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ABSTRACT Fault localization is indeed tedious and costly work during software maintenance. Studies
indicate that combining both structural features and behavior characteristics of programs can be beneficial for
improving the efficiency of fault locating. In this paper, we proposed a framework, called Mulr4FL, for fault
localization using a multivariate logistic regression model that combined both static and dynamic features
collected from the program under debugging. Firstly, the hybridmetrics data set, with both program structural
features and behavior characteristics combined, is constructed by static program analyzing and dynamically
tracing that runs with a designed metrics set. Meanwhile, the fault information of the legacy program is
also obtained from the bug tracking system. Secondly, Bivariate logistic analysis is performed to filter the
metrics that are significantly related to faults, and then with the selected metrics and their measurements,
a multivariate logistic regression model was constructed and trained. Finally, based on the trained logistic
model, we conduct the multivariate logistic analysis on the features of the evolved software and predict
the buggy class methods. An empirical study was conducted based on a set of benchmarks that are used
widely in program debugging research. The results indicate that the Mulr4FL can significantly improve the
effectiveness of locating faults in contrast to 5 baseline techniques.

INDEX TERMS Software testing, debugging, fault localization, logistic regression analysis.

I. INTRODUCTION
Software is a complex artifact during which the life cycle
often undergoes multiple version evolution due to the change
of requirement or software operating environment. Influ-
enced by the constraints of human intellectual activities,
flaws are often inevitably introduced into new versions of the
software during its evolution. These potential defects often
cause failures or troubles to end-users. Reducing software
failures and improving its quality is essential in software
maintenance.

Usually, programers detect and locate software bugs by
static analying or dynamic testing [1]. Studies have shown
that some bugs are caused by complicated program structures,
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such as recursive calls and complex loops [2]. According to
whether to use software runtime information and how to use
this information, the existing fault localization approaches
can be classified into three categories. The first category
is the statistical fault localization based on the program
spectrum (SFL, Spectrum based fault localization) [3], [4].
These methods collect and count the coverage information of
the program entities (e.g., statements, predicates, execution
paths, or functions) in the process of program testing, then
analyze the relationship between the entities and the execu-
tion results, and calculate the suspiciousness with a specific
heuristic evaluation formula to estimate the buggy probability
of each program entity, and finally, the program entities are
examined in descending order of suspiciousness until the all
faults are identified. The second category of fault localization
approaches are based on program slicing technology [5], [6].
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Program slicing uses dependency analysis to identify the set
of statements in the program that affect specific program
entities [7]. Slicing technology can effectively separate fault-
related sentences, so it becomes an effective tool to assist
fault localization [8]. The third category is based on static
analysis methods. These approaches first analyze and obtain
the static structure information of the program, and then com-
bine the syntax and semantic constraints of the programming
language to detect program violations [9], or use symbolic
execution [10], formal proof [11] and other technologies to
locate program faults.

However, the existing fault localization approaches usu-
ally utilize program information singly and simply. The for-
mer two categories of these approaches apply the dynamic
information of program runs for evaluating suspiciousness
of program entities, and the third category applies the static
information of program structure in suspiciousness compu-
tations. As we know, the static information of the program
can fully reveal the structural characteristics of the program;
on the other hand, the dynamic information during the pro-
gram testing can expose the behavior characteristics of the
program under specific test input. Therefore, making full use
of static information combined with dynamic information has
the potential benefits for improving the efficiency of fault
localization.

Furthermore, most of the existing fault localization
approaches are based on the analyzing and testing of the
current version to locate faults, and they rarely utilize the
information of the legacy software. Recent research indicates
that combining static and dynamic features can improve the
efficiency of fault localization [12]. The multivariate logistic
regression model, known as a powerful tool to reveal the
relationship between independent variables and dependent
variables, is becoming used widely in social statistical anal-
ysis, data mining, and other fields. Basili et al. [13] first
applied it to the defects prediction for object-oriented pro-
grams, and Briand et al. [14], [15] also empirically studied
the accuracy of the defects prediction of the logistic model
and the MARS model in cross-version based on object-
oriented metrics. Their empirical study shows that the pre-
diction model of the system before the evolution can better
predict the fault-proneness of the system after the evolution.
However, their model is limited to using static information
measured of object-oriented programs. We hypothesize that
it will be beneficial to combine both measurements of static
and dynamic information of the program, and then to build
an effective multivariate logistic model for fault localization
Therefore, the multivariate logistic regression model can be
used to combine different behavior of the software to predict
the fault-proneness entities and improve the performance of
fault localization.

Besides, most fault localization approaches are proposed
and demonstrated their effectiveness based on the assump-
tion of perfect fault detection. i.e., the programmers can
always determine whether the current review statement is
wrong immediately, and then effectively correct the fault

even without the context of this statement during code
review [16]. However, this assumption, called perfect fault
detection, is not always practically hold during the real-world
program debugging process. This restricts the application
of statement-level fault localization methods in real-world
program debugging. In practice, considering the class method
level as the fault locating granularity, i.e., method-level fault
localization, is more effective according to the statements
context in the class methods.

In this paper, we proposed an efficient fault localization
framework (called Mulr4FL) using a multivariate logistic
regression model in the maintenance of evolution software.
The rationale behind Mulr4FLis that our model can learn the
history knowledge of the software evolution by training the
model with the combination of both historical and current ver-
sions of the software under debugging. Specifically, we first
design a metrics set which covers software structural features
and behavioral features, and we construct a feature data
set using static analysis and software testing track; Second,
combining with faults of the old version of the software,
we conduct a Bivariate logistic analysis to filter metrics which
are corresponded with faults significantly, and we construct
and train amultivariate logistic regressionmodel applying the
filteredmetrics andmeasured data of the new version; Finally,
with the feature data set of the new version of the program
constructed, we can apply the trained multivariate logistic
model for fault predicting and locating. We also conducted
an empirical study on the proposed fault localization model
on a set of benchmarks.

