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Abstract—Automated fault localization aims to reduce software

maintenance’s workload during software development’s evolu-

tion. Applying different features extracted from bug reports and

source files can help locate faults. However, these approaches

consider programming languages as natural when measuring

similarity features, considering only precise term matching and

ignoring deep semantic similarity features. Furthermore, existing

bug localization approaches need to utilize the structural infor-

mation extracted from source files, where program languages

have unique structural features compared to natural languages.

In this paper, we proposed SemirFL, a model combining both

Convolutional Neural Network(CNN) and revised Vector Space

Model(rVSM), which is feeded with four metadata features

(bug-fixing recency, bug-fixing frequency, collaborative filtering

score, and class name similarity). SemirFL has been studied on

four open-source projects. The experimental results show that

SemirFL can significantly outperform the existing representative

techniques in locating faults in the buggy source files.

Keywords—Fault localization; Deep Learning; Information re-
trieval; Convolutional neural network

I. INTRODUCTION
Fault localization plays a vital role in ensuring the quality of

software. Existing software fault localization methods can be
divided into two categories: the first category is the dynamic
program analysis-based fault localization method which fo-
cuses on the program’s semantics and execution. This category
analyzes the program’s inner structure through the execution
of test cases to determine the possible position of the defective
statement in the program [1][2][3][4]. The second category is
a static location method based on Information Retrieval(IR),
this method treats a bug report as a query, then calculates the
similarity between the query and all the source code files,
and sorts the source code file according to the calculated
similarity from largest to smallest, which places emphasis on
the textual content found between bug reports and software
modules rather than the semantics of the source code for
locating faults.

Existing techniques are only suitable for dealing with simple
scenarios where there is a direct text term match between the
bug report and the source file [5]. However, most of the bug re-
ports and source files have almost no similarity between them,
which leads to the problem of vocabulary mismatch issue [6].
To bridge the lexical gap, Ye et al. proposed Learning-to-Rank,
which additionally incorporates features from source files, API
descriptions, bug-fixing, and bug repair history, in addition to
the content of the bug report [7]. Although Learning-to-Rank
has been shown effective in fault localization, the information

may not be fully utilized because these information retrieval
methods can not automatically extract powerful features [8].
Therefore, we need fault localization methods that can cap-
ture deep semantic information that goes beyond exact term
matching.

With the emergence of various algorithms in the field of
deep learning, many deep learning models have been intro-
duced to fault location for their excellent ability to extract and
represent high-dimensional features. However, these existing
representation learning algorithms in deep learning cannot
fully exploit hierarchies because they treat programming lan-
guage and natural language equally. Although lexical features
are considered, they ignore the structural information behind
the programming language. Natural language has a “flat”
form, i.e., swapping the order of upper and lower sentences
does not change the semantic information of the sentence,
whereas programming language organizes its statements in a
“structured” way [9], where the function semantics will be
changed by the statement order (e.g., if-then-else).

In this study, we propose SemirFL, a model combining
CNN, and advanced information retrieval technique including
rVSM [10] and integrate another four kinds of features us-
ing domain knowledge, called metadata features (bug fixing
recency, bug fixing frequency, collaborative filtering score,
class name similarity), extracted from bug reports, source
codes, and bug-fixing history [7]. We use the rVSM model
to measure textual similarity to match bug reports with the
associated buggy files. We hope that CNN can automatically
mine semantic information common to program language and
natural language, which can help compensate for the lack of
simple lexical matching. In addition, metadata features are
used to further bridge the lexical gap between the content of
bug reports and source files.

To evaluate the effectiveness of our proposed method,
we also conduct empirical evaluations on four open-source
software projects. The experimental results showed that our
SemirFL can outperform the existing representative fault lo-
calization techniques. Our Empirical study revealed that CNN
and rVSM similarity features and metadata features could
complement well for fault localization.

The main contributions of our study can be summarized as
follow:

• Proposed a fault localization technique called SemirFL,
combining CNN and rVSM similarity features and meta-
data extracted from information retrieval methods.
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• Conducted an empirical study on four widely used
projects, and the experiment results indicate that the
proposed SemirFL can outperform the other three fault
localization approaches.

