
The Journal of Systems and Software 212 (2024) 112031

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

GRACE: Empowering LLM-based software vulnerability detection with graph
structure and in-context learning✩

Guilong Lu, Xiaolin Ju ∗, Xiang Chen, Wenlong Pei, Zhilong Cai
School of Information Science and Technology, Nantong University, Nantong, China

A R T I C L E I N F O

Keywords:
Vulnerability detection
Large language model
In-context learning
Source code representation
Graph structure

A B S T R A C T

Software vulnerabilities inflict considerable economic and societal harm. Therefore, timely and accurate
detection of these flaws has become vital. Large language models (LLMs) have emerged as a promising tool
for vulnerability detection in recent studies. However, their effectiveness suffers when limited to plain text
source code, which may ignore the syntactic and semantic information of the code. To address this limitation,
we propose a novel vulnerability detection approach GRACE that empowers LLM-based software vulnerability
detection by incorporating graph structural information in the code and in-context learning. We also design
an effective demonstration retrieval approach that identifies highly relevant code examples by considering
semantic, lexical, and syntactic similarities for the target code to provide better demonstrations for in-context
learning. To evaluate the effectiveness of GRACE, we conducted an empirical study on three vulnerability
detection datasets (i.e., Devign, Reveal, and Big-Vul). The results demonstrate that GRACE outperforms six
state-of-the-art vulnerability detection baselines by at least 28.65% in terms of the F1 score across these three
datasets. Therefore, our study highlights the effectiveness of integrating graph structural information and in-
context learning in LLMs for vulnerability detection. These findings motivate further investigation into tailoring
such approaches for specific vulnerability types or adapting them to other security tasks.
1. Introduction

The complexity of software components and structures has led to an
increase in software vulnerability exploitation. This has resulted in fre-
quent security incidents (such as hacker attacks, privacy breaches, and
data extortion) (Aslan et al., 2023). For example, Facebook experienced
a system vulnerability exposure in September 2018 (Cadwalladr and
Graham-Harrison, 2018), exploited by hackers to steal the personal in-
formation of approximately 50 million users, including susceptible data
usernames, passwords, IP addresses, browsing histories, and contact
information.

In recent years, the rapid advancement of deep learning (DL) tech-
nology has provided a solid technical foundation for performing vul-
nerability detection (Cao et al., 2021, 2022; Guo et al., 2022; Zhao
et al., 2023a; Pan et al., 2023; Xue et al., 2020; Kudjo and Chen,
2019). For example, the VulDeePecker (Li et al., 2018) divided the
code into code gadgets, using them as the granularity, and employed
a bidirectional Long Short Term Memory (LSTM) Network to extract
features and conduct vulnerability detection. The IVDetect (Li et al.,
2021) utilized the Feature-Attention Graph Convolutional Network

✩ Editor: Professor Yan Cai.
∗ Corresponding author.
E-mail addresses: guil.lu@outlook.com (G. Lu), ju.xl@ntu.edu.cn (X. Ju), xchencs@ntu.edu.cn (X. Chen), wl.pei@outlook.com (W. Pei),

zhil.cai@outlook.com (Z. Cai).

model (FA-GCN) for vulnerability detection. IVDetect considered both
the vulnerability statement and its context through data dependency
and control dependency, resulting in enhanced detection performance.

However, existing deep learning-based vulnerability detection ap-
proaches suffer from two limitations. The first limitation is the signifi-
cant time required for model training, as demonstrated by IVDetect (Li
et al., 2021), which takes up to 9 days. The second limitation is that the
size of the training dataset constrains the performance of these models.

Recent advancements in LLMs have shown promise in alleviating
these two limitations (Geng et al., 2024). However, according to the
evaluation results, Cheshkov et al. (2023) found that using LLMs for
vulnerability detection is deemed unsatisfactory. We conducted an in-
depth analysis of the underlying reasons and found that the knowledge
acquired by the LLM is insufficient. Based on our observation, we
resorted to two customizable optimizations. First, we integrate graph
structure information with the LLM to enable the model to learn the
structural information of the source code, such as data dependency rela-
tionships. Second, incorporating domain knowledge through in-context
vailable online 21 March 2024
164-1212/© 2024 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2024.112031
Received 18 October 2023; Received in revised form 4 February 2024; Accepted 18
 March 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:guil.lu@outlook.com
mailto:ju.xl@ntu.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:wl.pei@outlook.com
mailto:zhil.cai@outlook.com
https://doi.org/10.1016/j.jss.2024.112031
https://doi.org/10.1016/j.jss.2024.112031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112031&domain=pdf


The Journal of Systems & Software 212 (2024) 112031G. Lu et al.

p
t
d
u

2

a
d
s
b
u
d
R
t
s

t
(
a
a
r

Fig. 1. An overview of in-context learning. Two examples are provided here (i.e., #1#
and #2#).

learning has been shown to help improve LLMs’ performance (Dong
et al., 2022). Therefore, we provide high-quality domain knowledge to
the LLMs for effective vulnerability detection.

In this study, we propose GRACE, a novel vulnerability detection
approach that empowers large languaGe model with gRAph struCturE
and in-context learning. GRACE comprises three main modules: (1)
Demonstration selection module, which selects the most similar
prompt by simultaneously considering semantic similarity, syntactic
similarity, and lexical similarity. (2) Graph structure representation
module, which integrates abstract syntax tree (AST), program depen-
dence graph (PDG), and control flow graph (CFG) to enable LLM to
capture more code structure information. (3) Enhanced Vulnerability
Detection Module, which is designed to improve LLMs’ capability in
mining vulnerability-domain knowledge. It does so by creating a new
basic prompt design that includes domain information and identity
information, as well as adding graph structures prompt and in-context
learning prompt.

To evaluate the performance of GRACE, we utilize three widely
studied benchmark datasets for software vulnerability detection: Re-
veal (Chakraborty et al., 2022), FFmpeg+Qemu (Zhou et al., 2019), and
Big-Vul (Fan et al., 2020). We comprehensively compare six state-of-
the-art software vulnerability detection baseline approaches, including
three graph-based approaches (i.e., Devign Zhou et al., 2019, Re-
veal Chakraborty et al., 2022, and IVDetect Li et al., 2021), and three
token-based approaches (i.e., VulDeePecker Li et al., 2018, Russell
et al., 2018, SySeVR Li et al., 2022b). The comparison results demon-
strate that our approach GRACE outperforms all baseline approaches. In
particular, GRACE achieves an average improvement of at least 28.65%
in terms of F1 score compared to the baselines across the three datasets.

In summary, the main contributions of our work are as follows:

• We present a novel approach GRACE by introducing graph struc-
ture information into LLM for vulnerability detection, which can
effectively address the limitations of LLM when only treating the
code as plain text.

• To provide better demonstrations for in-context learning, we de-
sign an effective demonstration retrieval approach that identifies
the most similar code by simultaneously considering semantic,
lexical, and syntactic similarity.

• We perform a large-scale evaluation of GRACE on three public
benchmark datasets, and the results demonstrate GRACE can
achieve better performance compared to state-of-the-art DL-based
models for vulnerability detection.

Open science. Our source code and experimental data are available
at: https://github.com/P-E-Vul/GRACE.

Paper Organization. Section 2 introduces the background and re-
search motivation. Section 3 presents the overall architecture of GRACE
and the three modules in detail, including the Demonstration selection
module, Graph construction information generation module, and En-
hanced vulnerability detection module. Section 4 describes the exper-
2

imental setup, including datasets, baselines, metrics, and experimental
settings. Section 5 introduces the experimental results and analysis.
Section 6 discusses the effectiveness of GRACE for vulnerability type
detection and the threats to validity. Section 7 analyzes related work,
and Section 8 concludes this paper.

2. Background and motivation

2.1. Vulnerability detection

Software security is a critical subject in the field of software en-
gineering (McGraw, 2004). Within software security, vulnerability de-
tection holds significant importance (Liu et al., 2012). A vulnerability
detection task involves analyzing software systems or code to identify
vulnerabilities. Its primary objective is to assist in discovering and
repairing vulnerabilities within software systems, thereby enhancing
system security and mitigating potential security risks. In previous
studies, researchers proposed program analysis (PA)-based approaches
to detect vulnerabilities (Li and Cui, 2010). For example, Cppcheck1

used unique code analysis and focused on detecting undefined behavior
and dangerous code structures (Kaur and Nayyar, 2020). Unfortunately,
PA-based approaches rely on predefined patterns to identify vulnera-
bilities (Shen and Chen, 2020), and the predefined patterns need to be
manually created by security experts, which can be time-consuming.

In recent years, there has been a surge in the utilization of deep
learning (DL) for the automated detection of software vulnerabili-
ties (Hin et al., 2022; Cheng et al., 2022; Sun et al., 2023). This
approach involves leveraging learned patterns from existing vulner-
ability data to enhance the accuracy and efficiency of the detection
process. A DL-based vulnerability detector generally comprises three
key components (Nong et al., 2022).

❶ Learn representation for the code snippet. Every code snippet
extracted from the target program must be tokenized into a sequence
of tokens and then encoded into a vector representation.

❷ Train the DL model. A neural network model, such as LSTM,
CNN, or self-attention, is specifically designed and trained on a dataset
of vectorized code snippets. Based on their vector representations, the
model learns to analyze the patterns in vulnerable and non-vulnerable
codes.