To the best of our knowledge, the main contributions of this
study can be summarized as follows:
• We first proposed a method based on bivariate logistic
regression analysis for fault-related metrics selection.
With the measured structural features and the detected
fault details of the old version of the program, a bivariate
logistic regression analysis is applied to select out the
metrics that are significantly related to faults. Those
selected fault-related metrics will be applied to the sub-
sequent multivariate logistic regression analysis.

• We constructed a multivariate logistic regression model
for evaluating the suspiciousness of class methods of the
object-oriented program under debugging. Our model
conducts regression analysis based on the selected fault-
related metrics, which describe either static features of
class methods or runtime features of an object-oriented
program.

• We proposed a three-stage framework (called Mulr4FL)
for fault localization in the class methods level, which
applies the multivariate logistic regression model.

• We also evaluated the performance of our approach on
a set of benchmarks. The experimental results show that
Mulr4FL is more effective than the compared five state-
of-the-art baseline techniques.

The rest of the article is organized as follows. Section II
briefly presents the preliminary information of our study.
Section III outlines the framework of our proposed method

VOLUME 8, 2020 207859



X. Ju et al.: Mulr4FL: Effective Fault Localization of Evolution Software Based on Multivariate Logistic Regression Model

Mulr4FL and details of key components in our method.
Section IV lists the experimental settings and discussion of
the experiment results. Section V states the potential threats
to the validity of our empirical study. Section VI summarized
the related work of fault localization. Finally, Section VII
concludes this article and shows potential future directions
for our study.

II. PRELIMINARIES
Mostly, the fault localization approaches are achieved by
calculating the probability of fault-prone of program enti-
ties(e.g., statements, branch, predicts, basic blocks, class
methods, or files). In this paper, we took the class method
as the basic component for fault localization. For each class
method in a program, it is assumed that whether the fault
can be detected is an independent event(denoted as Y=1),
and the probability of this class method containing faults
can be denoted as prob(Y=1). For a given class method,
if prob(Y=1)> ω, the class method contains a fault, other-
wise there is no fault (ω is the specified threshold). Therefore,
we can locate faults by calculating the probability of the event
‘‘Y=1’’. Previous studies indicate that the logistic regression
model is widely used to describe the relationship between a
binary response variable and predictors [17]. In view of the
fact that different metrics can be conducted on measuring the
software under test and obtain a set of variables, we believe
that the use of the multivariate logistic regression model
has great advantages for fault localization. In this section,
we first introduce the definition of Bivariate analysis which
is used for the selection of fault-related metrics, then we give
the definition of logistic regression, and we finally give the
definition of multivariate logistic regression which is used for
multivariate analysis and prediction.
Definition 1: Bivariate analysis investigates two variables

(denoted as X, Y) to determine the empirical relationship
between them [18].

Bivariate analysis can test simple hypotheses of associa-
tion. It determines to what extent to know and predict a value
for one dependent variable if the value of the independent
variable is known. Given the independent variable xi and
the dependent variable y, the bivariate analysis model y =
fR(xi) is used to analyze the statistical correlation between the
variables xi and y.
In fault localization scenarios, the independent variable

xi is the measurement of a certain metric of the class
method (such as the number of lines of code), and the
dependent variable y is the fault information of the class
method tracked by the bug tracking system. Here, func-
tion fR(xi) can be a linear regression model or logistic
regression model, etc. To determine the variables used in
the multivariate regression analysis, it is necessary to first
analyze the statistical correlation between a single measure-
ment and fault, and then select those metrics that are sig-
nificantly related to one fault. Applied bivariate analysis,
the metrics that are significantly related to the fault are
identified.

FIGURE 1. The standard logistic function f (z).

Definition 2: Logistic regression model [19] is a statisti-
cal model which uses a logistic function to model a binary
dependent variable. A logistic (sigmoid) function is defined
as follows:

f (z) =
ez

ez + 1
=

1
1+ e−z

. (1)

where independent variable(‘‘predictors’’) z can each be a
binary variable (two classes, coded by an indicator vari-
able) or a continuous variable (any real value). The standard
logistic function takes any real input z(z ∈ <), and outputs
values between 0 and 1. The curve of the standard logistic
function is shown in Figure 1.

As shown in Figure 1, the return value of the logistic func-
tion f (z) is from 0 to 1. Therefore, f (z) can be used to denote
the probability of the event ‘Y=z’. Similarly, we denote z
as an event that a class method contains a fault, then we
can denote f (z) as the probability of the class method to be
a buggy class method. Suppose there are m variables(i.e.,
metrics) that affect the class method to run failure, then the
variable z can be represented by a linear combination of these
m variables, as shown in the Equation 2.

z = β0 + β1 x1 + β2 x2 + · · · + βm xm. (2)

For a fault localization task, variables (xi) denote the fac-
tors that affect the calculation of the suspiciousness of a
class method to be buggy, and regression coefficients (βi)
denote the weights of the each variable xi in equation 2. βi
needs to be trained with legacy data. Therefore, with a set
of metrics (xi) which are measured by the metrics on the
program under debugging and weights (βi) which are trained
with the data of legacy systems, we can predict the faulty
probability of each class method applying Equation 1 and
Equation 2. Finally, all the class methods can be examined
and identified in descending order of buggy probability.
Definition 3: multivariate analysis addresses the situations

that multiple measurements and the relations among these
measurements are important in each experiment based on
the principles of multivariate statistics. [20]. Typically, the
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multivariate analysis involves observation and analysis of
more than two statistical variables at a time.

