∪SY ||

n < α ≤ 1), the efficiency of

R1 and R2 are congenial, denote as R1(α) ∼= R2(α).

306306

Authorized licensed use limited to: Nan Tong University. Downloaded on January 21,2025 at 13:30:49 UTC from IEEE Xplore.  Restrictions apply. 



PROOF. Due to the examining level α satisfying
||SX∪SY ||

n < α ≤ 1, the developer needs to examine the

whole subset SX , SY , and part of the statements in subset

SZ . With theorem 1, we know that the suspiciousness of

statements in SZ are constants. That is to say, the order of

statements in SZ of the rank lists generated by R1 and R2 are

same, then the number of faults located are same with each

other, L1(α) = L2(α). Therefore, R1(α) ∼= R2(α) is hence

established.

Considering the subgraph (b) in Figure 1, the suspiciousness

of statements of SY is functioning normally to depend on

N i
CF , N

i
CS , N

i
UF and N i

US . For any determined test suite, the

following equations N i
CF +N i

UF = NF , N i
CS +N i

US = NS ,

and N i
S + N i

F = N are established. So we can consider the

two independent variables N i
CF and N i

CS and classified the

formulas into 8 different types depends on the monotonicity

of the two variables combinations as table II shown.

TABLE II
TYPES OF RISK EVALUATION FORMULAS

Type NCF NCS

M1 increasing increasing
M2 decreasing decreasing
M3 increasing decreasing
M4 decreasing increasing
M5 indeterminacy increasing
M6 indeterminacy decreasing
M7 increasing indeterminacy
M8 decreasing indeterminacy

LEMMA 3: For any two WellRanked formula R1 and R2,

and the examine level α (
||SX ||

n < α ≤ ||SX∪SY ||
n ), the

efficiency of R1 and R2 can be discussed of the followed

two groups.

1) If there are some faults in set SY , and R1 and R2 are

monotonic functions of NCS and NCF , that is to say,

they are belonged to the same type of M1,M2,M3 or

M4 listed in table II, then the efficiency of R1 and R2

are congenial, denote as R1(α) ∼= R2(α); otherwise, the

the efficiency of R1 and R2 cannot be compared.

2) If there is not even a fault among the set SY , then

the efficiency of R1 and R2 are congenial, denote as

R1(α) ∼= R2(α)

PROOF. For the first case of lemma 3, the faults in

SY are called coincidental correctness faults[15].

Since R1 and R2 are monotonic functions of NCS and NCF ,

the statements of set SY in ranking list generated by two

formulas are with the same order. Accordingly the efficiency

of R1 is same with that of R2, denoted as R1(α) ∼= R2(α) .

On the contrary, it may be difficult to decide which formula is

better. For the second case lemma 3, there is no contribution

to fault localization among SY examining process since no

fault of SY . Therefore, R1(α) ∼= R2(α) is hence established.

With lemma 1, 2, 3 , the following theorem 2 are estab-

lished.

THEOREM 2: For two WellRanked evaluation formulas R1

and R2, the following conclusion is established.

1) R1(α) ∼= R2(α) (α ∈ [0, 1]) is established without

regard to coincidental correctness faults of

set SY .

2) R1(α) ∼= R2(α) (α ∈ [0, 1]) is established, if R1

and R2 are monotonic functions and same with each

other in table II, with regard to coincidental
correctness faults of set SY .

PROOF. To prove the first item. Since there is no fault in

set SY , after the Lemma 1, Lemma 2, and Lemma 3, we can

easily make the conclusion that R1(α) ∼= R2(α) (α ∈ [0, 1]).
To prove the second item. Since there are some

coincidental correctness faults of set SY , the order

in the WellRanked list are determined by the results of R1 and

R2. If the monotonies of R1 and R2 are same with each other,

then we can make a conclusion that R1(α) ∼= R2(α) (α ∈
[0, 1]).

In summary, we can make the conclusion that the Well-
Ranked formulas are of the same efficiency in fault localiza-

tion.