❸ Perform vulnerability detection. Once trained, the model can
rocess new code snippets, converting them into vectors and classifying
hem as vulnerable or non-vulnerable based on the patterns it learned
uring training. The accuracy of the model’s predictions is evaluated
sing a test dataset.

.2. Code representation

Code representation, which converts source code into appropri-
te formats, is a vital technique extensively studied in vulnerability
etection (Hanif and Maffeis, 2022). By accurately representing the
emantics and structures of code, hidden vulnerability patterns can
e effectively extracted and analyzed. Many existing works strive to
nderstand program behaviors by customizing effective techniques for
ifferent tasks, which has achieved promising results (Li et al., 2016;
ussell et al., 2018; Cao et al., 2021). In general, we can classify

hese works into four main types of code representations: feature-based,
equence-based, tree-based, and graph-based (Siow et al., 2022).

Feature-based approaches require extracting explicit program fea-
ures from source code and feeding them into machine learning-based
ML-based) models for vulnerability analysis and detection. For ex-
mple, Behl et al. (2014) proposed using TF-IDF and Naive Bayes
lgorithms (Webb et al., 2010) to mine security vulnerabilities from bug
eports. Sequence-based approaches consider code as token sequences

1 http://cppcheck.net/.

https://github.com/P-E-Vul/GRACE
http://cppcheck.net/


The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Fig. 2. The architecture of GRACE, which mainly contains three components: (A) Demonstration selection module; (B) Graph structure information generation module; (C) Enhanced
vulnerability detection module.
and convert them into numeric vectors using distributed representa-
tions (Mikolov et al., 2013) for vulnerability detection. Tree-based
approaches deal with highly structured data, and therefore, many
encoding techniques aim to extract structural information, such as
Abstract Syntax Trees (ASTs), to capture semantics (Ma et al., 2020;
Yang et al., 2021b). Graph-based approaches attempt to incorporate
more structural information into graphs to represent program seman-
tics, such as Control Flow Graphs (CFGs), Data Flow Graphs (DFGs),
Call Graphs (CGs), and Program Dependence Graphs (PDGs) on vulner-
ability detection (Wu et al., 2021). Among them, CFGs model execution
flows and are commonly used for control-flow-related vulnerabilities;
DFGs capture data dependencies useful for data flow analysis; CGs and
PDGs incorporate control and data flow information to capture complex
dependencies.

2.3. In-context learning

LLMs have demonstrated strong performance on various down-
stream tasks (Wang et al., 2023; Chen et al., 2021). Fine-tuning these
models has been a popular method for transferring them to new tasks
(Yu et al., 2022; Hanif and Maffeis, 2022). However, fine-tuning an
LLM can be impractical due to the high computational resources it
requires (Gu et al., 2022). To mitigate this issue, Brown et al. (2020)
proposed in-context learning for new tasks by concatenating the train-
ing data as demonstrations without needing any gradient updates. LLMs
can learn and infer new tasks through given examples without fine-
tuning, as illustrated in Fig. 1. Due to the vast corpora, they are trained
on, LLMs have acquired extensive domain knowledge, enabling them
to generalize to unseen tasks through in-context learning without the
requirement for fine-tuning.

2.4. Research motivation

DL-based approaches have dominated vulnerability detection in re-
cent years. However, these approaches face two significant challenges:
3

(1) Model performance relies on training data scale. Li et al. (2021)
conducted experiments on the Big-Vul dataset using five different pro-
portional splits: 40:30:30, 50:25:25, 60:20:20, 70:15:15, and 80:10:10.
The results demonstrated a progressive increase in the model’s AUC
metric, increasing from a minimum of 69% to 90%. (2) Training models
are incredibly time-consuming. For example, Wu et al. (2022) reported
that their VulCNN model required a total training time of 2054.89 min.
Similarly, Li et al. (2021) spent 9 days and 23 h processing data and
conducting training on the Big-Vul dataset.

The rise of LLMs overcomes these limitations and has achieved
impressive results on tasks like code comment generation (Geng et al.,
2024) and program repair (Xia and Zhang, 2023; Xia et al., 2023).
However, in current research related to using LLMs for vulnerability
detection, previous works have only considered code as plain text, and
their effectiveness has been limited (Cheshkov et al., 2023). Therefore,
we further consider combining in-context learning and graph struc-
tural information to enhance LLMs’ capability for vulnerability detec-
tion, which can provide a promising direction for future vulnerability
detection studies.

3. Approach

The framework of our approach is illustrated in Fig. 2, which
comprises three modules: the Demonstration Selection Module, the
Graph Structure Information Generation Module, and the
Enhanced Vulnerability Detection Module. In the subsequent sec-
tions, we provide a detailed explanation of each of these modules.

3.1. Demonstration selection module

Prior studies have demonstrated that incorporating demonstrations
can assist models in better capturing developers’ intents, thereby en-
hancing the accuracy of predictions (Ma et al., 2023; Luo et al., 2023;
Zhao et al., 2023b). To obtain high-quality demonstrations, we design a
novel retrieval approach that identifies the most similar demonstrations



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.

l

t
c
u
m
t
e
t

w
t
s

m

w
s

3

P
C
t
T
t
n
f
i
t
n
i
o
s
c
g

by jointly modeling semantic similarity, lexical similarity, and syntactic
similarity between the context and source code examples. Different
from previous methods, such as LSI (Haiduc et al., 2010), NNGen (Liu
et al., 2018), and CloCom (Wong et al., 2015), which only focused on
lexical and syntactic information, semantic similarity was not taken
into account, resulting in situations where code snippets with high
lexical and syntactic similarity were selected, but with low semantic
similarity. To alleviate this limitation, we first compare the semantic
similarity and filter out code snippets with low semantic similarity.
Subsequently, we consider the lexical and syntactic information. Next,
we will provide a detailed description of our approach.

We first leverage the codeT5 (Wang et al., 2021) model to ex-
tract code semantic features and reduce feature dimensionality via T-
SNE (Belkina et al., 2019). Then, we measure the 𝐿2 distance between
the target code and the training set to compute semantic similarity.
Based on this similarity, we retrieve the top K code snippets from
the training set that are most similar to the target code. Finally, we
incorporate lexical and syntactic similarities to identify the most similar
instance among top K candidates. Specifically, regarding lexical simi-
larity, we treat code snippets as token sets and quantify the similarity
between 𝛺 and 𝛤 using statistical methods.

exical _similarity(𝐴,𝐵) =
∣ 𝛺 ∩ 𝛤 ∣
∣ 𝛺 ∪ 𝛤 ∣

(1)

where 𝛺 represents the token sets of the target code, while 𝛤 represents
he token sets of a candidate code. As for syntactic similarity, we
onsider the AST information of the source code. Specifically, we first
se Joern2 to parse the code into corresponding ASTs. Then, since tree
atching algorithms (e.g., tree edit distance Bille, 2005) are compu-

ationally expensive for similarity evaluation, we adopt SimSBT (Yang
t al., 2021a) to traverse the AST type nodes and generate sequences
hat better capture the tree structure. For two code snippets 𝐴 and 𝐵,

we obtain the ordered sequences 𝑎 and 𝑏 via SimSBT and then calculate
the edit distance between a and b to quantify the sequential similarity.

syntactic _similarity(𝐴,𝐵) =
sum(len(𝑎), len(𝑏)) − lev

sum(len(𝑎), len(𝑏))
(2)

here 𝑙𝑒𝑣 is the Levenshtein distance. Finally, we propose a mixed score
o retrieve the most similar instances from candidates. For two code
nippets 𝐴 and 𝐵, mixed-score is defined as:

ixed _score(𝐴,𝐵) = 𝜔 × lexical _similarity(𝐴,𝐵)

+(1 − 𝜔) × syntactic _similarity(𝐴,𝐵)
(3)

here 𝜔 is a parameter that can adjust the weights between different
imilarities.

.2. Graph structure information generation module

In this module, we leverage the Joern tool to generate a Code
roperty Graph (CPG) representation of the source code. CPG combines
FG, PDG, and AST. As depicted in Fig. 4, a C function (Fig. 3 shown) is
ransformed into a graph consisting of nodes and edges of various types.
he nodes and black edges in the graph represent the AST, capturing
he function’s syntactic information. However, the AST alone does
ot provide sufficient information for the model to reason about the
unction’s semantics. Therefore, CPG augments the AST with semantic
nformation, such as data flow and control flow. Specifically, in Fig. 4,
he blue edges with the ‘‘D_a’’ label indicate data dependencies between
odes, signifying that the value defined in the variable ‘‘a’’ is utilized
n the node’s subtree. Similarly, the green edges represent execution
rder, such as conditional branches. By incorporating both syntax and
emantics, we enable the model to better comprehend the information
onveyed by the function. Fig. 5 presents the node and edge list output
enerated by Joern.

2 https://joern.io/.
4

Fig. 3. A snippet of C code.

Table 1
Edge types and descriptions in CPG.

Egde types Description (the relationship between nodes)

IS CLASS OF A class and its subclass.
IS FUNCTION OF AST A function and its AST representation
IS FUNCTION OF CFG A function and its CFG representation
IS AST PARENT A node in the AST and its parent node
USE A node in the AST and the variables it uses
DEF A node in the AST and the variables it defines
DOM A node in the AST and the dominator tree
POST DOM A node in the AST and the post-dominator tree
CONTROLS A node in the AST and the control flow graph
DECLARES A node in the AST and the declared variables
FLOWS TO A node in the AST and the nodes that it flows to
REACHES A node in the AST and the nodes that it reaches

In general, the AST depicts the syntactic structure of the program
code. The PDG models the data and control dependencies within the
code. The CFG represents all paths that might be traversed during the
program execution. By combining these graphs, the CPG provides a
comprehensive representation of the structural and semantic informa-
tion of the code. The set of edges for the CPGs in our target datasets
consists of 12 edge types. We show the details in Table 1.

