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Abstract—Fault localization techniques have been developed
for decades. Spectrum Based Fault Localization (SBFL) is a
popular strategy in this research topic. However, SBFL is well
known for low accuracy, mainly due to simply using a coverage
matrix of program executions. In this paper, we propose a method
based on graph neural network (AGFL), characterized by the
adjacent matrix of the abstract syntax tree and the word vector
of each program token. Referring to the Dstar, we calculate
the suspiciousness of the statements and rank these statements.
The experiment carried on Defects4J, a widely used benchmark,
reveals that AGFL can locate 178 of the 262 studied bugs within
Top-1, while state-of-the-art techniques at most locate 148 within
Top-1. We also investigate the impacts of hyper-parameters (e.g.,
epoch and learning rate). The results show that AGFL has the
best effect when the epoch is 100 and the learning rate is 0.0001.
This value of epoch and learning rate increases by 66% compared
to the worst on Top-1.

I. INTRODUCTION

Program debugging is one of the essential but exhausting

tasks in software development due to the necessary manual

activities [1] [2]. In this process, fault localization is the act of

identifying the location of faults [3]. Developers often use the

experience to determine where these faults are likely to occur,

usually by examining statement outputs, inserting breakpoints,

and analyzing the results of each test, which follows in an

inverse ratio of cost and efficiency.

More and more fault localization approaches that can ac-

curately locate the fault in a specific program were proposed

in the past decades [4]. Among these approaches, spectrum-

based fault localization(SBFL) is the most widely studied

due to its simplifier and intuitive understanding. SBFL counts

the coverages of a statement test case that has failed or

succeeded. Then, the suspiciousness of each program entity

was calculated according to the corresponding risk evaluation

formula ( e.g., Tarantula [5], Ochiai [6], DStar [7], Jaccard [8],

Kulczynski2 [9]). Furthermore, there is also mutation-based

fault localization(MBFL), which mutates the source code,

obtains the actual influence of the code on the results according

to the execution results of test cases, and uses the formula to

realize fault localization. ( e.g., FIFL [10], Metallaxis [11],

and MUSE [12]). Both methods take the execution results of

statements into account when calculating the suspiciousness

of each program entity, but in some cases, the results are not

very satisfying. At the same time, an obvious problem with

MBFL is that it is expensive to execute, i.e., sacrificing cost

for accuracy.

Recently, many programmers have begun to use deep learn-

ing techniques to solve problems in software engineering with

the rapid development of deep learning [13]. For example,

Liu et al. [14] proposed a back-trace approach of mining

non-crashing bugs using behavior graph mining and support

vector machine (SVM). Wong et al. [15] propose a RBF

neural network-based fault localization technique to assist

programmers in locating bugs effectively. Li et al. [16] used

the image classification and pattern recognition capability of

convolutional neural network (CNN) and applied it to the code

coverage matrix [17]. The convolution of CNN uses the kernel

to carry out the weighted summation of the central pixel and

the set adjacent pixels to form a feature map and realize

the extraction of image features. However, CNN applies to

image data in Euclidean space, but not in non-Euclidean space

structure, which has limitations. Graph convolutional neural

networks (GCN) apply to any topology and do not require a

fixed number of nodes. GCN can learn both the characteristics

of nodes and the association information between nodes.

We proposed a fault localization method based on graph

convolutional neural network (AGFL) to address the above

issues, enabling us to extract node features in structural

diagrams to realize fault localization. According to the source

code, to get the structure information, i.e., AST, then traversed

the node and through the word2vec [18], get the word vec-

tor representation of each node as the node feature. AGFL

combines AST structure information and node features to

extract features from nodes in the abstract syntax tree and

then realizes node classification. We also applied Attention

and GCN technologies based on the PyTorch framework. To

evaluate our proposed approach, we conducted a fault study

on Defects4J. This paper contributes as follows:

• AGFL: A fault localization method based on graph

convolutional neural network to predict potential faulty

locations via source code information.