II. BACKGROUND

A. IR-Based Fault Localization

Information Retrieval (IR) Based Fault Localization is a
fault localization technique based on information retrieval to
extract information from software documents and program
activities [11]. In IR-based fault localization, bug reports
are crucial. The bug report includes a text description and
non-textual information (source snippets). At the same time,
the summary section, which often provides many location
cues, briefly explains the abnormal behaviour of the examined
software.

Fault location matches source code files expressed in pro-
gram language with bug reports written in natural language.
It can be equated to an Information Retrieval (IR) task where
documents (source files) are sorted according to their relevance
to a query (bug report). Usually, the relevance can be measured
in both direct and indirect ways. The direct way is to measure
relevancy by calculating the textual similarity between bug
reports and program elements. Indirect ways usually contain
obtaining the bug fixing frequency class name similarity and
other features according to the project metadata; gaining addi-
tional knowledge by learning API documentation and project
documentation. Some researchers calculate semantic similarity
by extracting semantic features of text from the perspective of
semantics. This kind of method mainly constructs multi-layer
neural networks. The features are extracted and calculated by
deep learning.

The direct way of using textual similarity is only helpful if
the bug report contains hint information for localization (i.e.,
a class name or identifier name in the corresponding source
files). For those bug reports that that lack hint information,
term matching that only stays at a superficial level is incapable
of handling it. Therefore, both the textual similarity and the
deep semantic information are considered in our approach to
locating the buggy source files.

B. Word Embedding

The raw textual data should be encoded to word embedding
vectors firstly for feeding it deep learning models for feature
extraction. Word embedding aims to map each word to a
dense vector in a low-dimensional space where the embedding
vector representations of similar words are also close to
each other [12]. Researchers have proposed various word
embedding models for natural language processing, including
word2vec, which relies on CBOW or Skip-gram to build
neural word embedding [13]. The CBOW model predicts the
centre word from its surrounding words, whereas the Skip-
gram model predicts the surrounding words of a given centre
word.

C. Convolutional neural network

Convolutional neural networks (CNN) are based on multi-
layer perceptrons and biological processes. It was initially
widely used in the field of computer vision [14]. The CNN
network consists of three main layers: convolutional layer,
pooling layer, and then followed by a fully connected layer.
A convolutional layer applies different sizes of filter slides on
the input for convolution operation. A pooling layer combines
the outputs of neuron clusters at one layer into a single neuron
in the next layer. The Rectified Linear Units (ReLU) function
increases the network’s nonlinear properties.

In order to extract structural information from pro-
grams, Mou et al. suggested a tree-based CNN and employed
an unsupervised method to learn vector representations of
programs [15]. Yoon Kim et al. proposed a text classification
model with some changes to the input layer of the CNN by
setting the size of the second dimension of the convolutional
kernel to be the same as the word embedding layer, which
is equivalent to extracting the N-Gram features during slid-
ing [16].

Similar to the convolution characteristics of Zhang et al.’s
work, we propose a semantic extraction model similar to a
pseudo-siamese network structure, and we will describe it in
detail in the III-B section.

III. APPROACH
This section describes our approach, a fault localization

method that combines the CNN model and information re-
trieval. It can capture both the structural information of the
programming language and the rich semantic information of
bug reports written in natural language, and automatically
locate buggy files based on bug reports to improve the
performance of fault localization. As shown in Figure 1,
our approach consists of two main parts. The first part is a
semantic feature extractor based on deep learning models, and
the second is a feature extractor based on information retrieval
methods. The details of SemirFL are discussed in the following
subsections.