In this section, we have discussed properties of WellRanked
formulas. The risk value of statements of SX is strictly greater

than that of SY , and the risk values of statements of SY are

strictly greater than that of SZ . Unfortunately, these strong

conditions have not always been established. In the next

section, we will discuss the rest cases which do not satisfy

with these situations.

D. MayRanked List Analysis

DEFINITION 7 (MayRanked Formula): For a risk evalua-

tion formula R, We called R as MayRanked formula (denote

as R̃), if R satisfies the condition: RX ≥ R(yi) ≥ RZ , R(yi)
is the suspiciousness of statement yi (yi ∈ SY ), constants RX

and RZ are the suspiciousness of statements in SX and SZ ,

respectively.

For a MayRanked formula R, we called the rank list

generated by R as MayRanked list. In order to ascertain the

subject for further elaboration, we shall use the following

remarks.

SX′ = {yi ∈ SY |R(yi) = RX}
SZ′ = {yj ∈ SY |R(yj) = RZ}
The suspiciousness of statements of sets SX′ and SZ′ are

equal to that of RX and RZ , respectively. Therefore, the

statements of set SX′ can be joined into set SX , and the

statements of set SZ′ can be joined into set SZ .

Similarly, there are three possible cases of examination for

locating faults as shown in Fig 2, when we examined the rank

list (L) generated by a MayRanked formula R.

The size of set SX′ and SZ′ in figure 2 makes the difference

remarkably between figure 2 and figure 1. For instance, (1) if

SX′ = ∅, the subgraph (a) in figure 2 is equivalent to that of

figure 1. That is to say, the MayRanked formula is equivalent

to MayRanked formula when examining level α ≤ ||SX ||
n . (2)

if SZ′ = ∅, the subgraph (c) in figure 2 is equivalent to that of

figure 1. That is to say, the MayRanked formula is equivalent
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SX  ∪SX’  

SZ ∪SZ’

SY - SX’ - SZ’

Rank List

SX  ∪SX’  

SZ ∪SZ’

SY - SX’ - SZ’

Rank List

SX  ∪SX’  

SZ ∪SZ’

SY - SX’ - SZ’

Rank List

a

a

a

(a) (b) (c)

Fig. 2. Possible examinations on MayRanked list.

to MayRanked formula when examining level α ≥ ||SX∪SY ||
n .

(3) if SX′ �= ∅ ∧ SZ′ �= ∅, then it can be comprehended that

the statements in set SX′ or SZ′ are joined to the other two

sets (SX and SZ). Meanwhile, some faults in set SX′ or SZ′

may spread to the other two sets SX and SZ , respectively. In

this case, it is unclear whether or not the formula efficiency

is boosted for locating faults. Therefore, we proceeded to a

more detailed analysis as follows.

For a MayRanked formula R which is satisfied with con-

dition SX′ ∪ SZ′ �= ∅, and given a WellRanked formula R′

for comparing, the R̂′ can generate a rank list composed by

three sets SX , SY and SZ , while R̃ can generate a rank list

composed by three sets SX ∪ SX′ , SY ∪ SY ′ and SZ ∪ SZ′ .

DEFINITION 8 (I-MayRanked formula): For a MayRanked
formula R, R is I-MayRanked formula, where SX′ = ∅ ∧
SZ′ �= ∅.

DEFINITION 9 (II-MayRanked formula): For a MayRanked
formula R, R is II-MayRanked formula, where SX′ �= ∅ ∧
SZ′ = ∅.

DEFINITION 10 (III-MayRanked formula): For a

MayRanked formula R, R is III-MayRanked formula,

where SX′ �= ∅ ∧ SZ′ �= ∅.
THEOREM 3: For two sets SX and SZ with p and q faults,

respectively. Two sets SX′ and SZ′ with p′ and q′ faults. Let’s

suppose these p + p′ faults spread in SX ∪ SX′ , and these

q + q′ faults spread in SZ ∪ SZ′ . The following conclusions

are established:

1) If p
||SX || <

p′

||SX′ || , that is to say, the fault density of set

SX′ is greater than that of SX , the faults in SX′ will

“spread” to the area of SX easily. Then, the efficiency

of MayRanked formula R will be raised comparing with

that WellRanked formula R′. Otherwise, the MayRanked
formula R will be less efficient.