3.3. Vulnerability detection module

After curating the demonstrations for in-context learning and cus-
tomizing the graph structure prompts, we designed a set of prompt-
ing schemes for vulnerability detection. Our prompts consist of two
components: ❶ basic prompt and ❷ auxiliary information.

Basic prompt. First, to get results when using an LLM as a detector,
a basic prompt is required. In this paper, we use the following basic
prompt and ask the LLM to output a fixed answer format (vulnerable
or not vulnerable) to express the result:

Basic prompt (𝑃𝑏): ‘‘[Code snippet] In the above code snippet,
check for potential security vulnerabilities and output either ‘Vul-
nerable’ or ‘Non-vulnerable’.’’

Where [Code snippet] indicates the test function. The fixed answer
format of ‘Vulnerable’ or ‘Not Vulnerable’ gives the model clear guide-
lines for communicating its assessment. This converts the open-ended
vulnerability detection task into a binary classification that can be more
easily interpreted.

Considering that the basic prompt alone is not enough (OpenAI,
2023), we improve on the basic prompt by adding identity information.
Specifically, we use identity information in the prompt to explicitly
specify the role of the LLM as a software engineering system:

https://joern.io/


The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Fig. 4. An example of a CPG derived from the functions in Fig. 3. The solid black lines represent AST, the dashed green lines represent CFG, and the dashed blue lines represent
PDG. Here, the complexity has been simplified based on (Yamaguchi et al., 2014), and the actual number of edges and nodes generated by Joern is approximately twice as shown
here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Output generated by Joern for the function shown in Fig. 3. Shown is a list of
CPG nodes and edges, indexed by node IDs.

Fig. 6. A specific example of inputting all the information to LLMs.

Enhance basic prompt by identity information (𝑃𝑖): ‘‘You are now
an excellent programmer’’.
5

Adding this clear statement of identity primes the model to adopt
the correct mindset for the task. It activates the model’s capabilities
related to security analysis and vulnerability finding.

After obtaining the identity information, LLM is aware of the role
it is supposed to play. However, we believe that this alone is insuffi-
cient. Therefore, we introduce domain-specific information to further
enhance the basic prompt. We design a domain prompt as follows:

Enhance basic prompt by domain information (𝑃𝑑): ‘‘You are
conducting a function vulnerability detection task for C/C++
language’’.

By enhancing basic prompts with identity information and do-
main information, we have developed a more comprehensive and per-
sonalized vulnerability detection prompt framework. This framework
guides the LLM to analyze vulnerabilities within specific identities and
domains, resulting in more accurate vulnerability detection outcomes.

Auxiliary information. In this paper, the auxiliary information
consists of two parts: in-context learning demonstrations and graph
structure information. The in-context learning demonstrations are ob-
tained through Module A, which retrieves the most similar functions
to the target code. The graph structure information is generated by
Module B and includes the nodes and edges corresponding to the
functions.

The in-context learning demonstrations are examples of code that
are similar to the target code. These demonstrations help the LLM
understand the specific context and patterns associated with the target
code. By learning from and analyzing functions that resemble the target
code, LLM can enhance its vulnerability detection capabilities.

The graph structure information provides a CPG representation of
the code. The nodes represent the functions, and the edges represent
the connections between them. By incorporating node information
and edge information, LLM gains a more comprehensive understand-
ing of the code’s structure, facilitating a more holistic analysis of
vulnerabilities.

For a more intuitive description of our method, we provide an
example in Fig. 6 that illustrates all the information fed to the model.
The block named [code snippet] represents the code that needs to
be detected, and its specific style can be referred to in Fig. 3. The
blocks named [edge information] and [node information] represent
the graph structure information generated in our Section 3.2, and
their styles are displayed in Fig. 5, respectively. Additionally, we have
the block [demonstration], which is a code snippet generated in our
Section 3.1 for LLM learning. We will input the corresponding label
for this demonstration in [label], which can be either vulnerable or
non-vulnerable.



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
In the auxiliary information, it merits noting that the prompt length
needs to conform to the in-context window limitation of LLMs. Specifi-
cally, the context window of GPT4 used in the paper is limited to 8192
tokens. When our content exceeds 8192 tokens, the remaining content
will be truncated.

4. Experimental setup

This section describes our experimental setup to address our re-
search questions.

4.1. Research questions

To evaluate the effectiveness of our proposed GRACE, we want to
answer the following four research questions (RQs):

RQ1: How effective is GRACE in vulnerability detection?
Motivation: In this RQ, we aim to investigate whether GRACE

can enhance the vulnerability detection capability of LLMs by in-
corporating graph structural information and in-context learning. We
compare GRACE with six state-of-the-art baselines, VulDeePecker (Li
et al., 2018), Russell et al. (Russell et al., 2018), SySeVR (Li et al.,
2022b), Devign (Zhou et al., 2019), Reveal (Chakraborty et al., 2022),
and IVDetect (Li et al., 2021), to examine if GRACE outperforms these
baselines.

RQ2: How does graph structural information contribute to the
performance of GRACE?

Motivation: In this RQ, we aim to know whether the graph struc-
tural information customized for vulnerability detection can improve
the performance of GRACE. We conduct an ablation study, compar-
ing GRACE with and without the graph structural information.

RQ3: How does our in-context learning contribute to the per-
formance of GRACE?

Motivation: In this RQ, we aim to know the effectiveness of the
demonstrations retrieved through our proposed approach. We compare
three cases: no demonstration, a randomly selected demonstration, and
a demonstration retrieved through our proposed approach.

RQ4: How effective is our proposed enhanced basic prompt?
Motivation: In this RQ, we aim to investigate the effectiveness of

our proposed enhanced prompt. We compare versions with and without
domain knowledge and versions with and without identity type in the
basic prompt.

4.2. Datasets

In our experiment, we use three popular datasets called FFm-
peg+Qemu (Zhou et al., 2019), Big-Vul (Fan et al., 2020), and Re-
veal (Chakraborty et al., 2022). These datasets have been widely
used in vulnerability studies, such as AMPLE (Wen et al., 2023) and
IVDetect (Li et al., 2021). We show the details of these three datasets
as follows.

• FFmpeg+Qemu (Zhou et al., 2019). The FFmpeg+Qemu dataset
was manually labeled and sourced from two open-source C
projects: FFmpeg and Qemu. Specifically, it contains 10,067
functions labeled as vulnerable and 12,294 functions labeled as
non-vulnerable.

• Big-Vul (Fan et al., 2020). The Big-Vul dataset was sourced from
over 300 open-source C/C++ projects on GitHub, covering 91 dis-
tinct vulnerability types listed in the Common Vulnerabilities and
Exposures (CVE) database from 2002 to 2019. The dataset com-
prises 10,547 vulnerable functions and 179,299 non-vulnerable
functions.

• Reveal (Chakraborty et al., 2022). The Reveal dataset was
sourced from two open-source projects: Linux Debian Kernel and
Chromium. It comprises 1664 vulnerable functions and 16,505
non-vulnerable functions.

Table 2 presents the details of these three datasets, including the
total number of samples, the number of vulnerable samples, the number
6

of non-vulnerable samples, and the ratio of vulnerabilities.
4.3. Baseline methods

To evaluate the effectiveness of GRACE, we compare it with three
sequence-based methods (i.e., VulDeePecker Li et al., 2018, Russell
et al., 2018, SySeVR Li et al., 2022b) and three graph-based methods
(i.e., Devign Zhou et al., 2019, Reveal Chakraborty et al., 2022, IVDe-
tect Li et al., 2021). These baselines are widely recognized and highly
regarded in the field of vulnerability analysis. Another advantage is
that these methods are open-source. We conducted a simple statistical
analysis, and as of January 10, 2024, these baselines have been cited
as follows: 856, 556, 467, 623, 300, and 122 times, respectively.
Moreover, their performance also ranks among the top in the field of
vulnerability detection. We show the details of these six baselines as
follows.

• VulDeePecker (Li et al., 2018). VulDeePecker divides code into
code gadgets and uses a bidirectional LSTM network to extract
features and perform binary classification.

• Russell et al. (Russell et al., 2018). Russell et al. first utilize static
analysis tools to label the dataset, then employ convolutional
neural networks and other techniques to detect vulnerabilities.

• SySeVR (Li et al., 2022b). SySeVR extracts code representations
that incorporate both syntactic and semantic code features. It then
utilizes a bidirectional gated recurrent unit (BGRU) network to
perform vulnerability detection.

• Devign (Zhou et al., 2019). Devign builds code structure repre-
sentations by extracting graph information from functions, then
feeds this graph information into a Gated Graph Neural Network
(GGNN) to categorize the code.

• Reveal (Chakraborty et al., 2022). Reveal constructed multiple
directed graphs from source code and then utilized a GGNN to
analyze these graphical representations for detecting vulnerabili-
ties.

• IVDetect (Li et al., 2021). IVDetect constructs Program Depen-
dency Graphs (PDGs) and employs a feature attention graph
convolutional network to learn representations of these graphs for
vulnerability detection.