A. Pre-Processing

The bug reports and source files represented in textual data
form must first be pre-processed to take the data represented
in textual content as input for the following phrases. The pre-
processing operation includes the following four steps: 1).
Tokenizing. Use a tokenizer to convert the text into a sequence
of tokens; remove punctuation; 2). Filtering. Filter stop words
in source files (e.g. “int, public” etc.), and stop words in
bug reports (e.g. “a” “the” etc.). This is because stop words
occur in large numbers and do not provide unique information;
3). Stemming. Each word is reduced to its stem form(e.g.,
“stemming”, “stemmed” share the same root “stem”); 4).
Splitting. Split compound words into multiple tokens accord-
ing to CamelCase naming rules (e.g. “myStudentCount” can
be split into “my”, “student”, and “count”). The vocabulary in
the bug reports and source files constitute the entire project’s
corpus after the pre-processing phase.
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Figure 1. The framework of our approach

B. DL based feature extraction

All words after preprocessing also need to be converted into
embedding vectors by the word2vec model before they can be
fed into the CNN model. Specifically, we iterate through all
the tokens that appear in the bug reports and source files,
then eliminate the less frequent tokens and build a corpus for
the remaining tokens. Secondly, each word in the bug reports
and source files goes to the corpus to find the corresponding
position id. Finally, the k-dimensional vector representation of
each token is retrieved from the pre-trained word2vec model
based on the position id. For tokens that do not appear in the
corpus, we randomly initialize them as a k-dimensional vector.

The basic unit that can convey semantic information for
natural languages is a word or term. In contrast, in program-
ming languages, statements are the basic unit that can convey
semantic information, and the semantics of the programming
language must be inferred from the semantics of multiple
statements and the interactions of these statements along
their execution paths. [9]. Therefore, separate CNN feature
extractors are designed for programming and natural language.

We extract features from bug reports in accordance to Zhang
et al. and only use one layer of convolution, with convolu-
tional kernels of different sizes, to capture lexical semantic
features [16]. For program languages, extracting features only
at the lexical granularity will lose the semantic and structural
information conveyed between statements of the programming
language. Based on this judgment, the CNN feature extractor
for program languages uses a two-layer convolutional opera-
tion. The convolutional network’s first layer extracts the inter-

lexical features. The semantic differences between various
sentences are captured by the second layer of the convolutional
network employing convolutional kernels of various sizes.

An example of a convolution operation on source files
is used to detail the specific steps since it contains one
convolution operation on bug reports. The word2vec model
first represents the source code files as an embedding matrix
of size n⇥l⇥d, where n is the maximum number of sentences
in the source files, and l is the maximum number of words in
the sentence. The first layer of convolution uses a convolution
kernel of size h⇥ d to convolve the input embedding matrix,
where h is the number of words covered by the convolution
kernel at one time and d is consistent with the dimension
of the embedding vector. m feature mappings are applied to
each size of the convolution kernel to obtain different types
of information. After the first convolution operation, the input
dimension is transformed from n⇥ l⇥d to n⇥(l�h+1)⇥m,
followed by a maximum pooling operation to extract the
essential information from all words in the source file. The
output dimension of the feature map is transformed to n⇥m,
with each line in the feature map representing a line of the
program statement. The size of the convolution kernel for the
second layer of convolution is h⇥m, where h is the number of
statements covered by the convolution kernel at one time, and
by varying the size of h, the structural information between
different numbers of statements can be captured at one time.

Finally, the feature maps extracted from the bug reports
and source files are concatenated and fed into the feature
fusion layer constructed from the fully connected layer to learn
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feature fusion and dimension reduction.

C. IR-based features extraction

The second part of SemirFL combines traditional features
based on information retrieval. This section extracts these
features from bug reports, source files, and bug-fixing history.
For each bug report b 2 BR, each source file s 2 SF , where
BR is the set of bug reports, SF is the set of source files. We
represent it pairwise as (b, s) and then extract textual similarity
and four other metadata features separately for each pair of
(b, s). The extraction processes are the same as [7][17].

1) Textual similarity feature: The source file corresponding
to the bug reports will share some words. Therefore, textual
similarity features can help fault localization to some extent.