• Techniques: Attention mechanism is applied based on

graph convolutional neural network to improve the

model’s accuracy.

• Empirical Study: We empirically evaluate AGFL using

262 real-world faults from Defects4J. AGFL can find 178
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faults at the Top-1.

The rest of this paper is organized as follows. Section II

describes the background of this research topic. Section III

presents the proposed model with detailed description. Section

IV describes the design of research questions and experimental

methods, evaluation metrics. In Section V, we used the De-

fects4J dataset to evaluate the performance of AGFL, including

result analysis and result comparison. Section VI discussed the

threats to the validity of our work. Section VII discussed the

related work. Finally, We summarized the paper in the last

section.

II. BACKGROUND

A. Abstract Syntax Tree

Abstract syntax tree (AST), which presents the syntax

structure of a programming language in the form of a tree, can

abstract the syntax information of the source code. Compared

to the parse tree, AST is an abstract tree of source code

syntax [19]. Because the parse tree contains all the syntax

information of the source code, it is a direct translation of the

code. The abstract syntax tree ignores some syntax information

contained in the parse tree. At the same time, AST also

leaves out some unimportant details. For example, parentheses

are hidden in a tree’s structure and are not represented as

nodes. Conditional jump statements, such as the if-then-else

statement, are typically represented by nodes with branches.

The AST divides the source code into several modules so

that the source code structure is clear at a glance, which is

conducive to the analysis of the source code. At present, some

researchers have applied AST to fault repair [20], code search

[21], source code semantic representation [22].

In this paper, we applied the Javalang1, a third-party open-

source library designed by Python language, to analyze the

Java source code. Javalang is a pure Python library that

provides a Java-oriented lexical analyzer and parser. Using

Javalang, the AST node can be divided into several types of

nodes. It is using the while loop to achieve 1 to 100, where

While Statement belongs to the control flow node, Modifier

for the declaration node as shown in the figure1. Compared

with source code, AST has nodes that do not exist in source

code, e.g., Literal and MemberReference, as shown in figure

1. To avoid the influence of the graph structure, we cannot

discard this type of node and need to mark its location in

the source code with the attributes of its child node. Thus, all

nodes in the AST can find their corresponding positions in the

source code. When the node is classified as faulty, the location

of the fault statement can be directly obtained.

B. Graph Convolutional Neural Network

In 2017, Kipf et al. [23] first proposed a graph convolutional

neural network (GCN). GCN combines the characteristics of

graph neural networks and convolutional neural networks.

Additionally, it extends the convolutional neural network,

1https://github.com/c2nes/javalang

which is only suitable for Euclidean space, to graphs in non-

Euclidean space. GCN is a semi-supervised model that can

deal with graph structure. It uses node attributes and node

labels to train the model end-to-end. Its essential purpose

is to extract the spatial features of topology. As for CNN,

which can also extract features from images, it can only

process data in Euclidean space, i.e., the data structure should

be regular. However, not all pictures are regular; many of

them are irregular graph structures or topology structures. In

contrast, GCN produces a broader range of applications, which

should lead to the advancement of GCN in many applications,

e.g., image classification, document classification, and unsu-

pervised learning.

Convolution modes in GCN include spectrum and spatial

domain convolution [24]. Spectrum convolution uses the the-

ory of the graph to realize the convolution operation on the

topology. The spatial convolution acts on the node’s neighbor-

hood, and the node’s feature representation is obtained through

the aggregation of the node’s neighbor.

GCN model is composed of the input layer, hidden layer,

and output layer. In the input layer, we take the feature

vector and adjacency matrix of the graph as inputs. Then,

through multi-layer graph convolution and other operations

and activation functions, the representation of each node can

be obtained, facilitating node classification. Each hidden layer

corresponds to a feature vector, and each row in the matrix

is the characteristic representation of a node. After each

hidden layer, GCN will aggregate information according to

propagation rules to form features of the next layer. The

propagation rule of each convolution layer in the hidden layer

is defined with equation (1).