Multivariate regression analysis refers to the use of regres-
sion analysis model y = fR(x1, x2, · · · , xm) to analyze
the correlation between a set of independent variables
x1, x2, · · · , xm and dependent variables y.
In this paper, the metrics x1, x2, · · · , xm are the metrics

significantly related to the fault which are filtered out by
bivariate analysis, and y is the fault information of the class
method tracked by the bug tracking system. Function fR uses
a multivariate logistic regression model as follows:

π (x1, x2, · · · , xm) =
eβ0+β1x1+β2x2+···+βmxm

1+ eβ0+β1x1+β2x2+···+βmxm
. (3)

Logistic regression analysis is a standard technique based
on maximum likelihood estimation. The multivariate logistic
regression model, defined in Equation 3, should be trained
firstly with the traced fault information and themeasurements
of the class methods. After the parameters (β0, β1, · · · , βm)
of the regression model are determined, the dynamic infor-
mation of the evolved program running and its class method
structure measurement are applied to the model to calculate
the suspiciousness of each class method. That is, the fault
probability of the class method is obtained for fault locat-
ing with the trained multivariate logistic regression model.
Looking at the Equation 3, we find it is satisfied with the
maximum-entropy (MAXENT), which is proved to be opti-
mal in problems where we have prior information about
multiplicities [21].

III. OUR APPROACH
In the process of software evolution, logistic regression anal-
ysis can be used to locate the fault in the evolved version
of the program with the class method level granularity of
fault localization. Supposing that there are n class methods
contained in the software under debugging, the task of fault
localization is to identify each class method that contains
faults. Firstly, we design a set of characteristic metrics to
measure the structural features and behavior features of the
class method. For example, the number of lines of code and
cyclomatic complexity is used to describe the static charac-
teristics of a class method, and the number of times the class
method is covered by a successful test and a failed test to
represent its behavioral characteristics. Secondly, with the
help of the measurement metrics and faults information of the
legacy versions, bivariate analysis is used to filter the mea-
surement indicators which are significantly correlated with
faults, and then the multivariate logistic model is constructed
and trained. Finally, based on themeasured information of the
new version of the software, the previously trained multivari-
ate logistic model is used to predict the buggy class methods.

A. FRAMEWORK
Figure 2 visualizes the overall framework of our appraoch.
Generally, the framework mainly consists of three major

FIGURE 2. Fault localization framework based on logistic regression
analysis.

TABLE 1. Metrics measuring and bugs tracking of legacy softwares.

stages: Pre-processing stage, multivariate logistic regression
model constructing stage, and fault locating stage.
Step 1:Mulr4FL mainly completes two tasks: (1) Running

the each version of legacy softwarewith the test suite; (2) Col-
lecting the structure information of the class methods. Such
as the number of lines of code of the class method, cyclomatic
complexity, etc.
Step 2: Mulr4FL identifies metrics that are highly corre-

lated with faults by using bivariate analysis and to train a
multivariate logistic regression model with both static and
dynamic features.
Step 3: Mulr4FL predicts the faulty prone of each class

method of evolved software (shaded in Figure 2) by using
the multivariate regression analysis model, that is, the faulty
suspiciousness of each class method.

B. MODEL CONSTRCUTING
The main task in this stage is to build a multivariate logistic
regression model. The first step is to measure the program
structural features and behavioral features as shown in Table 1
with the help of static analyzing and program tracing. The
next step in the model construction stage is to select metrics
that are significantly related to errors using bivariate analysis.
The final step is to use the structural features and behavioral
features to train a multivariate logistic regression model.

Table 1 shows metrics measurement with n class methods
of a object-oriented program under debugging. The first col-
umn represents the numbers of all the class methods of the
program; The last column #fault, denoted as fi(i ∈ [1, n]),
represents the number of detected faults contained in each
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FIGURE 3. Normalized matrix of legacy program metrics and faults.

method obtained by the fault tracking system; The variables,
denoted as eij(i ∈ [1, n], j ∈ [1,m]) in the middle columns,
represent the program structure measurement and dynamic
tracking information. In our approach, these metrics, denoted
as x1, x2, · · · , xm, respectively represent the static features
and dynamic behavior features of each class method in the
object-oriented program under debugging. Although several
object-oriented program measurement metrics (such as CK
set [22], and MOOD set [23]) have been proposed for the
past decades, it is still unclear which subset of these metrics
are significantly related to software failure. However, we can
conduct a bivariate analysis to identify the most fault-related
metrics.

Before conducting the bivariate analysis, we would first
normalize the variables in Table 1. A preliminary investi-
gation of the value of these metrics shows that the ranges
of values are quite different. To improve the accuracy of
bivariate analysis and multivariate analysis, we provide a
strategy to normalize the variables listed in Table 1 to avoid
the fluctuations of these metrics. For each column element eij
in Table 1, the normalization factor is:

Z (eij) =
n∑
i=1

eij (4)

Similarly, we also normalize the last column in Table 1,
and the normalization factor is:

Z (fi) =
n∑
i=1

fi (5)

After normalizing Table 1, the normalized matrixes (U , V )
are obtained as shown in Figure 3.

In Figure 3, uij =
eij

Z (eij)
, vi =

fi
Z (fi)

, i ∈ [1, n], j ∈ [1,m].

Each column of the matrix U satisfies
∑n

i=1 uij = 1, ∀j ∈
[1,m]. Similarly, the matrix V satisfies

∑n
i=1 vi = 1.

Applying the bivariate analysis with model ŷ = fR(x)
to each feature xj(j ∈ [1,m]), the correlation between the
features and the fault can be evalued. The ŷi is the normal-
ized value that contains faults in each class method, that
is, ŷi belongs to the vector V in Figure 3. The feature xj
corresponds to the static information and dynamic informa-
tion sub-columns in Table 1 and its value equals to vector
U in Figure 3. Here fR(x) is the linear regression model.
A bivariate analysis on the feature xi and fault-frequency
in Figure 3 are performed, and features that are signifi-
cantly related to the fault (significant level α = 0.05) are
selected for the training of the multivariate logistic regression

TABLE 2. Metrics measuring and error prone prediction of evolved
software.

FIGURE 4. Normalized metrics matrix of evolved program.

model. Specifically, using the vector V (vi) and multivari-
ate x1, x2, · · · , xm in Figure 3 to train multivariate logistic
regression analysis model as shown in equation 3, the model
parameters β̂0, β̂1, β̂2, · · · , β̂m can be determined. Therefore,
logistic regression analysis model is obtained as shown in the
Equation 6.