We reproduce the results of these baselines by replicating their
open-source code. The exception is Devign (Zhou et al., 2019), as
the original Devign is not open-sourced, so we use Chakraborty et al.
(2022) proposed third-party open-source code to reproduce it. Addi-
tionally, IVDetect (Li et al., 2021) requires an excessively long training
time, so we report the reproduction results of Wen et al. (2023) in our
paper.

4.4. Performance metrics

To assess the effectiveness of GRACE, we employ four commonly
used metrics in vulnerability detection: accuracy, precision, recall,
and F1 score. These metrics are widely recognized in the software
engineering community and have been utilized in numerous studies
on vulnerability detection, such as LineVul (Fu and Tantithamthavorn,
2022), ReGVD (Nguyen et al., 2021), PLBART (Ahmad et al., 2021),
and the baseline models mentioned in the article.

We define the performance metrics of our model in terms of true
positives (TP), true negatives (TN), false positives (FP), and false neg-
atives (FN). TP represents cases where the model correctly identifies
a vulnerability, and TN refers to non-vulnerable code appropriately
classified as such. On the other hand, FP denotes instances where
benign code is mistakenly categorized as vulnerable. FN corresponds
to cases where existing vulnerabilities are missed and not detected by
the model. Specific details about the four metrics are as follows.

Accuracy: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 . Accuracy examines the over-

all proportion of correct predictions made by a model. It reflects



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Table 2
Statistics of the dataset used in our vulnerability detection study.

Dataset Samples Vul Non-vul Vul ratio (%)

FFmpeg+Qemu (Zhou et al., 2019) 22,361 10,067 12,294 45.02
Big-Vul (Fan et al., 2020) 179,299 10,547 168,752 5.88
Reveal (Chakraborty et al., 2022) 18,169 1664 16,505 9.16
the model’s combined capability of detecting vulnerable and non-
vulnerable code.

Precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 . Precision measures the propor-

tion of TP among the code samples detected as vulnerable by the
model. It reflects the model’s accuracy when classifying code samples
as ‘‘vulnerable’’.

Recall: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . Recall reflects the proportion of TP sam-

ples (i.e., vulnerable code) correctly detected by the model. It measures
the model’s ability to identify all vulnerable samples. A higher recall
means the model can detect more vulnerable samples with fewer missed
detections.

F1 score: 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . In vulnerability detection,

the F1 score comprehensively evaluates a model’s precision and recall.
It balances both precision and recall by calculating their harmonic
mean. A higher F1 score indicates better overall model performance
in terms of both precision and recall.

Using these four metrics, we can evaluate the performance of the
vulnerability detection model from various perspectives, providing a
comprehensive understanding of its strengths and weaknesses.

4.5. Implementation details

We utilize GPT-4, the most advanced model for our experiments. We
split the dataset into train, validation, and test sets with a ratio of 8:1:1.
Notably, GPT-4 does not require the train and validation portions, only
the test set. Our method utilizes a test set that is consistent with all
baseline test sets. Specifically, in RQ1, we use 100% of the available
test data for evaluation. For the ablation experiments conducted in our
study (RQ2-RQ4), we adopted a random sampling approach where 30%
of the samples from the test set were selected for testing purposes.
This decision was made to optimize costs while still maintaining a
representative subset of data. To ensure the fairness and consistency
of the experiments, the same 30% of data was used for each ablation
experiment when comparing different methods. All experiments are
performed on an NVIDIA GeForce RTX 4090 GPU server.

5. Experimental results

5.1. RQ1: How effective is GRACE in vulnerability detection?

Approach. To answer RQ1, we assess the model’s performance
using the four metrics outlined in Section 4.4. Then, we select six
popular vulnerability detection approaches as baselines, including three
sequence-based methods (i.e., VulDeePecker Li et al., 2018, Russell
et al., 2018, SySeVR Li et al., 2022b) and three graph-based methods
(i.e., Devign Zhou et al., 2019, Reveal Chakraborty et al., 2022, IVDe-
tect Li et al., 2021). Experiments are conducted on three commonly
used vulnerability datasets, including Devign (Zhou et al., 2019), Big-
Vul (Fan et al., 2020), and Reveal (Chakraborty et al., 2022). To
guarantee a fair comparison, we will ensure that all training sets for
our proposed approach and baselines remain consistent.

Result. As shown in Table 3, our proposed GRACE outperforms
all baselines in F1 score across the three datasets. Specifically, GRACE
achieves average relative improvements of 28.65%, 62.36%, and
75.71% in F1 score compared to six baseline models on the FFm-
peg+Qemu, Reveal, and Big-Vul datasets. Regarding accuracy, GRACE
obtains the best accuracy on Reveal while ranking second on FFm-
7

peg+Qemu and Big-Vul. Then, to check whether the performance
Fig. 7. An example from the official CWE (Common Weakness Enumeration) website:
CWE-193 (Off-by-one Error). While VulDeePecker and Devign fail to detect this
vulnerability, GRACE can detect it successfully.

difference between GRACE and baselines is significant, we conduct
Wilcoxon signed-rank tests (Wilcoxon, 1992) at a confidence level
of 95%. The 𝑝-value is less than 0.05, indicating that the perfor-
mance improvement of GRACE compared to the baselines is statistically
significant.

Fig. 7 presents a code example that contains a CWE-193 vulnerabil-
ity. This example is taken from a real-world scenario. Unlike VulDeeP-
ecker and Devign, GRACE, based on ChatGPT, incorporates a wider
range of software engineering-related data, including vulnerability de-
tection, during training. By leveraging the extensive code patterns
learned through domain knowledge and identity information, GRACE
can effectively identify this vulnerability.

Summary for RQ1: GRACE outperforms the six state-of-
the-art baselines in terms of F1 score. Specifically, GRACE
achieves average relative improvements of 28.65%, 62.36%,
and 75.71% in F1 score, demonstrating the effectiveness of our
proposed approach.

5.2. RQ2: How does graph structural information contribute to the perfor-
mance of GRACE?

Approach. To evaluate the contribution of graph structural infor-
mation to our proposed GRACE, we conduct controlled experiments
comparing its performance with and without this information. For RQ2
experiments, we utilize fixed prompt templates and in-context learning
demonstrations.

Result. As shown in Table 4, we can observe that the accuracy
and F1 score decrease substantially without the graph structure infor-
mation. Specifically, the F1 score dropped by 11.47%, 19.79%, and
42.56% on FFmpeg+Qemu, Reveal, and Big-Vul, respectively, com-
pared to using the entire model with graph structure. The accuracy also
declined by 15.32%, 30.38%, and 32.47% on the three datasets.

The noticeable decrease in performance demonstrates the signifi-
cance of integrating graph structure information into our approach. By
incorporating graph structure information, our approach gains valu-
able insights into the structural knowledge and relationships among



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Table 3
Comparison results between GRACE and the baselines on the three datasets in vulnerability detection. ‘‘–’’ means that the baseline does not apply to the dataset in this scenario.
The best result for each metric is highlighted in bold. The cells shaded in grey represent the performance of the top-3 best approaches for each metric, with darker shading
indicating better performance.

Metrics (%) Dataset

FFmpeg+Qemu (Zhou
et al., 2019)

Reveal (Chakraborty et al., 2022) Big-Vul (Fan et al., 2020)

Baseline Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

VulDeePecker 49.91 46.05 32.55 38.14 76.37 21.13 13.10 16.17 81.19 38.44 12.75 19.15
Russell et al. 57.60 54.76 40.72 46.71 68.51 16.21 52.68 24.79 86.85 14.86 26.97 19.17
SySeVR 47.85 46.06 58.81 51.66 74.33 40.07 24.94 30.74 90.10 30.91 14.08 19.34
Devign 56.89 52.50 64.67 57.95 87.49 31.55 36.65 33.91 92.78 30.61 15.96 20.98
Reveal 61.07 55.50 70.70 62.19 81.77 31.55 61.14 41.62 87.14 17.22 34.04 22.87
IVDetect 57.26 52.37 57.55 54.84 – – – – – – – –

GRACE 59.78 53.94 82.13 65.11 89.73 33.21 61.53 43.13 90.73 32.52 39.08 35.50
Table 4
Results of the ablation study without graph structure information. The best result for each metric is highlighted in bold.

Metrics (%) Dataset

FFmpeg+Qemu (Zhou et al., 2019) Reveal (Chakraborty et al., 2022) Big-Vul (Fan et al., 2020)

Baseline Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

w/o graph 50.93 45.25 80.19 57.82 61.29 27.88 43.26 33.91 61.94 26.91 16.77 20.66

GRACE 60.13 54.58 84.68 66.38 88.12 32.05 62.01 42.26 91.69 31.85 41.21 35.93
program entities. This enables the model to make more precise vulner-
ability predictions.

Summary for RQ2: Incorporating graph structure information
into GRACE has a significant impact, resulting in an im-
provement of 14.82%, 24.64%, and 73.8% in F1 score across
the three datasets. This demonstrates the ability of LLMs to
understand graph structure information effectively.

5.3. RQ3: How does our in-context learning contribute to the performance
of GRACE?

Approach. We experiment with different demonstration strategies
to investigate the effectiveness of the demonstration selection ap-
proach. Three demonstration selection strategies are evaluated. First is
zero demonstration, where no examples are provided during learning.
Second is random demonstration selection, which randomly selects
a function and its label from the dataset as the demonstration. We
executed the random strategy twice on each test set and reported the
average results. Third is our proposed retrieval method to identify the
most relevant demonstration. For the RQ3 experiment, for each test
sample, we provide different demonstrations while using fixed prompt
information and graph structure information.