H(l+1) = σ(D
−1
2 ÃD

−1
2 H(l)W (l)) (1)

where Ã = A+ IN is an adjacent matrix with self-connection

structures, IN is an identity matrix; D is a degree matrix of

Ã, i.e., D =
∑

j Ãij ; H l is the matrix of activation in the l

layer. In the first hidden layer, H0 = X; W (l) is the weight

matrix from the hidden layer to the output layer. D
−1
2 ÃD

−1
2

is the normalized adjacency matrix, H(l)W (l) can be seen that

the embedding of all nodes in l layer goes through a linear

transformation and then multiplies left with the adjacency

matrix. For each node, the feature representation of the node

is the result of adding features of the neighboring nodes.

GCN captures spatial correlations by determining topolog-

ical relationships between nodes and encoding node features.

In addition, the input nodes of GCN are variable, and the

number of input nodes does not need to be fixed. Therefore,

GCN has broad applicability and can be used for nodes and

graphs of any topology structure. We use GCN to obtain

characteristic information of source code, classify nodes, and

then find wrong statements according to faulty nodes.

C. Attention Model

Bahdanau et al. [25] was the first to use an attention mech-

anism in machine translation. Then the neural network based
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Fig. 1. Motivation code with its abstract syntax tree (AST).

on attention mechanism became a hot spot in neural network

research. Existing attention mechanisms can be classified into

soft attention, hard attention [25], Local attention [26] and

self-attention [27]. We use the Soft Attention model to learn

the importance of each node’s features so that each node can

be classified based on a word vector of overall trends.

ei = W (1)(W (0)H + b(0)) + b(1) (2)

αi =
exp(ei)∑n
j=1 exp(ej)

(3)

Ct =

n∑
i=1

αi ∗ hi (4)

The feature of each node is taken as input when the attention

mechanism calculates the weight of each hidden state. The

output is obtained through two hidden layers, and the Softmax

normalized exponential function (2) and (3) calculates the

weight of each feature αi, Where W (0) and b(0) are respec-

tively the first layer of the weights and bias. W (1) and b(1) are

the second layer weights and bias. Finally, the feature vector

Ct is calculated based on the global variation information, as

shown in the equation (4).

GCN needs to compute the entire graph, which leads to

the need for large amounts of memory. We use the attention

mechanism to reduce the dimension of node characteristics

first. Furthermore, the structure of abstract syntax trees is

often large and deep, making it is difficult to capture long-

distance dependencies. Moreover, the attention mechanism

gives importance to the edges between nodes to help the

model learn structural information, i.e., each encoded-word

vector representation corresponds to a weighted vector that

encodes contextual information to capture dependencies at

any distance. Therefore, processing node features through an

attention mechanism is helpful for GCN to classify nodes.

III. OUR APPROACH

The overall goal of our work is to give an effective solution

for fault localization. Since AST can represent the features of

a program, we compute the AST of the software under test

(SUT). Furthermore, we applied the Attention mechanism and

GCN for the evaluation of suspiciousness of each program

entity.

The framework of our is shown in Fig. 2. Our approach

is mainly composed of three phases. data processing,

model constructing, and fault localization
report. The first phase extracts the program’s features

by transforming them into AST and combining it with

GraphSmote matrices. The second phase is to construct a pre-

diction model by training with new matrices after GraphSmote.

The last phase is to calculate each program entity’s sus-

piciousness and give a fault localization report. Next, we

will introduce the implementation of these three phases in

sequence.

A. Data processing

In this phase, we check out the source code from Defects4J,

the bug line file with the annotated fault information, and

convert all the source code to multiple ASTs. There is a set

of nodes S in each AST, where each node s ∈ S corresponds

to the token of statements in the source code. Since we use

Javalang for tokenizing and AST generation, the tokens will be

different from the source code, e.g., Method Declaration, For
Statement, but we can still find its location in the source code

according to node information. Then, the adjacency matrix

with graph structure information can be obtained by traversing

the graph composed of multiple AST.