π0(x1, x2, · · · , xm) =
eβ̂0+β̂1x1+β̂2x2+···+β̂mxm

1+ eβ̂0+β̂1x1+β̂2x2+···+β̂mxm
(6)

C. FAULT LOCATING
With the trained multivariate logistic regression model,
we can conducted fault localization. In this section, we first
introduce the multivariate logistic regression analysis on
evolved software, then we give the algorithm fo fault local-
ization based on the multivariate logistic regression model.

For a new version of the software, we first analyze the
static structure information of its code, then run the program
with the test cases to collect the dynamic information of the
program. All the collected measures are recorded as sub-
columns of static and dynamic features (x1, x2, · · · , xm) as
shown in Table 2.
Next, we normalize the original data of Table 2. The nor-

malization factor is Z (e′ij) =
∑n

i=1 e
′
ij, 1 ≤ j ≤ m, then we

get the normalized matrix U ′ as shown in Figure 4.
The features xj(j ∈ [1,w]) in Table 2 are selected from

x1, x2, · · · , xm in Table 1 which are significantly related to
the faults. Specifically, different from the last column (fi)
in Table 1, which directly indicates the fault number of class
methods, the last column in Table 2 indicates the probabilities
of fault in the corresponding class methods.

The calculation of fault probability is to use the model
established in phase two, input the traced information of the
new version of the program under debugging, and calcu-
late the normalized matrix U ′, and further carry out logistic
regression analysis and prediction of buggy class methods,
and record the predicted value for each class method. The
fault probability of each class method pi can be calculated
according to the formula 6. Next, each class method is exam-
ined in a descending order of fault probability. Algorithm 1
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gives a detailed description of each step of fault localization
based on logistic regression analysis.

Algorithm 1 Regression Analysis Based Fault Localization
Input:

X ; // metric
P, P′; // legacy and evolved system
T , T ′; // old and new test suite

Output:
Prob; // fault probability of class methods

1: F = Construct(X , P, T ); // construct metrics
2: Y = faultTrace(); // trace fault-related information

3: < U ,V > = < Normalize(F),Normalize(Y ) >;
4: X ′ = φ;
5: for each feature xi ∈ U do
6: Perform bivariate analysis using ŷi = fR(xi), ŷi ∈ V ;
7: if xi correlated with ŷi, (p-value < 0.05) then
8: X ′ = X ′ ∪ {xi};
9: end if

10: end for
11: Log_Model = Train(F, X ′); // train logistic model
12: F ′ = Construct(X ′, P′, T ′);
13: U ′ = Normalize(F ′);
14: Prob = Predict(U ′,X ′,Log_Model); // predict buggy

method
15: return Prob;

The descriptions of Algorithm 1 are as follows: Line 1–2
constructs the feature set F and fault information Y which
is listed in Table 1. The function Construct() returns the
construction feature set by static analyzing and tracking pro-
gram runs. The function Normalize() in line 3 calculates the
Normalized value of the input vectors to the range of [0, 1]
by applying equation 4 and equation 5. Line 5–10 conduct
the bivariate analysis to check out the metrics (X ′) that are
significantly correlated to faults. Line 11 combines the nor-
malized value of feature set F with the data corresponding
to the fault-related metrics set X ′ (line 2), and calculates fault
information by the normalized matrix V of Y , then trained the
multivariate logistic regression model. Line 12–14 construct
and normalize the measurement of selected feature metrics
for the evolved program, then apply the trainedmodel to carry
out fault localization on the class method level.

IV. EXPERIMENTAL STUDY
In our empirical study, we want to evaluate the performance
of our framework (Mulr4FL) by answering the following
four research questions (RQs):

RQ1: Among the mainstream metrics for object-
oriented software, whichmetrics aremore associatedwith
the root cause of software errors?

Motivation. In this RQ, We want to filter out those met-
rics that are closely associated with the causes of software
failures from mainstream object-oriented software metrics
by applyinng bivariate analysis technology. With program

trace and analysis techniques, the selected metrics (shown
in Table 1) are measured and then normalized for multivariate
logistic regression analysis.

RQ2: Compared with Mulr4FL that only uses static
structure metrics measurement, how does Mulr4FL per-
form in fault localization using hybrid static structure
measurements and runtime information?

Motivation. In this RQ, we want to compare the perfor-
mance of the multivariate regression model based fault local-
ization using different metrics (i.e., simple static structure
measurements, static structure measurements addedwith run-
time information). It is necessary to evaluate the performance
of our framework onmixed static and dynamic measurements
via simple static measurements.

RQ3: Compared withMulr4FL that only uses dynamic
information, how does Mulr4FL perform in fault local-
ization using hybrid static structure measurements and
runtime information?

Motivation. In this RQ, we want to show the effectiveness
of the multivariate regression analysis based fault localiza-
tion using the hybrid static structure measurement and run-
time information via simply runtime information. That is to
say, we want to compare the multivariate regression model
based fault localization using different metrics(i.e., runtime
measurements, hybrid static measurements add with runtime
information).

RQ4: Compared with the spectrum-based fault local-
ization (SFL), can Mulr4FLperform better while using
only runtime information or hybrid static structure mea-
surement with runtime information?

Motivation. In RQ2 and RQ3, we mainly evaluate the per-
formance of Mulr4FL based on the different measurements
(i.e., static structure measurements, runtime information, and
hybrid static structure measurements and runtime informa-
tion). Then in RQ4, we want to evaluate the performance
of Mulr4FL comparing with those state-of-the-art spectrum-
based fault localization (SFL) which only uses dynamic infor-
mation due to the nature of these SFL approaches. We carry
out two comparisons: (1) comparing SFL with the Mulr4FL
only uses dynamic information; (2) comparing SFL with the
Mulr4FL uses hybrid static and dynamic measurements.

A. STUDIED PROJECTS
In this paper, we investigate eight open-source projects,
namely Jtcas, NanoXml1,1 NanoXml2,2 Chart, Closure,
Math, Time, Lang. All these projects come from two well-
known datasets that are widely used in software engineering
research, namely Software-artifact Infrastructure Reposi-
tory (SIR3), Defects4J.4 The former three projects, Jtcas,
NanoXml1, NanoXml2, are from SIR [24], and the rest five
projects are from Defects4J [25].