Result. Table 5 presents our results. When no demonstrative ex-
amples were provided, the LLM’s performance in vulnerability detec-
tion was limited, emphasizing the importance of in-context learning.
Interestingly, when using random demonstrations, the detection perfor-
mance of LLMs can deteriorate compared to not using any demonstra-
tions. This could be due to the fact that randomly selected examples do
not offer meaningful guidance to the models. There are two potential
reasons for this: ❶ The random demonstrations lack representativeness
and diversity, failing to cover the scope of real-world vulnerabilities.
This results in limited knowledge transfer to the models. ❷ Random
demonstrations introduce noise that misleads model judgment. Without
careful screening, they may include invalid or even erroneous exam-
ples. However, the most notable enhancement was observed when
providing the most contextually similar example to the model. In
this condition, the model showcased a significant boost in its detec-
tion capabilities, surpassing both zero and random demonstrations.
Specifically, including the most contextually similar example resulted
8

in an average increase of 31.82% in the F1 score across the three
vulnerability detection datasets.

Furthermore, it is worth noting that our method excels in terms
of accuracy, precision, and F1 score, with the trade-off of a lower
recall. After conducting a detailed analysis, we have identified the
underlying reason for this decrease. Our method may be more cautious
in identifying vulnerability modules, resulting in a lower recall, but a
better precision. At the same time, there is a certain conflict between
the recall and the precision, so the F1 score can better integrate the
values of these two indicators. In our work, we have found that the F1
score will become better. Although the recall rate has decreased, our
method has shown the best performance in accuracy, precision, and F1
score.

These results highlight the importance of incorporating vulnerabil-
ity contextual cues during detection, as they significantly improve the
LLM’s ability to detect vulnerabilities accurately. By leveraging relevant
demonstrative examples, our approach equips the model to make more
informed decisions, improving its overall performance in vulnerability
detection tasks.

Summary for RQ3: The demonstration retrieval method for
obtaining the most similar demonstration has proven effec-
tive in enhancing the model’s performance in vulnerability
detection. On average, incorporating our carefully selected
demonstrative examples across the three datasets resulted in a
31.82% model performance improvement in terms of F1 score.

5.4. RQ4: How effective is our proposed enhanced basic prompt?

Approach. To answer RQ4, we attempt to provide different basic
prompts to the LLM. Specifically, we devise three different strategies.
The first strategy is no domain information (i.e., 𝑃𝑏 + 𝑃𝑖), the second is
no identity information (i.e., 𝑃𝑏 + 𝑃𝑑), and the third is both (i.e., 𝑃𝑏
+ 𝑃𝑑 + 𝑃𝑖). It is worth noting that we will not compare scenarios
without a basic prompt. Without the constraint of a basic prompt, the
model may produce a significant amount of redundant information
rather than the specific answers we need regarding ‘‘vulnerable’’ or
‘‘non-vulnerable’’ aspects. Here, we choose the function in Fig. 7 as
an example and present the output of the LLM in Fig. 8. For the RQ4



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Table 5
Results of different demonstration strategies. The best result for each metric is highlighted in bold.
Dataset Module Accuracy Precision Recall F1 score

FFmpeg+Qemu (Zhou et al., 2019)
Zero 50.61 47.61 84.50 60.91
Random 52.23 48.06 84.93 61.38
GRACE 60.13 54.58 84.68 66.38

Reveal (Chakraborty et al., 2022)
Zero 81.80 17.54 83.33 28.98
Random 76.22 20.23 41.86 27.28
GRACE 88.12 32.05 62.01 42.26

Big-Vul (Fan et al., 2020)
Zero 63.32 17.21 50.44 25.66
Random 73.13 21.01 40.51 27.67
GRACE 91.69 31.85 41.21 35.93
Fig. 8. Examples of model outputs with and without basic prompt provided to LLMs.

experiment, for each test sample, we provide different prompts while
keeping the input of fixed graph structure information and in-context
demonstrations consistent.

Result. Table 6 presents the results obtained from our experi-
ments. The results demonstrate the significant contributions of the two
enhanced basic prompt components designed in our approach.

Using the FFmpeg+Qemu dataset as an example, we compare the
model’s performance with and without 𝑃𝑑 and 𝑃𝑖. When 𝑃𝑑 are not
provided, the model’s accuracy decreases by 7.25% and its F1 score
decreases by 12.17% relative to our proposed GRACE. Similarly, when
𝑃𝑖 is not included, the model experiences relative decreases of 4.98%
in accuracy and 10.17% in F1 score compared to GRACE.

These performance declines underscore the importance of incorpo-
rating 𝑃𝑑 and 𝑃𝑖 in LLMs. They highlight the value of leveraging domain
knowledge to improve the model’s ability to capture and understand
vulnerability Knowledge. Moreover, our findings suggest that 𝑃𝑑 has
a more pronounced impact on performance enhancement compared
to 𝑃𝑖.

Summary for RQ4: Our carefully crafted enhanced basic
prompt has proven to be effective, and domain-specific knowl-
edge has a more significant influence in the performance of
GRACE than identity information. In particular, incorporating
domain-specific information into three vulnerability detection
datasets resulted in an average improvement of 26.33% in
terms of F1 score.
9

Table 6
Results of different prompting methods. The best result for each metric is highlighted
in bold.

Dataset Module Accuracy Precision Recall F1 score

FFmpeg+Qemu
w/o 𝑃𝑑 55.77 47.23 76.14 58.29
w/o 𝑃𝑖 57.13 48.23 78.11 59.63
GRACE 60.13 54.58 84.68 66.38

Reveal
w/o 𝑃𝑑 76.26 21.34 60.29 31.52
w/o 𝑃𝑖 80.41 28.94 67.22 40.46
GRACE 88.12 32.05 62.01 42.26

Big-Vul
w/o 𝑃𝑑 84.35 25.02 30.86 27.63
w/o 𝑃𝑖 87.21 28.99 33.46 31.06
GRACE 91.69 31.85 41.21 35.93

6. Discussion

6.1. How effective is GRACE in vulnerability type detection?

We conduct further investigations to comprehend the capability of
GRACE in vulnerability type classification, which is a multi-class clas-
sification task, different from vulnerability detection (Yosifova et al.,
2021). Accurately identifying vulnerability types can facilitate sub-
sequent tasks like vulnerability repair (Fu et al., 2022). We select
Devign and Reveal as baselines for comparison. We aim to compare
the performance of GRACE with these well-established methods and
evaluate its effectiveness in vulnerability type classification.

To obtain labels for vulnerability types, we extract and curate a
new dataset from Fan et al. (2020), spanning different vulnerability
categories from 2002 to 2019. This dataset encompasses functions
for 91 distinct vulnerability types, with details tabulated in Table 7.
Notably, for any vulnerability type with a total sample of less than 20,
we consolidate its label as remain for the analysis.

The categories for multi-class classification in the dataset are imbal-
anced, with the proportions shown in Table 7, it does not imply that
less represented vulnerability types are less important. Therefore, for
multi-class classification, we use accuracy and weighted F1 score as
the evaluation metric. We will provide a detailed introduction to the
weighted F1 score.

Weighted F1 score. 𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 is calculated by taking a
weighted average of the F1 score for each class, where the weights are
based on the relative frequency of each class in the dataset. The formula
is defined as follows:

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑚
∑

𝑖=0
𝑤𝑖 ∗ (𝐹1 𝑠𝑐𝑜𝑟𝑒)𝑖 (4)

where 𝑚 is the number of classes, 𝑤𝑖 is the weight for class 𝑖 (calculated
as the ratio of the number of samples in class 𝑖 to the total number of
samples).

Our comparison results are showcased in Table 8, revealing the
superiority of our approach over the baselines in terms of accuracy and
weighted F1 score. Specifically, our method demonstrates a substantial
average absolute enhancement of 15.59% in accuracy compared to the



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Fig. 9. The accuracy of each vulnerability type in GRACE. The 𝑋-axis denotes the vulnerability type. The 𝑌 -axis on the left and right indicate the number of vulnerabilities and
accuracy, respectively. The lines in navy, blue, and gray represent the accuracy of GRACE, Devign, and Reveal, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 7
The specific vulnerability types and their corresponding proportion and group of
vulnerabilities in this paper. Classes with a sample size of less than 20 are grouped in
the Remain class. ‘‘None type’’ means the vulnerability is not classified into any class.
As these vulnerabilities exist in the real world as well, they are also considered to be
a vulnerability type.

Types Ratio Nums Types Ratio Nums

CWE-119 19.94% 2127 CWE-415 0.76% 81
None type 19.85% 2117 CWE-732 0.62% 66
CWE-20 10.71% 1142 CWE-404 0.58% 62
CWE-399 6.90% 736 CWE-79 0.52% 55
CWE-125 5.86% 625 CWE-19 0.52% 55
CWE-264 4.76% 508 CWE-59 0.49% 52
CWE-200 4.72% 503 CWE-17 0.48% 51
CWE-189 3.16% 337 CWE-400 0.45% 48
CWE-416 3.09% 330 CWE-772 0.43% 46
CWE-190 2.88% 307 CWE-269 0.36% 38
CWE-362 2.61% 278 CWE-22 0.33% 35
CWE-476 2.02% 215 CWE-369 0.32% 34
CWE-787 1.86% 198 CWE-18 0.32% 34
CWE-284 1.66% 177 CWE-835 0.32% 34
CWE-254 1.15% 123 Remain 1.57% 167
CWE-310 0.88% 94 Total 100% 10 680

Table 8
Comparison results between GRACE and baseline on vulnerability type detection.