We take AST as an undirected graph, and the adjacency

matrix is symmetric across the diagonal. Suppose there are

n nodes in the graph, and the dimension of the adjacency

matrix is n, i.e., the adjacency matrix A is A matrix n ∗ n,

and the values in the matrix are 0 or 1. In the program,

erroneous statements are far less than the correct ones. If

the data are trained directly, the results will be biased to the
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Fig. 2. Framework of our approach

category of correct. To avoid such problems, we need to pre-

process the data to solve the problem of category imbalance.

Category imbalance refers to the fact that the number of

samples of some classes is much less than that of others

[28]. In classification problems, it is usually assumed that the

same proportion of training is given to different categories.

In practical applications, such an idealized situation rarely

exists, and it is often possible that there are too many sample

data of one or some categories, resulting in an unbalanced

distribution of training sample categories. Assuming that there

are two categories of samples, the ratio of positive and negative

samples reaches 30:1. The model only needs to predict the

new sample as a positive category, and its accuracy can reach

high. However, such models are of no value for categorical

prediction.

Up to now, the class imbalance can be classified into

two types: under-sampling and oversampling. Under-sampling

refers to sampling a category with many samples to reduce the

number of samples in that category. In this way, the number

of categories can be kept close, and the training results will

be better. Oversampling is sampling a small number of data

to increase the number of data. However, in the oversampling

process, some important information is discarded due to the

random discarding of samples, which is not conducive to

the prediction of results. Meanwhile, to be close to the

number of samples with fewer categories, the training data

are significantly reduced, which leads to the phenomenon

of overfitting, e.g., the training data can get better results,

but the data can not be well fitted on testing or validation

data. R Mohammed et al. [29] compared the performance of

the two methods in machine learning. The results show that

oversampling performs better than undersampling and gets

higher scores in different evaluation metrics. Therefore, we

choose oversampling to process the obtained data.

Since SMOTE [30] is the classic oversampling algorithm,

using the K-nearest neighbor to randomly select from its

nearest neighbor for each data in a few classes, and a random

point on the line between these two is chosen as the resultant

new data. This process is based on the Euclidean distance

between different kinds of samples, which only applies to the

data in Euclidean space and cannot be directly used in the

graph structure in this paper. Zhao et al. [31] proposed the

GraphSMOTE method, like SMOTE idea, using the interpo-

lation method on the GNN-based feature miner, to create a

few category nodes. Furthermore, the edge generator predicts

the link between synthetic nodes, which is convenient for the

subsequent node classification. So we use GraphSMOTE to

deal with the data so that the nodes are evenly spread.

The source code contains various symbols and grammar

information, so we use all tokens obtained through traversal as

a corpus for training and then generate the word vector of each

node. Word2vec can be used to represent lexical information

for each node. For each node featuresXi, i ∈ n, Xi is set to

length 100. Because the number of tokens with faults is much

smaller than the number of correct tokens, e.g., the ratio of

two categories in Time reaches 1200:1, we treat the adjacent

matrix A and characteristic X by GraphSMOTE. Finally, we

get the new adjacent matrix A and characteristic matrix X ,

where A is n ∗ n matrix and X is n ∗ 100 matrix.

B. Model constructing

Due to the large structure of the diagram, we set the number

of hidden layers in the attention layer to 2 and the output

dimension to 20. After the attention layer, while information is

aggregated, the dimension of each node can be reduced to 20,

i.e., X is a N ∗20 matrix, which reduces the space pressure for

GCN in the next step. Then the processed node feature X and

the adjacent matrix A are feedback to GCN. LeClair et al. [32]

have shown that two-level graph convolution is the best setting

for obtaining code information, so we set the convolution level

to 2. After two layers of convolution 1, node information is

further aggregated, and semantic information is extracted. The
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activation functions of these two layers are ReLU and Softmax,

respectively. SoftMax can obtain two kinds of prediction

probabilities, and the overall forward propagation formula is

(5).