Firstly, both bug reports and source files are represented
as lexical weight vectors ~Vb and ~Vs separately using the TF-
IDF method. Then we use the formula (1) to calculate the
cosine score between the corresponding vector representations
of (b, s) as the text similarity.

cos(b, s) =

�!
Vb •

�!
Vs���

�!
Vb

���
���
�!
Vs

���
(1)

Since source file bugs usually exist only in a code fragment,
the faulty code section is much smaller than an entire source
code file. Moreover, the longer the file length, the role provided
by the key terms normalized for fault localization in the
documentation is continuously diluted [10]. Therefore, it is
important to consider the size of the source file, and the factor
of file length should be introduced into the formula constructed
as follows:

Similarity(b, s) = g (nt)⇥ cos(b, s)

=
1

1 + eh(nt)
⇥

�!
Vb •

�!
Vs���

�!
Vb

���
���
�!
Vs

���
(2)

In the formula, nt indicates the number of all different tokens
that appear in the source file s, and g (nt) calculates the
reciprocal of the length of the source file, g (nt) ensures that
larger documents receive a higher relevance score, and h (·)
denotes the Min-Max normalization operation [18].

2) Metadata features: Bug Fixing Recency(BFR): New
bugs may be introduced in the process of fixing bugs in the
source files [19]. Therefore, it is more likely that the recently
fixed files still contain errors. Assuming that bug report b0 is
fixed in file s and is the most recent bug report fixed before
bug report b was created, for each bug report b 2 BR, the
time of the creation of that bug report is denoted by b.time.
We then define the bug-fixing recency feature of the fixed bug
as the reciprocal of the time distance between b and b0.

For a pair of bug report b and source file s, the bug fixing
frequency score can be defined as:

BFR =
1

b.time� b0.time+ 1
(3)

However, considering the work of Ye et al. using the
difference between months as time difference, presents several
problems: 1) in the same month of the bug report in accordance
with (3) calculated by the result is 0. 2) for the difference in
the same number of days and less than a month, but a cross-
month calculated by the result is 0.5, another pair in the same
month calculated by the result is 0. Therefore we consider the
time dimension from months to days.

Collaborative Filtering Score (CFS): Originally used for
recommender systems, and Murphy-Hill et al.’s work has
shown that applying it to fault localization can also bring
performance improvements [20], as previously fixed files may
cause similar bugs, many keywords are shared in bug reports
corresponding to similar bug issues. Consider a bug report
b and a source file s, and use br(b, s) to denote the set of
historical bug reports associated with the repaired source file
s prior to the creation of the bug report b. The collaborative
filtering score can be defined as:

CFS(b, s) = sim(b, br(b, s)) (4)

where sim denotes the text similarity between the content
of the current bug report b and the summaries of all bug reports
in br(b, s) using the rVSM method.

Bug Fixing Frequency (BFF): Source files that require
frequent repair may involve many modules that are inherently
fault-prone, and are likely to still contain bugs. We count the
numbers in which s was fixed prior to the creation of b, and
define the bug fixing frequency feature as equation (5):

BFF = |br(b, s)| (5)

Class Name Similarity(CNS): When a class name that
implements a class is specifically mentioned in a bug report,
there is a strong likelihood that the source file that implements
the class indeed corresponds to the bug report. This likelihood
increases as the class name get longer and more precise. To
acquire CNS features, we compute CNS features as (6) by
determining if the names of each class in the source file are
also present in the bug report:

CNS =

⇢
| s.ClassName | if s.ClassName 2 b

0 else (6)

where s.ClassName indicates the class name that appears
in b and |s.ClassName| indicates the length of that class
name.

D. Predict relevancy scores

The semantic features extracted by deep learning above are
fused with the text similarity features and the four metadata
features together for feature fusion through a fully connected
layer. We hope that the text similarity features and the semantic
features extracted by CNN can complement each other very
well when connecting the same and different terms. In con-
trast, the metadata features can further bridge the lexical gap
between the bug report content and the source files. Eventually,
the fault localization problem is transformed into learning a
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prediction function F : BR⇥ SF 7! Y . yij 2 Y = {1,�1}
denotes whether a source code file sj 2 SF is associated
with a bug report bi 2 BR. The optimization function in (8)
is minimized to train the prediction function.

f(r, s) = Softmax

 
kX

i=1

wi ⇤ 'i(r, s) + bi

!
(7)

min
f

X

i,j

L (f (ri, sj) , yij) + �⌦(f) (8)

The correlation score is first obtained by weighting the
extracted k features (k = 1, 2, 3), where '(r, s) represents
the feature between the measured bug report and the current
source file. Then the predicted value is mapped to the 0-1
interval through a layer of softmax function. The higher the
relevance score, the higher the probability that the source file
points to the bug report. The L cross-entropy loss function is
then used to calculate the loss between the predicted outcome
and the true label for a single data pair.