1the version of NanoXml is V1.6.8
2the version of NanoXml is V2.2.1
3SIR: https://sir.csc.ncsu.edu
4 Defects4J: https://github.com/rjust/defects4j
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TABLE 3. Characteristics of projects.

Table 3 summarized the data from the nine projects used
in the experiment. There are enough bugs and class methods
in these eight projects. Totally, we study 45837 methods
and 399 faults in 212K executable code lines together with
22145 test cases. All these 399 faults can be seeded into
source code. Both the code lines and methods number of
Jtcas are very small, and two versions of NanoXml have
the medium scale of code lines and methods, and the last
five projects have a larger scale of code and methods. We
want to evaluate the performance of our approach over small,
medium, or large scale software. Besides, we treated those
projects which provide the training data as the legacy soft-
ware, and the project which is under review as evolved soft-
ware. Furthermore, we also investigate the performance of
Mulr4FL on Nanoxml2 as the evolution of Nanoxml1.

B. PERFORMANCE MEASURES
Our empirical evaluation uses the metric expense which is
firstly proposed by Renieris and Reiss [26] and is adopted
widely by many researchers [4], [27], [28]. In this paper,
the metric, expense, indicates the percentage of the number
of class methods that the debugger needs to review to iden-
tify whether the class method contains fault. The calculation
formula is as follows:

expense(f ) = 100 ·
rank(f )
|M |

(7)

In EQ 7, f is a class method which contains a fault, and
rank(f ) represents the rank of f in the descending order
list of all class methods with fault suspiciousness, and |M |
represents the number of all class methods in the system.
When the suspiciousness of f is the same as some other meth-
ods, we adopt the ML(Middle Line) strategy [29], i.e., we
calculate the average rank to deal with this case.

C. EXPERIMENTAL METHODS
To carry out our empirical study, we first identify the metrics
for constructing the multivariate logistic regression model.
We applied Understand software5 (version 5.1), a very effi-
cient tool at collecting metrics about the code, to measure
the projects listed in Table 3. For simplicity, we initially
selected 7 typical metrics listed in Table 4, which is a subset

5https://scitools.com/

TABLE 4. Static metrics of studied projects.

of Understand’s 27 method-level metrics, by removing the
metrics that are similar to others or not closely related to
faults.

The detailed reasons why we set initial metrics in Table 4
are as follows: Firstly, it has been reported that subprograms
and global variables often increase the risk of error-prone
software. Therefore, we count the number of calling/called
subprograms and set/read global variables, denoted as Out
and In, respectively. Secondly, many studies have found that
the size of programs (typically measures the number of exe-
cutable statements) is related to the program’s faults. There-
fore, we take lines of method’s code(denoted as StmtExe)
as a metric. Thirdly, there are a large number of published
studies [30] that demonstrate a positive correlation between
cyclomatic complexity and faults: functions and methods
that have the highest complexity tend to also contain the
most faults. Therefore, we take the cyclomatic complexity
of method(denoted as CC) as another metric. Furthermore,
the number of executable paths of a program also indicates the
complexity of the program, which is intuitively related to pro-
gram faults. So we take the number of possible paths(denoted
as Path) as a metric. Likewise, overlapping jumps may also
increase the complexity of the program, and we take the
number of overlapping as a metric(denoted as Knot). Finally,
comments embedded in the lines of code can improve the
readability of the code, thereby reducing the probability of
faults. Therefore, we take the ratio of comment lines to code
lines(denoted as CCR) as a metric, too. Using the measure-
ment tool (Understand, version 5.1), we obtain the static
metrics (listed in Table 4) measurement of all versions of
projects (listed in Table 3).

To illustrate the performance of our approach, we con-
structed a set of benchmarks, which is consisted of five
spectrum-based fault localization approaches, for compari-
son. These five approaches, namely Naish1, Naish2 [31],
Wong [32], Russel&Rao, and Binary, is theoretically proved
to be the optimal approaches for fault localization [33]. The
risk formulas are as follows:

Naish1(f ) =

{
−1, if NCF (f )<NF
NS−NCS (f ), if NCF (f )=NF

(8)
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Naish2(f ) = NCF (f )−
NCS (f )

NCS (f )+NUS (f )+1
(9)

Wong(f ) = NCF (f ) (10)

R&R(f ) =
NCF (s)

NCF (s)+NUF (s)+NCS (s)+NUS (s)
(11)

Binary(s) =

{
0, if NCF (s) < NF
1, if NCF (s) = NF

(12)

where f A represents a class method,NCF andNCS represents
the coverage times by failed and passed test cases, respec-
tively, NUF and NUS represents the times uncovered by failed
and passed test cases, respectively. Obviously, both of the two
equations NS = NCS + NUS and NF = NCF + NUF hold.
To carry out the logistic regression analysis, we defined the

metrics composed of both static metrics and dynamicmetrics.
In detail, the static metrics include {Out, In, StmtExe, CC,
Path, Knot, CCR } (denoted as SX ), and the dynamic met-
rics include {NCF ,NCS ,NUF ,NUS} (denoted as DX ). Firstly,
we checked out each faulty version of projects and mea-
sured the static metrics (SX ) using Understand software
(version 5.1). Then we compiled and run test cases on each
faulty version of projects. and at the same time, we tracked
and collected the dynamic metrics (DX ) of each program
running on test cases. Next, we carried out the bivariate
analysis with the static metrics (SX ) and faults information
of class methods. Our goal is to test the significance of the
correlation between the dynamic metrics and program faults.
Finally, we carried out the multivariate logistic regression
analysis to answer the four research questions proposed at the
beginning of Section IV.

D. RESULTS AND DISCUSSION
In this section, we present RQs in detail. We first show the
analysis methods we proposed to answer these RQs. Next,
we introduce and summarize the experimental results. To
simplify our discussion, we give three notations to represent
three scienarios, namely hyb-MLR, sta-MLR, and dyn-MLR,
whose detailed description are give as follows:
• hyb-MLR means that using our framework (Mulr4FL)
with hybrid static metrics and dynamic metrics.