Z = Softmax(ÃReLU(ÃXW (0))W (1)) (5)

In the training process, we randomly divided the data into

training, validation, and test sets to prevent the phenomenon

of over-fitting. Firstly, the training set is used to fit the

model, and then the parameters in GCN are adjusted, and the

validation set preliminarily evaluates the model. Based on the

evaluation results, the loss function calculates the error and

updates all parameters. Model training aims to minimize the

errors between the real and predicted values of nodes. For the

binary classification problems, we use cross-entropy as the loss

function. The cross-entropy loss function is calculated as the

formula (6). In addition, after 10 epochs at a time, we test the

model’s ability to generalize when it is actually used on a test

set.

L(θ) = − 1

m

m∑
i=1

(
y
(1)
i log ŷ

(1)
i + y

(2)
i log ŷ

(2)
i

)
+
λ

2
‖θ‖22 (6)

C. Fault localization Report

After the second stage, we obtain the prediction results of

the model for nodes, i.e., the model outputs n ∗ 1 matrix, and

the values in the matrix are presented as 0 or 1. We refer

to the method of Dstar [7] when dealing with suspiciousness

of the statement. Dstar defines the formula (7) according to

the number of successful or failed test cases in the statement,

where a11indicates the number of failed test cases that covered

the statement; a01 indicates the number of failed test cases

that did not cover the statement; a10 indicates the number of

successful test cases that covered the statement.

susp(s) =
a*
11

a01 + a10
(7)

We respectively define a11, a01, a10 as the number of faulty

nodes that predicated successfully, the number of correct nodes

that did not predicate successfully, the number of faulty nodes

that did not predicate successfully.

IV. EMPIRICAL STUDY

A. Research Questions

To evaluate the effectiveness and efficiency of our approach

(AGFL), we implemented it in a prototype tool and applied

the tool to 5 subject programs and corresponding faults. In our

empirical study, we want to investigate the following research

questions:

RQ1: How does AGFL perform in locating real faults

compared with state-of-the-art techniques?

This question helps us to understand the performance of

widely-used techniques. We adopt Mean Average Rank (MAR)

and Top-k metrics, which are widely used in previous studies

for comparing different fault localization approaches.

RQ2: How much does SMOTE contribute to fault localiza-

tion?

Class imbalance issues can significantly influence the clas-

sifier’s performance in those minority classes. This question

considers the performance impact of pre-processing the data.

RQ3: How do different epochs and learning rates impact

AGFL results?

In our empirical study, we set the epoch for all projects

to 100. However, the optimal epoch may differ for data in

different projects. This question considers a specific way of

combining different epochs and learning rates and evaluates

the technique’s performance.

B. Experimental setup

In order to answer these RQs, we conducted an empirical

study on five subjects of real-world faults from Defects4J

(v2.0.0) 2. All five subjects total have 262 real faults. TABLE I

illustrates the details of Chart, Lang, Math, Mockito, and Time

used in the experiment. The second column in the table is the

program name, the first column is its short name, the third

column is a count of the number of lines of code, the fourth

column is the number of faults versions provided, and the last

column is the number of faults IDS that have been deprecated.

Defects4J provides the program version of the bug and fix for

each fault and indicates which lines in the program have faults.

In projects with multiple faults, we select the location of the

first one without loss of generality.

TABLE I
CHARACTERISTICS OF PROJECTS

Identifier Project name LOC(k) Number of bugs deprecated bugs

Chart jfreechart 96 26 None
Lang commons-lang 22 65 2
Math commons-math 85 106 None
Time joda-time 28 27 1
Mockito mockito 23 38 None
Total 254 262 3

When generating the word vector, we use Word2Vec with

the Skip-Gram algorithm to obtain the embedding word vector

and set the embedding size to 100. Referring to GraphSMOTE

[31], we set the parameters in GCN as learning rate 0.0001,

the number of hidden layer nodes = 64, dropout = 0.1, epoch

= 100. Because we randomly divided the data set, we ran

each project ten times and took the average of ten times as

the final result. In Chart and Math, limited memory makes it

impossible to process the entire graph structure. We divided

each project into multiple parts. The parameters of the model

were saved at the end of each training. When the next part

was run, the parameters of the previous part were loaded to

finish the training of the model.