IV. EMPIRICAL EVALUATION

We used the model to five open-source software projects
and contrasted it with three standard representative fault lo-
calisation techniques in order to assess the efficacy of the
proposed method. We also want to explore the following
research questions:

RQ1: How much of a performance improvement
SemirFL has compared to existing fault localization methods?

The SemirFL is compared with the most representative of
the following several fault localization methods experimentally
to evaluate its performance.

• NP-CNN[9]: Uses lexical and program structural knowl-
edge to learn unified fault localization features.

• Learning to Rank[7]: Introduces a functional segmenta-
tion of source code files into methods, API descriptions,
the bug-fixing history, and the history of code changes
that leverages domain knowledge to create an adaptive
ranking methodology.

• BugLocator[10]: Uses rVSM and takes into account data
from earlier bug-fixing history.

RQ2: What is the contribution of each of the three features,
semantic features, textual similarity features, and metadata
features, in the overall performance of SemirFL?

A. Dataset

For comparison, four open-source projects are selected from
the dataset provided in [7] (Eclipse Platform UI1, SWT2,
Tomcat3, and AspectJ4). These projects all use GIT as their
version control system and Bugzilla as their issue tracking
system, both of which have been widely used in prior research.
Table I describes these datasets in detail.

1http://projects.eclipse.org/projects/eclipse.platform.ui
2http://www.eclipse.org/swt/
3http://tomcat.apache.org
4http://eclipse.org/aspectj/

TABLE I
Benchmark Datasets

Project Time Range #Bug Reports #Java Files

Eclipse 10/01-01/14 6,495 3,454
AspectJ 03/02-01/14 593 4,439
Tomcat 07/02-01/14 1,056 1,552
SWT 02/02-01/14 4,151 2,056

B. Evaluation Metrics

We utilize three measures to assess the performance of the
SemirFL: Accuracy@k, Mean Average Precision (MAP), and
Mean Reciprocal Rank (MRR)

• Accuracy@k: If there is at least one buggy file associated
with the current bug report in the returned top-k list, we
consider the bug to have been located for the given bug
report.

• MAP: A standard metric widely used in information
retrieval, defined as the mean of the average precision
(AvgP ) scores of all bug report queries.

MAP =

|Q|X

q=1

AvgP (q)

|Q| (9)

when a query may have several documents that are
relevant. A single query’s average precision is equal to
the mean of the precision values it returned.

AvgP =
X

k2K

Prec@k

|K| (10)

where Prec@k is defined as the ratio of the number of
actual buggy files in top-k over k. The higher the MAP
value, the better the performance of the method.

• MRR: The rank of the first relevant document in the
ranked list is the inverse of the reciprocal rank of a query.
The average of the reciprocal ranks of the results to a set
of queries Q is the mean reciprocal rank.

MRR =
1

|Q|

|Q|X

q=1

1

firstq
(11)

where firstq indicates for each query q, the position of
the first relevant document in the ranked list.

V. RESULT ANALYSIS

A. Answer to RQ1

To evaluate the effectiveness of SemirFL, we compared it
with three state-of-the-art fault localization techniques. Their
performance on the four projects is shown in Table II III. We
can observe that the scores of Accuracy@1, MAP, MRR are
0.417 to 0.572, 0.461 to 0.572, 0.501 to 0.623, respectively.