Method Accuracy Weight F1 score

Devign 19.69 46.71
Reveal 28.36 49.22

GRACE 39.62 53.83

two baselines. Additionally, our approach achieves an average absolute
improvement of 5.86% in Weight F1 score.

To better understand GRACE’s performance in vulnerability type
detection, we conducted an in-depth analysis of different types of
vulnerabilities. Our findings are illustrated in Fig. 9, where the bars
with navy-blue color indicate the accuracy of our GRACE method in
detecting different types of vulnerabilities. In contrast, the lines with
blue color represent the accuracy of Devign and the lines with gray
color represent the accuracy of Reveal. Taking a broader perspective,
the curves of the GRACE method consistently outperform those of De-
vign and Reveal, highlighting the effectiveness of GRACE. Particularly
noteworthy is its exceptional performance in detecting CWE-415 and
CWE-79 vulnerabilities, surpassing Devign and Reveal by a significant
margin. We conduct a thorough analysis to elucidate the underlying
factors. For instance, when detecting CWE-79 (Cross-Site Scripting),
graph structures aid LLM in comprehending the function’s input points,
output points, and data transmission paths, thereby facilitating vul-
nerability analysis. Moreover, the extensive training of the LLM on a
10
vast dataset empowers it to capture a broader range of vulnerability
patterns, potentially enhancing its generalization across CWE-79. In
comparison, Devign and Reveal rely on static analysis information and
self-supervised learning methods, which may encounter generalization
limitations due to the training data’s quality and diversity. Further-
more, GRACE demonstrates an accuracy exceeding 50% for over 50%
of the vulnerability types, underscoring its proficiency in detecting
multiple vulnerability types.

We also examine vulnerabilities with an accuracy below 0.5. For
example, CWE-254 (Security Features) demonstrates an accuracy rate
of only around 10%. This vulnerability typically occurs due to incom-
plete SSL/TLS verification or misconfigurations in security settings. We
conjecture that CWE-254 involves intricate security concerns related to
random number generation. It is an inherently complex and technical
vulnerability. It requires a solid understanding of randomness, entropy,
seeds, algorithms, and the correct implementation and usage of random
number generators. The LLM may encounter certain limitations when
dealing with such intricacies.

6.2. Threats to validity

In this subsection, we primarily outline the potential threats to the
validity of our research.

Internal threat. GPT-4 was trained on a large amount of open-
source data, so there is a possibility of data leakage, meaning GPT-4
may have learned answers to test sets during pretraining. However,
our primary goal is to enhance the vulnerability detection capabilities
of LLMs by graph structure information and in-context learning. We
have conducted ablation studies to demonstrate that graph structure
information and our proposed retrieval method can improve the ability
of LLMs to detect vulnerabilities.

External threat. External threat is related to the ChatGPT Version.
Since the training parameters differ across ChatGPT versions, we cannot
guarantee that our conclusions are reproducible across all versions. To
mitigate this issue, please use GPT-4 to reproduce the results.

Construct threat. Recent work in prompt engineering has shown
that different prompts can lead large models to produce different
results. The same applies in the vulnerability domain. To mitigate
this issue, we designed a new prompting template that contains the
necessary context and auxiliary information. Experiments demonstrate
that our newly designed prompting template is effective.

Conclusion threat. In our study, we only tested vulnerabilities in
C/C++ code. In principle, GRACE can be applied to other programming
languages, as LLMs have been trained on massive datasets and have
acquired domain knowledge about other languages. However, more
research is needed to confirm the effectiveness of other languages,
which remains a direction for future work.



The Journal of Systems & Software 212 (2024) 112031G. Lu et al.

w

7. Related work

7.1. Deep learning-based vulnerability detection

Traditional ML-based approaches for vulnerability detection rely
on software metrics as features, such as lines of code, cyclomatic
complexity, etc. (Hovsepyan et al., 2012; Pang et al., 2015). Unfor-
tunately, collecting these metric features manually is laborious and
time-consuming. To alleviate this issue, DL-based vulnerability detec-
tion approaches have been proposed, which can automatically learn
vulnerability patterns from the data itself.

Sequence-based approaches refer to treating source code as a se-
quence of bytes or tokens and then feeding it into sequential DL models
such as RNNs, LSTMs, CNNs, etc. This allows the model to directly learn
representations of vulnerabilities extracted from the code sequence (Li
et al., 2018; Wu et al., 2022; Li et al., 2022b,a). For example, VulDeeP-
ecker (Li et al., 2018) employed code gadgets as an intermediate
representation, converting code gadgets into fixed symbolic representa-
tions. For each code gadget, lexical analysis was performed to construct
a vocabulary. Word2vec then transformed these into fixed-length vector
representations, which were input to a bidirectional LSTM to predict
whether the function contains a vulnerability. However, sequence-
based approaches do not take into account the graph structure of source
code, which may lead to inaccurate predictions. Therefore, graph-based
approaches have been proposed, which can better model the structural
information of code.

Graph-based approaches refer to detecting vulnerabilities in source
code by constructing a graph representation of the code, such as ASTs
or CFGs, and then analyzing it using GNNs (Zhou et al., 2019; Li
et al., 2021; Wen et al., 2023; Cao et al., 2022; Allamanis et al.,
2018; Ma et al.; Cheng et al., 2021). For example, Wen et al. (2023)
utilized an Edge-aware Graph Convolutional Network (EA-GCN) model
for vulnerability detection. They first simplified the graph structure and
then applied the GCN model to the preprocessed graph. This approach
effectively improves detection performance.

However, training DL-based models for these tasks often requires a
substantial amount of time and resources and necessitates tailoring the
model to the specific dataset. Therefore, we utilize a pre-trained LLM as
the detector, avoiding the issue of lengthy training times. In addition,
we improve the vulnerability detection performance of the LLM by
leveraging graph structural information and in-context learning.

7.2. In-context learning for LLM4SE

LLM has been widely applied in various tasks in the natural lan-
guage processing field (Min et al., 2022a,b; Rubin et al., 2022). Its
emerging characteristics have also attracted widespread attention in
software engineering, including coding, requirements, debugging,
refactoring, etc.

In-context learning is a new approach for LLMs to learn tasks.
Recently, in software engineering, a series of studies have emerged,
such as the empirical study on comment generation by Geng et al.
exploring the feasibility of utilizing LLMs to address ambiguous com-
ment generation (Geng et al., 2024). Nashid et al. (2023) proposed
CEDAR, probing two downstream tasks through few-shot learning,
i.e., test assertion generation and program repair. However, to our
best knowledge, we have not found related studies to employ LLM in-
context learning for vulnerability detection. To fill this gap, we design a
new demonstration retrieval approach to provide better demonstrations
for in-context learning, and our empirical results also confirm the
effectiveness of our customized in-context learning approach.
11
8. Conclusion

In current research related to using LLMs for vulnerability de-
tection, code is typically treated as plain text directly input to the
model (Cheshkov et al., 2023). This lacks the structural information
of code and domain knowledge relevant to vulnerabilities. To miti-
gate these issues, we propose GRACE, a vulnerability detection ap-
proach based on LLM that emphasizes incorporating graph structure
information and in-context learning. Our approach GRACE employs
a novel demonstration selection strategy that helps LLMs acquire rel-
evant domain knowledge by selecting high-quality demonstrations.
Additionally, enhanced prompting templates allow models to learn
more pertinent knowledge. Our experimental results on three C/C++
datasets demonstrate that GRACE outperforms the state-of-the-art of six
vulnerability detection baselines, especially improving the F1 score by
at least 28.65%. Furthermore, our three ablation studies also validate
the effectiveness of graph structure information, the novel demon-
stration selection strategy, and the customized prompting templates,
respectively.

In the future, we first want to enhance GRACE’s performance by
designing more effective prompting templates and demonstration selec-
tion strategies. Secondly, we want to conduct empirical studies on other
programming languages to examine whether GRACE could be gener-
alized to additional languages. Finally, we want to investigate other
challenges in the vulnerability domain in conjunction with LLMs and
graph structure information, such as automatic vulnerability repair (Fu
et al., 2022; Ma et al., 2017; Zhang et al., 2023), which remains an
open and worthwhile direction.

CRediT authorship contribution statement

Guilong Lu: Conceptualization, Data curation, Methodology, Soft-
are, Validation, Writing – review & editing. Xiaolin Ju: Conceptual-

ization, Methodology, Supervision, Writing – review & editing. Xiang
Chen: Conceptualization, Methodology, Supervision, Writing – review
& editing. Wenlong Pei: Conceptualization, Data curation, Software.
Zhilong Cai: Conceptualization, Data curation, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Ahmad, W., Chakraborty, S., Ray, B., Chang, K.-W., 2021. Unified pre-training for
program understanding and generation. In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. pp. 2655–2668.

Allamanis, M., Brockschmidt, M., Khademi, M., 2018. Learning to represent pro-
grams with graphs. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Aslan, Ö., Aktuğ, S.S., Ozkan-Okay, M., Yilmaz, A.A., Akin, E., 2023. A comprehensive
review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics
12 (6), 1333.