We run our implementation on a machine with Intel Xeon

Platinum 8260M CPU @ 2.30GHz and 86GB RAM for faster

computation.

2https://github.com/rjust/defects4j
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C. Evaluation metrics

Many metrics are applied to evaluate the accuracy and

effectiveness of software fault localization techniques. In this

paper, the performance of AGFL is evaluated by MAR and

Top-K.

1) Mean Average Rank: Mean Average Rank (MAR) is the

average ranking of all faults. For each subject, MAR is the

average of all its rankings.

2) Recall at Top-k: Top-k indicates the number of faults

found in the first K statements of the sorting result. The higher

the top-k value is, the more faults can be found by the method

when examining the same number of statements. Kochhar et

al. [33] conducted an empirical study on fault localization, and

the result shows that 73.5% of researchers consider top-5 to be

the minimum standard for the success of the definition method.

Therefore, n can be set as 1,3,5 in this paper, respectively.

V. RESULT ANALYSIS

A. Answer for RQ1

To evaluate the performance of AGFL for fault localization

accurately, we compare our approach with the following five

methods:

1) DeepFL [34]: using multi-layer perceptrons and treated

suspiciousness value, fault proneness, and textual simi-

larity as the characteristics of the model to achieve the

location of faults

2) FLUCCS [35]: extending SBFL with code change met-

rics and applying genetic programming, support vector

machines to sort suspiciousness

3) TraPT [36]: using learning-to-rank technique and com-

bining with SBFL and MBFL techniques.

4) Ochiai [6] and Dstar [7]: two classic spectrum-based fault

localization methods which are widely used in previous

work [3].

For RQ1, we use MAR and Top-K to evaluate the accuracy

of related methods. TABLE II illustrates detailed experimental

results.

As shown in the TABLE II, column 1 lists the project names

in Defects4J; Column 2 lists all the methods of comparison;

The remaining columns show the Top-k (k = 1, 3, 5) and

MAR evaluation results. From the TABLE II, we can see

that AGFL could locate 178 of the 262 faults at top-1, while

DeepFL could locate only 146. In addition, the MAR of

AGFL is 57.6%, 49.4%, 39%, 31.2%, 32.9% of other methods,

respectively. That is to say, our method, AFGL, can assign a

high ranking to faulty statements. Overall, AGFL performed

better than other methods, especially on Mockito and Time.

In other cases, AGFL’s performance is close to that of other

methods but not as good as DeepFL. The root causes of this

problem can be summarized as follows:

First, the subject Chart is a library diagram-drawing class.

By comparing the source code with the repaired code of Chart,

we found that most of the faults are fixed by adding statements

rather than modifying tokens based on the original statements

in Chart. Therefore, our model, which is trained by tokens,

TABLE II
EFFECTIVENESS OF AGFL AND COMPARED TECHNIQUES

Subjects Techniques Top-1 Top-3 Top5 MAR

Chart

Ochiai 6 14 15 4.11
FLUCCS 15 19 20 4.3
TraPT 10 15 16 5.7
Dstar 5 16 19 9.51
DeepFL 12 20 20 9.23
AGFL 14 15 15 7.26

Lang

Ochiai 24 44 50 2.53
FLUCCS 40 53 55 3.63
TraPT 42 55 58 3.18
Dstar 24 49 59 5.01
DeepFL 46 54 59 4.6
AGFL 42 46 46 3.35

Math

Ochiai 23 52 62 4.84
FLUCCS 48 77 83 5.66
TraPT 34 63 77 6.84
Dstar 24 63 75 11.72
DeepFL 63 85 91 11.35
AGFL 75 84 87 7.88

Time

Ochiai 6 11 13 12.62
FLUCCS 8 15 18 11.9
TraPT 7 13 16 13.19
Dstar 6 11 12 18.87
DeepFL 13 17 17 18.26
AGFL 15 15 15 2.26