• sta-MLR means that using our framework (Mulr4FL)
with only static metrics.

• dyn-MLR means that using our framework (Mulr4FL)
with only dynamic metrics.

1) RQ1: FAULTS RELATED METRICS
We first checked out each faulty version of projects listed
in Table 3, and measured all the metrics ({Out, In, StmtExe,
CC, Path, Knot, CCR}) of each method using Understand
software, at the same time, we obtain the fault information.
Then we normalized the measurements with the Equation 4
and Equation 5, and we obtain the normalized matrixes of
program metrics and faults.

Next, we carried out a bivariate logistic regression anal-
ysis on each metric with faults measurement. Furthermore,
we also employed the two-side t-test to calculate the p-values

TABLE 5. Metrics correlation coefficients with faults and p-values.

when we compare these different metrics to evaluate the sig-
nificance of the correlations between them. The correlation
coefficients and p-value of each analysis are listed in Table 5.
As Table 5 shows, all the correlation coefficients of our

metrics are greater than 0 which means there is a correlation
between these metrics and faults. However, both the p-values
at row 3 and row 8 are greater than 0.05 which means the
two metrics(In and CCR) are not correlated with fault signif-
icantly though there are correlation coefficients are greater
than 0.

Summary for RQ1: The five metrics, denoted as SX̂ =
{Out, StmtExe, CC, Path, Knot}, are significantly cor-
related with programs faults among our original metrics
SX . However, the remaining two metrics (In and CCR)
are slightly but not significantly correlated with faults.

2) RQ2: HYB-MLR VS. STA-MLR
To evaluate this research question, we checked out each
faulty version of all projects and measured the metrics for
each faulty program using Understand software. That means,
we measured the 5 metrics (i.e., Out, StmtExe, CC, Path, and
Knot) of a total of 399 faulty versions. Furthermore, we run
all the test cases on these 399 faulty versions of all projects
and gathered the dynamic information of programs. That is to
say, we gathered the coverage metrics (NCF ,NCS ,NUF ,NUS )
of all the methods of a total of 22145 tests on these projects.
We conducted the rest research questions (RQ2, RQ3, and
RQ4) by applying all the static metrics and the dynamic
information obtained above.

Next, we combined static metrics (SX̂ ) and dynamic met-
rics (DX ) and obtained a hybrid metrics HX (HX = SX̂ ∪
DX ). Then we apply our model (Mulr4FL) on HX and
SX̂ , respectively. The k-fold cross-validation is applied to
our research due to its high accuracy [34]. For the two
projects (NanoXml1, NanoXml2), we applied the 5-fold
cross-validation because their faulty versions are less than 10.
For the rest projects, we applied the 10-fold cross-validation
in our empirical studies. We calculated the expense on each
project with formula 7. Specially, we use the Boxplot fig-
ures to reveal the distributions of hyb-MLR and sta-MLR on
each project. Figure 5 shows the comparison of expense dis-
tributions on each project applying hyb-MLR and sta-MLR.

Figure 5 reveals the distributions of these two methods
(i.e., hyb-MLR and sta-MLR) for the expenses on all eight
projects. We observed that the expenses for fault localization
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FIGURE 5. Comparison of expense applying hyb-MLR and sta-MLR.

of hyb-MLR on all projects are lower than those of sta-MLR.
Besides, the range of the expense when sta-MLR is applied
is wider than that when hyb-MLR is applied to each project,
especially on NanaoXml1, NanoXml2, Math, and Lang. This
shows that the effectiveness of hyb-MLR is more stable than
that of sta-MLR.

Besides, we investigated the performance of Mur4FL
on Nanoxml2 as the evolution of Nanoxml1. In detail,
we applied the prediction model, which was trained on
NanoXml1, on Nanoxml2. The expenses of predicting
6 faults range from 21.23 to 49.78.

Furthermore, we calculated p-value to detect the dif-
ferences between hyb-MLR and sta-MLR by Wilcoxon
rank-sum test, and corrected the obtained p-values by using
Benjamini_Hochberg (BH) method [35]. We set the signifi-
cance level at 0.05, which means that if the corrected p-values
are less than 0.05. The result indicates that there is a signifi-
cant difference between the compared two methods.

Summary for RQ2: In all case, the hyb-MLR (applied
our model Mulr4FL on hybrid metrics) has a signifi-
cant improvement and stability compared to sta-MLR
(applied our model Mulr4FL on static metrics).

3) RQ3: HYB-MLR VS. DYN-MLR
Next, we evaluate the performance of our model (Mulr4FL)
on the dynamic information of the program’s runtime
(denoted as dyn-MLR) by comparing it with that on
hybrid metrics (denoted as hyb-MLR). Similarly, we apply
our model (Mulr4FL) on HX and DX with k-fold
cross-validation to calculate the expenses, respectively.
In detail, we applied 5-fold cross-validation on two projects
(NanoXml1, NanoXml2) and 10-fold cross-validation on the
rest of the projects. For each fault, the expense is calculated
by Equation 7, and the expense distributions of the faults are
group present by each project with the Boxplot (as shown
in Figure 6).

Looking at Figure 6, it is apparent that hyb-MLR reported
significantly lower expenses than dyn-MLR. All the mean

FIGURE 6. Comparison of expense applying hyb-MLR and dyn-MLR.

scores of the expenses using hyb-MLR are lower than that of
dyn-MLR on the eight projects. Besides, the expenses range
using dyn-MLR is changedmorewidely than using hyb-MLR
on each project. That is to say, hyb-MLR is more stable in
expense than dyn-MLR for locating faults.

Similarly to RQ2, we also applied the prediction model,
trained with NanoXml1, on Nanoxml2. The expenses of pre-
dicting 6 faults range from 18.47 to 46.37.