Behl, D., Handa, S., Arora, A., 2014. A bug mining tool to identify and analyze security
bugs using naive bayes and tf-idf. In: International Conference on Reliability
Optimization and Information Technology. ICROIT, IEEE.

Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., Snyder-Cappione, J.E.,
2019. Automated optimized parameters for T-distributed stochastic neighbor em-
bedding improve visualization and analysis of large datasets. Nat. Commun. 10 (1),
5415.

Bille, P., 2005. A survey on tree edit distance and related problems. Theoret. Comput.

Sci. 1 (337), 217–239.

http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb6


The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot
learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Cadwalladr, C., Graham-Harrison, E., 2018. Revealed: 50 million facebook profiles
harvested for Cambridge Analytica in major data breach. Guardian 17 (1), 22.

Cao, S., Sun, X., Bo, L., Wei, Y., Li, B., 2021. Bgnn4vd: Constructing bidirectional graph
neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576.

Cao, S., Sun, X., Bo, L., Wu, R., Li, B., Tao, C., 2022. MVD: memory-related vulnerability
detection based on flow-sensitive graph neural networks. CoRR abs/2203.02660.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2022. Deep learning based vulnerability
detection: Are we there yet? IEEE Trans. Softw. Eng. 48 (09), 3280–3296.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., et al., 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374.

Cheng, X., Wang, H., Hua, J., Xu, G., Sui, Y., 2021. DeepWukong: Statically detecting
software vulnerabilities using deep graph neural network. ACM Trans. Softw. Eng.
Methodol. 30 (3), 38:1–38:33.

Cheng, X., Zhang, G., Wang, H., Sui, Y., 2022. Path-sensitive code embedding via
contrastive learning for software vulnerability detection. In: Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 519–531.

Cheshkov, A., Zadorozhny, P., Levichev, R., 2023. Evaluation of ChatGPT model for
vulnerability detection. arXiv preprint arXiv:2304.07232.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., Sui, Z., 2022.
A survey for in-context learning. arXiv preprint arXiv:2301.00234.

Fan, J., Li, Y., Wang, S., Nguyen, T.N., 2020. A C/C++ code vulnerability dataset with
code changes and CVE summaries. In: MSR ’20: 17th International Conference on
Mining Software Repositories, Seoul, Republic of Korea, 29-30 June. ACM.

Fu, M., Tantithamthavorn, C., 2022. Linevul: A transformer-based line-level vulnera-
bility prediction. In: Proceedings of the 19th International Conference on Mining
Software Repositories. pp. 608–620.

Fu, M., Tantithamthavorn, C., Le, T., Nguyen, V., Phung, D., 2022. VulRepair: a
T5-based automated software vulnerability repair. In: Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 935–947.

Geng, M., Wang, S., Dong, D., Wang, H., Li, G., Jin, Z., Mao, X., Liao, X., 2024. Large
language models are few-shot summarizers: Multi-intent comment generation via
in-context learning. arXiv preprint arXiv:2304.11384.

Gu, Y., Han, X., Liu, Z., Huang, M., 2022. PPT: Pre-trained prompt tuning for few-
shot learning. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics. pp. 8410–8423.

Guo, H., Chen, S., Xing, Z., Li, X., Bai, Y., Sun, J., 2022. Detecting and augmenting
missing key aspects in vulnerability descriptions. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 31 (3), 1–27.

Haiduc, S., Aponte, J., Moreno, L., Marcus, A., 2010. On the use of automated text
summarization techniques for summarizing source code. In: 2010 17th Working
Conference on Reverse Engineering. IEEE, pp. 35–44.

Hanif, H., Maffeis, S., 2022. Vulberta: Simplified source code pre-training for vulnerabil-
ity detection. In: 2022 International Joint Conference on Neural Networks. IJCNN,
IEEE, pp. 1–8.

Hin, D., Kan, A., Chen, H., Babar, M.A., 2022. Linevd: Statement-level vulnerability
detection using graph neural networks. In: Proceedings of the 19th International
Conference on Mining Software Repositories. pp. 596–607.

Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J., 2012. Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th International
Workshop on Security Measurements and Metrics. pp. 7–10.

Kaur, A., Nayyar, R., 2020. A comparative study of static code analysis tools for
vulnerability detection in c/c++ and java source code. Procedia Comput. Sci. 171,
2023–2029.

Kudjo, P.K., Chen, J., 2019. A cost-effective strategy for software vulnerability pre-
diction based on bellwether analysis. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. pp. 424–427.

Li, P., Cui, B., 2010. A comparative study on software vulnerability static analysis
techniques and tools. In: IEEE International Conference on Information Theory and
Information Security. IEEE.

Li, Y., Wang, S., Nguyen, T.N., 2021. Vulnerability detection with fine-grained in-
terpretations. In: ESEC/FSE ’21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28. ACM.

Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H., 2022a. VulDeeLocator: A deep learning-
based fine-grained vulnerability detector. IEEE Trans. Dependable Secur. Comput.
19 (4), 2821–2837.

Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J., 2016. Vulpecker: an automated
vulnerability detection system based on code similarity analysis. In: Proceedings
of the 32nd Annual Conference on Computer Security Applications. pp. 201–213.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2022b. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secur.
Comput. 19 (4), 2244–2258.
12
Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018.
VulDeePecker: A deep learning-based system for vulnerability detection. In: 25th
Annual Network and Distributed System Security Symposium, NDSS San Diego,
California, USA, February 18-21. The Internet Society.

Liu, B., Shi, L., Cai, Z., Li, M., 2012. Software vulnerability discovery techniques:
A survey. In: 2012 Fourth International Conference on Multimedia Information
Networking and Security. IEEE, pp. 152–156.

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X., 2018. Neural-machine-
translation-based commit message generation: how far are we? In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering.
pp. 373–384.

Luo, M., Xu, X., Dai, Z., Pasupat, P., Kazemi, M., Baral, C., Imbrasaite, V., Zhao, V.Y.,
2023. Dr. ICL: Demonstration-retrieved in-context learning. arXiv preprint arXiv:
2305.14128.

Ma, P., Ding, R., Wang, S., Han, S., Zhang, D., 2023. Demonstration of InsightPilot:
An LLM-empowered automated data exploration system. arXiv preprint arXiv:
2304.00477.

Ma, R., Jian, Z., Chen, G., Ma, K., Chen, Y., 2020. Rejection: A AST-based reentrancy
vulnerability detection method. In: Trusted Computing and Information Security:
13th Chinese Conference, Shanghai, China, October 24–27,. Springer, pp. 58–71.

Ma, S., Thung, F., Lo, D., Sun, C., Deng, R.H., 2017. Vurle: Automatic vulnerability
detection and repair by learning from examples. In: Computer Security–ESORICS
2017: 22nd European Symposium on Research in Computer Security, Oslo, Norway,
September 11-15, 2017, Proceedings, Part II 22. Springer, pp. 229–246.

Ma, W., Zhao, M., Soremekun, E.O., Hu, Q., Zhang, J.M., Papadakis, M., Cordy, M.,
Xie, X., Traon, Y.L., GraphCode2Vec: Generic code embedding via lexical and
program dependence analyses. In: 19th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022.
ACM, pp. 524–536.

McGraw, G., 2004. Software security. IEEE Secur. Priv. 2 (2), 80–83.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed

representations of words and phrases and their compositionality. Adv. Neural Inf.
Process. Syst. 26.

Min, S., Lewis, M., Zettlemoyer, L., Hajishirzi, H., 2022a. Metaicl: Learning to learn in
context. In: Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. pp.
2791–2809.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., Zettlemoyer, L.,
2022b. Rethinking the role of demonstrations: What makes in-context learning
work? In: Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing. pp. 11048–11064.

Nashid, N., Sintaha, M., Mesbah, A., 2023. Retrieval-based prompt selection for code-
related few-shot learning. In: Proceedings of the 45th International Conference on
Software Engineering. ICSE’23.

Nguyen, V., Nguyen, D.Q., Nguyen, V., Le, T., Tran, Q.H., Phung, D.Q., 2021. Regvd:
Revisiting graph neural networks for vulnerability detection. CoRR abs/2110.
07317.

Nong, Y., Sharma, R., Hamou-Lhadj, A., Luo, X., Cai, H., 2022. Open science in software
engineering: A study on deep learning-based vulnerability detection. IEEE Trans.
Softw. Eng. 49 (4), 1983–2005.

OpenAI, 2023. GPT-4 technical report. arXiv:2303.08774.
Pan, S., Bao, L., Xia, X., Lo, D., Li, S., 2023. Fine-grained commit-level vulnerability

type prediction by CWE tree structure. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering. ICSE, IEEE, pp. 957–969.

Pang, Y., Xue, X., Namin, A.S., 2015. Predicting vulnerable software components
through n-gram analysis and statistical feature selection. In: 2015 IEEE 14th
International Conference on Machine Learning and Applications. ICMLA, IEEE, pp.
543–548.

Rubin, O., Herzig, J., Berant, J., 2022. Learning to retrieve prompts for in-context
learning. In: Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
pp. 2655–2671.