Mockito

Ochiai 7 14 18 13.78
FLUCCS 7 19 22 18.63
TraPT 12 20 22 26.97
Dstar 7 16 19 24.77
DeepFL 12 19 22 22.73
AGFL 32 32 32 1.08

Overall

Ochiai 66 135 158 37.88
FLUCCS 118 183 198 44.12
TraPT 105 166 189 55.88
Dstar 66 155 184 69.88
DeepFL 146 195 209 66.17
AGFL 178 192 195 21.83

cannot identify whether tokens have faults correctly. Second,

we only run the subjects in parts, e.g., in Math, we trained in

groups of 20 faults by saving the model parameters from the

previous group. Although the model parameters are constantly

optimized, there may have the problem of local optima, which

will eventually affect the model effectiveness. The above two

reasons can better explain why AGFL loses its effectiveness

compared with the other five fault localization approaches.

Summary for RQ1: AGFL can localize more faults than

other compared methods. Significantly, the accuracy of

AGFL is better than other methods on Top-1, and the

MAR of our method is also reduced.

B. Answer for RQ2

For RQ2, this paper uses Top-k to analyze the effect of

SMOTE method. Fig. 3 shows the number of nodes before and

after data processing. For each subject, the number of nodes

increases by 10% on average. TABLE III shows the results

before and after data processing, where n represents nodes
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Fig. 3. Changes in the number of nodes after data processing

without data processing, and AGFL represents our proposed

approach in this paper.

As shown in the TABLE III, GraphSMOTE improves the

accuracy of fault localization greatly and significantly. Specif-

ically, AGFL improves accuracy by 30%, 100%, 210%, 150%,

433% in each project, and in most cases only needed to

examine one statement to identify the fault.

TABLE III
EFFECTIVENESS WITH OR WITHOUT SMOTE

Subjects Techniques Top-1 Top-3 Top5

Chart
n 10 10 10
AGFL 14 15 15

Lang
n 21 24 24
AGFL 42 46 46

Math
n 24 25 26
AGFL 75 84 87

Time
n 6 7 7
AGFL 15 15 15

Mockito
n 6 9 10
AGFL 32 32 32

Summary for RQ2: The accuracy of AGFL is always

higher than those techniques without SMOTE. Precisely,

when examining the top 1 suspicious statement, the AGFL

approach can localize more faults.

C. Answer for RQ3

An epoch is to complete work through all the training

datasets. The learning rate (LR) controls model how quickly

the training is adapted to the problem, determining the weight

change generated in each cycle training process. The too-large

epoch or too small learning rate will not improve the effect

of the model in some cases but will lead to an over-fitting

Fig. 4. Impacts of different epochs under lr=0.01

Fig. 5. Impacts of different epochs under lr=0.0001

phenomenon. In this paper, two different learning rates are

considered to study the changes brought to the model by the

increase of epoch. We set the learning rate at 0.01 and 0.0001,

and the number of iterations is from 1 to 160. Fig. 4 shows the

change of Top-k with the increase of epoch when the learning

rate is 0.01. As can be seen from the figure, the value of Top-k

increases as the number of epochs increases. However, when

the epoch exceeded 120, Top-k values all declined, which we

think is due to the over-fitting phenomenon caused by the

increasing number of weight updates.

Fig. 5 indicates the change of Top-k with epoch when the

learning rate is 0.0001. It can be seen that since epoch=1,

LR=0.0001 has a better effect than LR =0.01. Similarly, the

value of Top-k decreases after the number of epochs is more

than 90. A Smaller learning rate gives better results than both.

We consider that it is because when the learning rate is too

large, the loss function may directly surpass the global optima,

leading to the result being not optimal.
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Summary for RQ3: A significant learning rate can make

the model fast convergence, but the fault localization

effectiveness is not the best. In summary, the default

learning rate and epoch are the most stable and effective

for AGFL in our experiment.