2) If q
||SZ || > q′

||SZ′ || , that is to say, the fault density

of set SZ′ is less than that of SZ , the set SZ′ will

“absorb” some faults from set SZ . Then, the efficiency

of MayRanked formula R will be raised comparing with

that WellRanked formula R′. Otherwise, the MayRanked
formula R will be less efficient comparing with R′.

When both S′X and S′Z is not null, the efficiency of

MayRanked formula Rwhich may rise or fallis determined by

comparing faulty density. With theorem 3, we deduced the

following three propositions.

PROPOSITION 2: For a “I-MayRanked formula” R, the two

conclusions are established under examine level α.

1) when α < ||SX∪SY −SZ′ ||
n , the efficiency of R is equiv-

alent to WellRanked formula.

2) when α ≥ ||SX∪SY −SZ′ ||
n , if the fault density of set

S′Z is lower than that of set SZ , then the efficiency

of R is raised comparing with WellRanked formulas.

Otherwise, the efficiency of R is decreased comparing

with WellRanked formulas.

PROPOSITION 3: For a “II-MayRanked formula” R, if

the fault density of set S′X is higher than that of set SX ,

then the efficiency of R, with arbitrarily examine level, is

raised comparing with WellRanked formulas. Otherwise, the

efficiency of R is decreased comparing with WellRanked
formulas.

PROPOSITION 4: For a “III-MayRanked formula” R, the

two conclusions are established under examine level α.

1) when α < ||SX∪SY −SZ′ ||
n , if the fault density of set S′X

is higher than that of set SX , then the efficiency of R is

raised comparing with WellRanked formulas. Otherwise,

the efficiency of R is decreased.

2) when α ≥ ||SX∪SY −SZ′ ||
n , if the fault density of set S′Z

is lower than that of set S′Z , then the efficiency of R is

raised comparing with WellRanked formulas. Otherwise,

the efficiency of R is decreased.

In summary, applying the analytical framework for multi-

fault localization scenario presented in this section, we can

analyze and compare the efficiency of risk evaluation formulas

according to the following steps: first, the risk evaluation for-

mulas are determined whether WellRanked type or MayRanked
type; second, the efficiency of these formulas are compared

applying theorem 2 or theorem 3 according to the type of the

formulas.

IV. CASE STUDIES

In this section, we will give a case study of analyzing these

formulas [1] based on our framework in Section III.

A. Analyzing WellRanked Formulas

First, we identified whether these formulas are WellRanked
based on the definition 6. Second, we analyzed the mono-

tonicity of these WellRanked formulas by considering the two

independent variables N i
CF and N i

CS . Finally, we obtained all

WellRanked formulas as shown in Table III, and these formulas

all belong to “M3” type in monotonicity as stated in Table II.

Taking the proof of formula Naish2 and HSS for example,

the corresponding proof processes are given as following. The

rest formulas can be proved in a similar way, and hence their

proofs are omitted.

PROPOSITION 5: Naish2 is a M3-WellRanked formula.

PROOF. (NA2 is an abbreviation for Naish2)

First, follow from the definition of Naish2 shown in Table

III and the metrics stated in Table I, for Naish2 (abbr. NA2),
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TABLE III
TYPES OF M3-WELLRANKED FORMULAS

Name Formula

Naish 2 NCF − NCS
NCS+NUS+1

Wong3

⎧⎨
⎩
NCF −NCS , NCS ≤ 2
NCF−1.80−0.1NCS , NCS ∈(2, 10 ]
NCF−2.79−0.001NCS , NCS ∈(10,∞)

Jaccard NCF
NCF+NUF+NCS

Anderberg NCF
NCF+2(NUF+NCS)