The reason that SemirFL is better than BugLocator is be-
cause SemirFL uses a CNN model to learn the deep semantic
connections between bug reports and source files beyond
simple word matching. In contrast to BugLocator, CNN model
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TABLE II
Accuracy comparison with baseline methods

Project Method Accuracy@1 Accuracy@5 Accuracy@10

Eclipse

BL 0.271 0.538 0.616
LR 0.397 0.654 0.743
NPCNN 0.370 0.610 0.692
SemirFL 0.442 0.675 0.820

AspectJ

BL 0.216 0.473 0.571
LR 0.374 0.523 0.637
NPCNN 0.475 0.547 0.615
SemirFL 0.510 0.624 0.704

Tomcat

BL 0.354 0.515 0.709
LR 0.419 0.597 0.717
NPCNN 0.455 0.620 0.792
SemirFL 0.572 0.674 0.852

SWT

BL 0.246 0.408 0.533
LR 0.313 0.524 0.629
NPCNN 0.365 0.612 0.810
SemirFL 0.417 0.675 0.855

TABLE III
MAP and MRR comparison with baseline methods

Project Method MAP MRR

Eclipse

BL 0.310 0.540
LR 0.444 0.511
NPCNN 0.471 0.547
SemirFL 0.522 0.623

AspectJ

BL 0.216 0.369
LR 0.414 0.440
NPCNN 0.475 0.531
SemirFL 0.572 0.603

Tomcat

BL 0.354 0.485
LR 0.425 0.523
NPCNN 0.455 0.597
SemirFL 0.580 0.622

SWT

BL 0.246 0.325
LR 0.354 0.460
NPCNN 0.365 0.475
SemirFL 0.461 0.501

can extract local abstract features to fill in the lexical gaps
between bug reports and source files.

Compared with Learning to Rank (LR), SemirFL achieves
the best performance on all items. Although LR also uses
metadata features mined from domain knowledge to locate
bugs, LR cannot learn content associations using only meta-
data features and does not take into account structural infor-
mation of the programming language.

SemirFL obtained higher accuracy than NPCNN on all
items and improved by 7% to 25% on Accuracy@1, 10% to
27% on MAP, and 13% to 20% on MRR. Although NPCNN
considers the particular characteristics of program languages
compared with natural languages, NPCNN ignores the comple-
mentary role of textual similarity features. Moreover, learning
the fusion relationship between the deep semantic informa-
tion, text similarity, and metadata features enrich the features
extracted from the CNN model.

B. Answer to RQ2

So far, We have used SemirFL, which contains features in all
three dimensions (including semantic feature, textual similarity

feature, and metadata features), for comparison with represen-
tative baseline approaches. However, it is unclear whether all
three feature dimensions are necessary for the technique. As a
result, we further explore each feature dimension’s significance
for SemirFL by removing it from the complete feature sets.

The experimental dataset is set the same as the experiment
of RQ1 (i.e., 80% for training and 20% for testing) for each of
the four open source projects, and then calculate the average
of the Accuracy@1, MAP, and MRR. The comparison results
are reported in Table IV in three different settings (SemirFL-
sem, SemirFL-rVSM, SemirFL-meta denote the removal of
semantic features, textual similarity feature, and metadata
features, respectively).

TABLE IV
Impacts of different dimensions of features

Project Method Accuracy@1 MAP MRR

Eclipse

SemirFL 0.442 0.522 0.623
SemirFL-sem 0.327 0.257 0.347
SemirFL-rVSM 0.363 0.460 0.537
SemirFL-meta 0.407 0.412 0.470

AspectJ

SemirFL 0.510 0.572 0.603
SemirFL-sem 0.475 0.528 0.530
SemirFL-rVSM 0.314 0.377 0.442
SemirFL-meta 0.470 0.501 0.511

Tomcat

SemirFL 0.572 0.580 0.622
SemirFL-sem 0.337 0.411 0.497
SemirFL-rVSM 0.412 0.493 0.556
SemirFL-meta 0.499 0.532 0.563

SWT

SemirFL 0.417 0.461 0.501
SemirFL-sem 0.258 0.263 0.370
SemirFL-rVSM 0.378 0.346 0.417
SemirFL-meta 0.341 0.420 0.474

The experimental results are shown in the table IV, and the
results show that: (1) as anticipated, using all three dimensions
of features will result in the best performance and can have
positive effects on fault localization; (2) With the exception of
AspectJ, the outcome when the semantic feature is removed is
the worst of the four projects, demonstrating the importance of
semantic information for SemirFL. The possible reason why
semantic features do not play a significant role in AspectJ is
that the number of bug reports in AspectJ is much smaller
than the other three project datasets, which results in SemirFL
failing to learn enough semantic information. (3) Removing
metadata features achieves better results than removing text
similarity features, indicating that textual similarity features
can be better fused with deep semantic features.