VI. THREATS TO VALIDITY

Wohlin et al. [37] proposed that there are four basic types of

validity threats that can affect the validity of an experiment.

We focus on internal and external validity in the following

paragraphs.

Threats to internal validity: The main threat to internal

validity is the potential mistake in features collection and

technique implementation. We collect features and implement

our techniques by utilizing state-of-the-art tools and frame-

works, such as Javalang, Word2Vec, and PyTorch, to reduce

this threat.

Threats to external validity: To reduce these threats, we

use five subjects from the Defects4J benchmark suite. Ad-

ditionally, we use a graph neural network to train the model,

resulting in different training results. To make the results more

reliable, we calculate ten times and use the average as the

result of the experimental study.

We encourage independent replications to assess the robust-

ness of our results further.

VII. RELATED WORK

Spectrum-based fault localization(SBFL) is one of the most

famous fault localization approaches widely used in program

debugging [38]. SBFL gathers the program entity information

executed by the test case to identify the entity that is more

likely to be buggy [39]. Jones et al. [5] proposed the Tarantula,

which was the first to propose the use of spectrum to evaluate

the program entity suspiciousness. For each program entity,

Tarantula counts the number of execution of each program

entity in all failed test cases and is divided by the number of

execution both in all failed and passed test cases. Later, Wong

et al. [7] proposed the Dstar formula to calculate the statement

suspiciousness, believing that the statements covered by failed

test cases have a high probability of faults. Experimental

results show that Dstar is optimal compared with most SBFL

approaches.

Mutation testing technology has made rapid progress with

the enhancement of computer computing power. Mutation-

based fault localization (MBFL) improves the accuracy of fault

localization and can better deal with coincidentally correct test

cases in SBFL. Papadakis et al. [11] used mutation tests for

fault localization, mutation operation on the source code to

generate mutants, and comparison of results after the execution

of test cases to obtain suspiciousness. Moon et al. [12] use two

sets of mutants. One set is the correct statement of mutants,

and the other set is the wrong statement of mutants. Although

MBFL improves the accuracy of fault localization, it consumes

a considerable execution cost. Up to now, the study on MBFL

mainly focuses on the reduction of mutation tests. Gong et

al. [40] proposed the use of a dynamic mutation execution

strategy to reduce the execution cost of MBFL. In addition,

Papadakis et al. [41] reduce the number of mutants through

random sampling of mutants, thus reducing the cost of MBFL.

Recently, many machine learning-based techniques are also

applied to fault localization, mainly based on past informa-

tion to predict where faults will occur. Wong et al. [42]

implemented fault localization using BP neural networks with

coverage information as input data and test case execution

results as labels. Subsequently, BP neural network was used

to calculate the suspiciousness of each executable statement.

Liu et al. [14] propose an approach that uses graph-mining and

support vector machines (SVM), where each node in the graph

is an executed function. SVM is used to classify incorrect and

correct executions. Meanwhile, with the advancement of deep

learning, many techniques have been applied to software engi-

neering. Zheng et al. [43] propose a fault localization method

based on a deep neural network (DNN), which uses coverage

data and test case results as input for training. Li et al. [34]

used multi-layer perceptrons and treated suspiciousness value,

fault proneness, and textual similarity as the characteristics of

the model to achieve the location of faults.

VIII. CONCLUSION

The motivation of this study was to improve fault localiza-

tion accuracy in real-world program debugging. To this end,

we first proposed a method based on graph neural networks

for single-fault locating efforts. The empirical study on 262

real bugs from the widely used Defects4J benchmark shows

that AGFL can be an effective fault localization technique,

e.g., Top-1 is better than other methods.

Our work is preliminary, but the result is encouraging and

inspiring. In the future, there will be some aspects to improve

and investigate. (1) We should introduce dynamic analysis of

the code into the model features. (2) To shrink the graph

structure without losing structural information, we need to

reduce the number of nodes. (3) We still should take into

account the efforts of patch generation. That is to say, bug

fixing efforts also should be considered when building fault

locating models.
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