Russell, R.L., Kim, L.Y., Hamilton, L.H., Lazovich, T., Harer, J., Ozdemir, O., Elling-
wood, P.M., McConley, M.W., 2018. Automated vulnerability detection in source
code using deep representation learning. In: Wani, M.A., Kantardzic, M.M.,
Mouchaweh, M.S., ao Gama, J., Lughofer, E. (Eds.), 17th IEEE International
Conference on Machine Learning and Applications, Orlando, FL, USA, December
17-20. IEEE.

Shen, Z., Chen, S., 2020. A survey of automatic software vulnerability detection,
program repair, and defect prediction techniques. Secur. Commun. Netw. 1–16.

Siow, J.K., Liu, S., Xie, X., Meng, G., Liu, Y., 2022. Learning program semantics with
code representations: An empirical study. In: International Conference on Software
Analysis, Evolution and Reengineering. SANER, IEEE.

Sun, X., Tu, L., Zhang, J., Cai, J., Li, B., Wang, Y., 2023. Assbert: Active and semi-
supervised bert for smart contract vulnerability detection. J. Inf. Secur. Appl. 73,
103423.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q., 2023. Software testing
with large language model: Survey, landscape, and vision. arXiv preprint arXiv:
2307.07221.

http://refhub.elsevier.com/S0164-1212(24)00074-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb9
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb9
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb9
http://arxiv.org/abs/2203.02660
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb11
http://arxiv.org/abs/2107.03374
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb14
http://arxiv.org/abs/2304.07232
http://arxiv.org/abs/2301.00234
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb19
http://arxiv.org/abs/2304.11384
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb36
http://arxiv.org/abs/2305.14128
http://arxiv.org/abs/2305.14128
http://arxiv.org/abs/2305.14128
http://arxiv.org/abs/2304.00477
http://arxiv.org/abs/2304.00477
http://arxiv.org/abs/2304.00477
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb46
http://arxiv.org/abs/2110.07317
http://arxiv.org/abs/2110.07317
http://arxiv.org/abs/2110.07317
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb48
http://arxiv.org/abs/2303.08774
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb56
http://arxiv.org/abs/2307.07221
http://arxiv.org/abs/2307.07221
http://arxiv.org/abs/2307.07221


The Journal of Systems & Software 212 (2024) 112031G. Lu et al.
Wang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. pp. 8696–8708.

Webb, G.I., Keogh, E., Miikkulainen, R., 2010. Naïve Bayes.. Ency. Mach. Learn. 15
(1), 713–714.

Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q., 2023. Vulnerability
detection with graph simplification and enhanced graph representation learning.
arXiv preprint arXiv:2302.04675.

Wilcoxon, F., 1992. Individual comparisons by ranking methods. In: Breakthroughs in
Statistics: Methodology and Distribution. Springer, pp. 196–202.

Wong, E., Liu, T., Tan, L., 2015. Clocom: Mining existing source code for automatic
comment generation. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering. SANER, IEEE, pp. 380–389.

Wu, Y., Lu, J., Zhang, Y., Jin, S., 2021. Vulnerability detection in c/c++ source code
with graph representation learning. In: 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference. CCWC, IEEE, pp. 1519–1524.

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H., 2022. Vulcnn: An image-inspired
scalable vulnerability detection system. In: Proceedings of the 44th International
Conference on Software Engineering. pp. 2365–2376.

Xia, C.S., Wei, Y., Zhang, L., 2023. Automated program repair in the era of large
pre-trained language models. In: Proceedings of the 45th International Conference
on Software Engineering. ICSE.

Xia, C.S., Zhang, L., 2023. Conversational automated program repair. arXiv preprint
arXiv:2301.13246.

Xue, Y., Ma, M., Lin, Y., Sui, Y., Ye, J., Peng, T., 2020. Cross-contract static analysis for
detecting practical reentrancy vulnerabilities in smart contracts. In: Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
pp. 1029–1040.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, SP 2014. IEEE Computer Society, pp. 590–604.

Yang, G., Chen, X., Cao, J., Xu, S., Cui, Z., Yu, C., Liu, K., 2021a. Comformer:
Code comment generation via transformer and fusion method-based hybrid code
representation. In: 2021 8th International Conference on Dependable Systems and
their Applications. DSA, IEEE, pp. 30–41.

Yang, S., Cheng, L., Zeng, Y., Lang, Z., Zhu, H., Shi, Z., 2021b. Asteria: Deep
learning-based AST-encoding for cross-platform binary code similarity detection.
In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. DSN, IEEE, pp. 224–236.

Yosifova, V., Tasheva, A., Trifonov, R., 2021. Predicting vulnerability type in common
vulnerabilities and exposures (CVE) database with machine learning classifiers. In:
2021 12th National Conference with International Participation. ELECTRONICA,
IEEE, pp. 1–6.

Yu, C., Yang, G., Chen, X., Liu, K., Zhou, Y., 2022. Bashexplainer: Retrieval-augmented
bash code comment generation based on fine-tuned codebert. In: 2022 IEEE
International Conference on Software Maintenance and Evolution. ICSME, IEEE,
pp. 82–93.

Zhang, Q., Fang, C., Yu, B., Sun, W., Zhang, T., Chen, Z., 2023. Pre-trained model-based
automated software vulnerability repair: How far are we? IEEE Trans. Dependable
Secure Comput..

Zhao, L., Chen, S., Xu, Z., Liu, C., Zhang, L., Wu, J., Sun, J., Liu, Y., 2023a. Software
composition analysis for vulnerability detection: An empirical study on java
projects. In: Proceedings of the 2023 31th Acm Sigsoft International Symposium
on Foundations of Software Engineering.
13
Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J.,
Dong, Z., et al., 2023b. A survey of large language models. arXiv preprint arXiv:
2303.18223.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Adv. Neural Inf. Process. Syst. 32.

Guilong Lu is currently pursuing the Master degree at the School of Information Science
and Technology, Nantong University. His research interests include vulnerability
detection and LLM4SE.

Xiaolin Ju (Member, IEEE) was born in April 1976. He received the B.S. degree in
information science from Wuhan University, in 1998, the M.Sc. degree in computer
science from Southeast University, in 2004, and the Ph.D. degree in computer science
from the Chinese University of Mining Technology, in 2014. He is currently an
Associate Professor with the School of Information Science and Technology, Nantong
University, Nantong, China. His current research interests include software testing, such
as collective intelligence, deep learning testing and optimization, and software defects
analysis.

Xiang Chen received the B.Sc. degree in the school of management from Xi’an Jiaotong
University, China in 2002. Then he received his M.Sc., and Ph.D. degrees in computer
software and theory from Nanjing University, China in 2008 and 2011 respectively.
He is currently an Associate Professor at the Department of Information Science and
Technology, Nantong University, Nantong, China. He has authored or co-authored more
than 120 papers in refereed journals or conferences, such as IEEE Transactions on
Software Engineering, ACM Transactions on Software Engineering and Methodology,
Empirical Software Engineering, Information and Software Technology, Journal of
Systems and Software, IEEE Transactions on Reliability, Journal of Software: Evolution
and Process, Software - Practice and Experience, Automated Software Engineering,
Journal of Computer Science and Technology, IET Software, Software Quality Journal,
Knowledge-based Systems, International Conference on Software Engineering (ICSE),
The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), International Conference Automated
Software Engineering (ASE), International Conference on Software Maintenance and
Evolution (ICSME), International Conference on Program Comprehension (ICPC), and
International Conference on Software Analysis, Evolution and Reengineering (SANER).
His research interests include software engineering, in particular software testing
and maintenance, software repository mining, and empirical software engineering. He
received two ACM SIGSOFT distinguished paper awards in ICSE 2021 and ICPC 2023.
He is the editorial board member of Information and Software Technology. More
information about him can be found at: https://smartse.github.io/index.html.

Wenlong Pei is currently pursuing the Master degree at the School of Information Sci-
ence and Technology, Nantong University. His research interests include vulnerability
detection and repair.

Zhilong Cai is currently pursuing the Master degree at the School of Information
Science and Technology at Nantong University, and his main research focus is on
cross-project software vulnerability detection.

http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb59
http://arxiv.org/abs/2302.04675
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb61
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb61
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb61
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb62
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb62
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb62
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb62
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb62
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb63
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb63
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb63
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb63
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb63
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb64
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb64
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb64
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb64
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb64
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb65
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb65
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb65
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb65
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb65
http://arxiv.org/abs/2301.13246
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb67
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb68
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb68
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb68
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb68
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb68
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb69
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb70
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb71
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb72
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb73
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb73
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb73
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb73
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb73
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb74
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb76
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb76
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb76
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb76
http://refhub.elsevier.com/S0164-1212(24)00074-8/sb76
https://smartse.github.io/index.html

	GRACE: Empowering LLM-based software vulnerability detection with graph structure and in-context learning
	Introduction
	Background and Motivation
	Vulnerability Detection
	Code Representation
	In-context learning
	Research Motivation

	Approach
	Demonstration selection module
	Graph structure information generation module
	Vulnerability detection module

	Experimental Setup
	Research Questions
	Datasets
	Baseline Methods
	Performance Metrics
	Implementation Details

	Experimental Results
	RQ1: How effective is GRACE in vulnerability detection?
	RQ2: How does graph structural information contribute to the performance of GRACE?
	RQ3: How does our in-context learning contribute to the performance of GRACE?
	RQ4: How effective is our proposed enhanced basic prompt?

	Discussion
	How effective is GRACE in vulnerability type detection?
	Threats to Validity

	Related Work
	Deep learning-based Vulnerability Detection
	In-Context Learning for LLM4SE

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