Sφrensen-Dice 2NCF
2NCF+NUF+NCS

Dice 2NCF
NCF+NUF+NCS

Goodman 2NCF−NUF−NCS
2NCF+NUF+NCS

Tarantula
NCF (s)

NF
/NCS(s)

NS
+ NCF (s)

NF

qe
NCF

NCF+NCS

CBI Inc. NCF
NCF+NCS

- NCF+NUF
NCF+NCS+NUF+NUS

Wong2 NCF −NCS

Hamann NCF+NUS−NUF−NCS
NCF+NCS+NUF+NUS

Simple Matching NCF+NUS
NCF+NCS+NUF+NUS

Sokal
2(NCF+NUS)

2(NCF+NUS)+NCS+NUF

Rogers & Tanimoto NCF+NUS
NCF+NUS+2(NCS+NUF )

Hamming etc. NCF +NUS

Euclid
√
NCF +NUS

Ochiai NCF√
(NCF+NUF )(NCF+NCS)

M2 NCF
NCF+NUS+2(NUF+NCS)

AMPLE2 NCF
NCF+NUF

− NCS
NCS+NUS

Arithmetic Mean 2NCFNUS−2NUFNCS
(NCF+NCS)(NUF+NUS)+(NCF+NUF )(NCS+NUS)

Cohen 2NCFNUS−2NUFNCS
(NCF+NCS)(NCS+NUS)+(NCF+NUF )(NUF+NUS)

Scott
4NCFNUS−4NUFNCS−(NUF−NCS)2

(2NCF+NUF+NCS)(2NUS+NUF+NCS)

we have⎧⎨
⎩

RNA2
X = NF

RNA2
Z = −NS/(NS + 1)

RNA2
Y = NCF −NCS/(NCS +NUS + 1) .

Since NF = NCF +NUF and the metrics NCF , NUF , NCS

and NUS are all greater than 0. Then we have NF > NCF ,

NCS/(NCS +NUS + 1) > 0, NCF > NCF −NCS/(NCS +
NUS + 1).

Thus, NF > NCF −NCS/(NCS +NUS +1). Immediately,

we have proved RNA2
X > RNA2

Y .

Similarly, we have −NS/(NS + 1) < −1, while NCF −
NCS/(NCS+NUS+1) > 0. Immediately, we also have proved

RNA2
Y > RNA2

Z .

Thus, Naish2 is satisfied with conditions RNA2
X > RNA2

Y >
RNA2

Z . After Definition 6, Naish2 is a WellRanked formula.

Second, after the formula Naish2, the suspiciousness in-

creases monotonically with increasing NCF and decreasing

NCS , then Naish2 belongs to ”M3” type as stated in Table II.

In summary, Naish2 is a M3-WellRanked formula.

PROPOSITION 6: HSS is a M3-WellRanked formula.

PROOF. (H is an abbreviation for HSS)

First, follow from the definition of HSS shown in Table III

and the metrics stated in Table I, for HSS, (abbr. H), we have⎧⎪⎨
⎪⎩

RH
X =

N2
F

N

RH
Z = 0

RH
Y =

N2
CF

N − NCF NCS

N2 .

(A). To prove that RH
X > RH

Y .

Since NF ≥ NCF , we have
N2

F

N ≥ N2
CF

N .

Furthermore, after the metrics of line 3 stated in Table I,

we have NCFNCS

N2 > 0

Then,
N2

F

N ≥ N2
CF

N >
N2

CF

N − NCFNCS

N2 .

Therefore, RH
X > RH

Y .

(B). To prove that RH
Y > RH

Z .

From line 3 in Table I, we have 1 ≤ NCF ≤ NF < N ,

and 1 ≤ NCS ≤ NF < N , NCF > 1 > NCS

N .

Then NCF > NCS

N established, multiplying each side

by NCF

N and rearranging the terms, we have
N2

CF

N >
NCFNCS

N2 .Then we have
N2

CF

N − NCFNCS

N2 > 0 .

Therefore, RH
Y > RH

Z .