To Further verify the different methods (i.e., hyb-MLR
and dyn-MLR) have significant differences in the expense
of locating faults, we also used Wilcoxon rank-sum test to
calculate the BH-corrected p-values when comparing our
model on two different metrics (HX and DX ). Although the
p-value is a little greater than 0.05 on Chart, the p-values
calculated on the other seven projects are far less than 0.05.
That is to say, in most cases, the expense of hyb-MLR is lower
than that of dyn-MLR.

Summary for RQ3: We observed that the hyb-MLR
(applied our model Mulr4FL on hybrid metrics) has a
significant improvement and stability compared to dyn-
MLR (applied our model Mulr4FL on static metrics) in
most cases.

4) RQ4: HYB-MLR VS. SFLs
In this section, we conduct comparisons on the expenses of
locating faults between hyb-MLR and a set of state-of-the-
art SFL (Spectrum based fault localization) techniques. Since
previous studies (RQ2 and RQ3) indicate that hyb-MLR,
which is applied to our model (Mulr4FL) on hybrid metrics,
performs the best than sta-MLR and dyn-MLR, which are
based on static and dynamic metrics, respectively. Therefore,
we conduct another comparison between dyn-MLR (which
is applied to our model (Mulr4FL) on dynamic metrics) and
SFLs (which are based on dynamic metrics either). Here,
SFL techniques we studied include Naish1, Naish2, Wong,
Russel&Rao, and Binary.

For all studied SFL techniques, we also applied 5-fold
cross-validation on two projects (NanoXml1, NanoXml2)
and 10-fold cross-validation on the rest of the projects.
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TABLE 6. Comparison of expense applying hyb-MLR, dyn-MLR and SFL.

We statistic the means of expenses of each technique applied
on eight projects, and calculate the average expense of
each technique on all projects. The results are listed in
Table 6.

From Table 6 we can see that the means of the expense
of hyb-MLR are much lower than those of SFLs. And the
average expense of hyb-MLR is 22.82%, while the aver-
ages of expenses of compared SFL techniques ranged from
37.24% to 44.35%. Similarly, the expenses of dyn-MLR are
significantly lower than those of SFL, though both dyn-MLR
and SFL techniques use only dynamic metrics of runtime
information of examined projects. Furthermore, the average
expense of dyn-MLR is also much lower than the average
expense of other SFL techniques. Among all studied SFL
techniques, Naish1 is the best technique than others, and
Naish2 and Wong have similar performance, Russel&Rao
and Binary have similar performance either.

Next, we further examine the difference between the tech-
niques listed in Table 6 by using the Wilcoxon rank-sum
test to calculate the BH-corrected p-values. Although these
SFL techniques are proved to be different optimal groups
with a theoretical analysis [33], the locating granularity is
based on statement-level, not on method-level in their the-
oretical analysis framework. In our empirical study, we want
to evaluate the difference between them on a method-level.
The significance level is set at 0.05, which means that if the
corrected p-values are less than 0.05, there is a significant
difference between the two compared vectors. We compared
hyb-MLR with five SFL techniques, all corrected p-values
obtained are far less than 0.05 which means that hyb-MLR
is significantly different from SFL techniques. Additionally,
all corrected p-values obtained are far less than 0.05 when
comparing dyn-MLR with SFL techniques. That means dyn-
MLR is significantly better than SFL techniques. However,
the corrected p-values calculated when comparing two SFL
techniques are greater than 0.05, which means that there are
no significant differences between these SFL techniques.

Summary for RQ4: We observed that both hyb-MLR
(on hybrid metrics) and dyn-MLR (on dynamic metrics)
have a significant improvement compared to SFL tech-
niques (on dynamic metrics). And there is no significant
difference between studied SFL techniques.

V. THREATS TO VALIDITY
In this section, we will discuss potential threats to the validity
of our research, which mainly includes three parts: internal
threats, externalthreats, and construct threats.

A. INTERNAL THREATS
In this paper, the proposed model is based on a set of metrics
using software measurement. Therefore, the internal threat
lies in the metrics used in our model. Although, the optimal
static and dynamic metrics for fault locating are still unclear.
We selected seven static metrics and four dynamic metrics
that are proven to be fault-related by the previous empirical
studies [15]. We further separate the fault-related metrics by
conducting a bivariate analysis. In the future, we will extend
our model to cover more areas of features and present more
metrics.

B. EXTERNAL THREATS
There are only eight projects used for evaluating perfor-
mance in our empirical study, and our experimental results
may not be generalizable to all projects. To alleviate this
threat, we select the projects from popular repositories, such
as SIR and Defects4J, which are used widely in previous
studies [36], [37]. Moreover, the scale of these projects from
small to large, and the faults include manually seeded and
real-world happened. Therefore, it can reduce the impacts in
this aspect to a certain extent by using these projects. In the
future, we want to verify the effectiveness of our proposed
model on projects of different scales or other programming
languages (such as Python).

C. CONSTRUCT THREATS
In our RQ2, RQ3, and RQ4, we calculated the expenses
using Equation 7 which depends on the order of faults in
the suspiciousness rank list. However, the calculation faces a
dilemma when a faulty method has the same suspiciousness
as other methods. To alleviate this threat, we choose a com-
promise named ML(Middle Line) strategy which has proven
feasible [29] and also be used by other research works.

VI. RELATED WORK
This section briefly introduces the recent studies related to
our work from two aspects: spectrum based fault localization
and defect prediction.

A. SPECTRUM BASED FAULT LOCALIZATION
For improving the efficiency of program debugging, there
have been a large number of researches on automatic locat-
ing faults. Among the various fault localization approaches
proposed in previous studies, the Spectrum based fault local-
ization(SFL) techniques constitute the main category. SFL
techniques locate faults by calculating the suspiciousness of
the entities of the program with some risk formulas which
need to collect the coverage information of program entities.
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Researchers proposed hundreds of formulas accompanied
by empirical studies to support the efficiency of their
approaches. Typical formulas are: Tarantula [4], Ochiai [38],
Naish1, and Naish2 [31], etc. The main difference between
these SFL techniques lies in the formulas used for calcu-
lating the suspiciousness of program entities and the cover-
age metrics gathered by trace tools. However, Xie et al. [33]
proposed a theoretical analysis framework. Based on the
framework, they compared the efficiency of 30 formulas and
theoretically proved five of them to be optimal. Compared
with the five optimal SFL formulas which only use four
dynamic features, our approach combines coverage informa-
tion with static features and dynamic features of the program
under debugging, which can improve the efficiency of fault
localization.