VI. RELATED WORK

Information Retrieval Based Fault Location (IRFL) tech-
niques are a major branch of research in fault location. The
use of vector space models (VSM) in information retrieval
methods is often seen as a simple and effective model. Gay
et al. employed VSM to quantify the similarity between bug
reports and source files [21]. Zhou et al. propose BugLoca-
tor [10] to compute the similarity of the bug report with the
rVSM model which considers the document length factor and
the similarity between fixed bug reports. Gore et al. proposed
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a hybrid detection model by combining the N-Gram model
with the VSM [22].

The LDA model has also been applied to the field of IRBL
in early research. Lukins et al. proposed a Latent Dirichlet
Allocation(LDA)-based technique that viewed bug reports as
a combination of different subjects that spit out words with
specific probability [23]. Robinson et al. proposed BugScout,
a new method based on the LDA topic model, which signif-
icantly improved the effect of fault localization [24]. Wang
et al. used the LDA model in their method STMLocator.
It exploited the performance of the LDA model by using
the historical information of the code base for supervised
learning [25].

To obtain higher quality query representation, Zhang et al.
developed the query expansion technique to incorporate more
semantic information into the vectors of bug reports [26]. From
a different angle, Chaparro et al.’s attempts to improve bug
vectors by removing unnecessary or noisy content from bug
reports [27].

Zhang et al. proposed query extension methods to add addi-
tional semantic information to the vector representation of bug
reports to produce higher-quality query representations [26].
Based on the work of Chaparro et al. the query vector repre-
sentation is enhanced from a different perspective by reducing
redundant or distracting information in bug reports [27].

Spectrum-based fault localization is another widely used
technique in locating faults. Furthermore, more information
is introduced in this techniques [1][28]. For example, Ju et al.
proposed HSFal, a Hybrid Spectrum-based fault localization,
to improve the efficiency of locating faults [29], In terms of
test cases, Landsberg et al. started to improve them to cover
more runtime behaviors [30].

Deep learning-based bug localization methods are better
suited for automatically extracting deep semantic information.
Huo et al. proposes a unified framework based on the sequen-
tial nature of program structure and source code that combines
LSTM and CNN models [31]. Lam et al. proposed DNNLOC,
which combines a DNN with the rVSM to be effective across
different types of similarity [17]. Liang et al. proposed CAST,
which combines a tree-based convolutional neural network
with customized ASTs [32].

Inspired by the above work, we propose SemirFL, which
combines Deep Learning and Information Retrieval methods.
Bug reports and source files are processed in different granu-
larity units instead of taking source files as pure text as bug
reports. It uses the rVSM model to measure textual similarity.
It incorporates metadata features extracted through domain
knowledge (bug-fixing recency, frequency, collaborative filter-
ing scores, class name similarity) to connect bug reports with
the related buggy files.

VII. CONCLUSION

This paper proposes SemirFL for fault localization, combin-
ing deep learning and information retrieval techniques, includ-
ing rVSM and four other features using domain knowledge.
Different CNN feature extractors are designed separately for

natural and program languages to capture the deep semantic
information of the programming language. The semantic fea-
ture can link bug reports and relevant buggy files that are not
textually similar. The metadata feature can further close the
lexical gap between bug reports and source files. The semantic
features extracted from DL and IR methods can complement
each other to achieve higher fault localization accuracy than
individual models, according to experimental results on widely
used software projects.

In the future, we will explore using large pre-trained models
such as BERT to generate word embedding vectors containing
contextual semantic information. In order to more accurately
represent the high-level semantics of the source code, We
will also explore dynamic information such as data flow and
control flow in the program from the perspective of dynamic
execution.
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