Considering proof (A) and (B) that we know HSS is satisfied

with conditions RH
X > RH

Y > RH
Z . After Definition 6, HSS is

a WellRanked formula.

Second, We will analyze the Monotonicity of formula HSS.

For simplify, we use x, y to denote NCF , NCS , respectively.

and HSS can be represent as z(x, y) = x2

N − xy
N2 , N is the total

number of test cases which is a constant in fault locating.

(C). To prove that HSS increases monotonically with in-

creasing NCF , ( ∂z
∂x > 0 ).

Since ∂z
∂x = 2x

N − y
N2 . And after the metrics stated in Table I ,

we have x ≥ 1, 0 < y < N , then 2x > 1 > y
N .

Thus, 2x
N > y

N2 .

Therefore, ∂z
∂x > 0 .

(D). To prove that HSS increases monotonically with de-

creasing NCS , ( ∂z
∂y < 0 ).

Since ∂z
∂y = − x

N2 . And after the metrics stated in Table I ,

we have x > 0, N > 0 , then − x
N2 < 0 .

Therefore, ∂z
∂y < 0 .

Considering proof (C) and (D) that we know HSS increases

monotonically with increasing NCF and decreasing NCS , then

HSS belongs to ”M3” type as stated in Table II.

In summary, HSS is a M3-WellRanked formula.

B. Analyzing MayRanked Formulas

It follows from Definition 7, Definition 8, Definition 9 and

Definition 10 that the suspiciousness formulas can be classified

as shown in Table IV.

Next, we give the detailed proofs of the formula Wong1 for

example. The other two formulas can be proved in a similar

way as that of Wong1, and hence their proofs are omitted.

PROPOSITION 7: Wong1 is a II-MayRanked formula.

PROOF. (W1 is an abbreviation for Wong1)

First, follow from the definition of Wong1 shown in Table

IV and the metrics stated in Table I, for Wong1 (abbr. W1),
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TABLE IV
TYPES OF RISK EVALUATION FORMULAS

Type Name Formula

II Wong 1 NCF

II Russel&Rao
NCF

NCF +NUF +NCS +NUS

II Kulczyski2
1

2

( NCF

NCF +NUF
+

NCF

NCF +NCS

)

III Naish 1

{ −1 , if NCF < NF

NS −NCS , if NCF = NF

III Binary

{
0 , if NCF < NF

1 , if NCF = NF

we have⎧⎪⎨
⎪⎩

RW1
X = NF

RW1
Z = 0

RW1
Y = NCF .

It is satisfied with Definition 7. Thus, the formula Wong1
is a MayRanked formula.

Furthermore, since NF ≥ NCF > 0, then we have

SX′ = SY and SZ′ = ∅, that is to say RW1
X ≥ RW1

Y > RW1
Z .

Therefore Wong1 is II type.

In summary, Wong1 is a II-MayRanked formula.

Although the formulas include Wong1, Russel&Rao,

Naish1 and Binary in Table IV have been proved to be

maximal by Xie’s framework[1], they are classified to dif-

ferent type applied by our framework. Therefore, the maximal

formulas in single-fault locating scenario does not outstanding

necessarily in multi-fault locating scenario.

V. CONCLUSIONS AND FUTURE WORK

The motivation of this study was to better understand the

efficiency of SBFL formulas in real program debugging. To

this end, we first proposed a practical metric (L-Score) for

measurement for multi-fault locating efforts. Then, illuminated

by Xie’s work [1], we present a framework for multi-fault

locating based on which we have conducted a theoretical

analysis of a set of existing formulas. The result indicated

that the formula has relatively little effect on how well a fault

localization technique performs.

Our work is preliminary but the result is encouraging

and interesting. In the future, there will be some aspects to

improve and study. (1) more features should be introduced

into the designing of evaluation formula. (2) besides formula

designing, we also need to construct multi-cost model. (3) an

interesting work is to investigate the characteristics of real

faults. (4) we still should take into account the effort of patch

generation. That is to say, the bug fixing effort should be

considered when building fault locating models.
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