To further improve the efficiency of SFL techniques,
researchers introduced program analysis techniques to fault
localization. For example, Liblit et al. [39] proposed the
CBI approach to isolate bugs by calculating the suspicious
entities using their coverages when the predicate is true.
Similarly, Liu et al. [40] proposed the SOBER to identify
buggy predicate by considering the predicates value pat-
terns in both passed and failed runs, respectively. Later,
Zhang et al. [41] proposed the PRFL, a lightweight technique
using the PageRank algorithm to recompute the spectrum
by considering the contributions of different tests. Recently,
Jiang et al. [42] proposed Predicate-based Fault Localiza-
tion (PREDFL), which combines the spectrum-based fault
localization (SFL) and statistical debugging (SD) into a uni-
fied model. With the best configuration for each dimension
under the unified model, PREDFL can further reduce the
cost of fault localization. Besides, a number of SFL tech-
niques improve fault localization efficiency by using a hybrid
spectrum of program slice and execution coverage. Such as
HSFal [43], IPSETFUL [44], FPA-FL [45], etc. A recent
work by Chaleshtari et al. [46] combines mutation techniques
into fault localization with the help of program slicing, which
aims to reduce the number of statements to be mutated.
Different from the above approach, our model only needs
to collect dynamic coverage and the static metrics of class
methods, which lead to lower time and space costs.

B. DEFECT PREDICTION
Defect prediction aims to find out the defects(faults) in
software systems. Numerous software metrics and statistical
models have been developed for predicting fault. These met-
rics can be categorized into three types: size and complexity
metrics, testing metrics, process quality metrics. An earlier
study of defect prediction by Compton et al. [47] indicates
that troublesome areas could be identified using two groups
of specific metrics: predelivery defects and complexity of
Ada packages. Later, Basili et al. [13] first introduced logis-
tic analysis to defects prediction. They measure a student-
developed C++ project used weighted metrics and then
predicted the fault-prone classes. From then on, many defect
prediction techniques were developed. Similar to Basili’s

work, Briand et al. [14] measure and predict faulty classes
using logistic regression analysis on a set of static met-
rics. And other statistical models Bayesian Belief Networks
(BBN) [48], analysis of variance (ANOVA) [49]–[51]), etc.)
have been developed to determine if a program entity contains
defects. Different from the above methods, our approach
applies multivariate logistic regression analysis on both static
and dynamic metrics to predict the fault-prone class methods.

Recently, machine learning techniques became popular
for defect prediction [52]. Researchers proposed various
defect prediction models based on algorithms such as deep
learning, representation learning, and transfer learning [53].
Wang et al. [54] leverage Deep Belief Network (DBN) to
automatically learn semantic features from token vectors
extracted from programs’ Abstract Syntax Trees (ASTs),
which bridge the gap between programs’ semantics and
defect prediction features. Similarly, Li et al. [55] pro-
posed Defect Prediction via Convolutional Neural Network
(DP-CNN) to leverage deep learning for effective feature
generation. DP-CNN used a combination of learned features
with traditional hand-crafted features for defect prediction.
Recently, learning-based fault localization has been inten-
sively studied. For example, Li et al. [56] present DeepFL,
a tailored Multi-layer Perceptron (MLP) model, to automat-
ically learn the most effective existing/latent features for
precise fault localization. To further improve the efficiency
of defect prediction, a series of combined methods are pro-
posed. For example, Manjula et al. [57] combine genetic
algorithm (GA) with deep neural network (DNN) for defect
prediction. In particular, GA is used for feature optimiza-
tion, and DNN is used for classification. Although machine
learning-based techniques achieved great improvement, they
are heavy-weighted approaches that usually consume large
amounts of resources. Our approach is based on pre-designed
program metrics (which can be measured very quickly) and
runtime metrics (which can be traced on-the-fly). Further-
more, the metrics used by our approach are extensible accord-
ing to program language and project types.

VII. CONCLUSION AND FUTURE WORK
Fault localization is a critical task to improve debugging effi-
ciency in software maintenance. Multivariate logistic regres-
sion analysis model, by training on knowledge of legacy
program debugging, can be used to predict fault location
efficiently. In this article, we propose a novel framework
Mulr4FL for locating source code faults based on multivari-
ate logistic regression analysis. In particular, we construct
an initial metrics-set of static metrics and runtime metrics
of class methods. Next, we conduct a correlation analysis
to select those fault-related metrics. Then, we combine the
static metrics and dynamic metrics to a hybrid matrix to
train the multivariate logistic regression model. With the
trained model, we can predict the fault location at the class-
method level effectively. Furthermore, we conduct empirical
studies to verify the effectiveness of our proposed frame-
work Mulr4FL on different metrics (static and dynamic) by
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comparing it with the state-of-the-art SFL techniques. The
experimental results indicate that multivariate logistic regres-
sion analysis can significantly improve the effectiveness of
fault localization when static metrics are introduced into the
model.

In the future, we first want to design more reasonable
metrics and the optimalmetrics set for better fault localization
using multivariate logistic regression model. We will intro-
duce more metrics into our study, such as KBCs(Key Block
Chains) [58]. Second, we will study the orthogonalization
of feature metric or construct an orthogonal feature metric
set to alleviate the potential impact of non-orthogonal met-
rics on the fault localization results. Additionally, we con-
sider introducing the weighted metrics in multivariate logistic
regression for improving the accuracy of the fault localiza-
tion. Finally, we also want to refine the multivariate logistic
regression model or introduce other models, such as linear
mixedmodel, to improve the accuracy of locating faults based
on the obtained fault-related metrics.
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