
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

The Journal of Systems and Software 90 (2014) 3–17

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

HSFal: Effective fault localization using hybrid spectrum of full slices
and execution slices

Xiaolin Jua,b, Shujuan Jianga,∗, Xiang Chenb,c, Xingya Wanga, Yanmei Zhanga, Heling Caoa

a School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
b School of Computer Science and Technology, Nantong University, Nantong, China
c State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

a r t i c l e i n f o

Article history:
Received 30 January 2013
Received in revised form 29 October 2013
Accepted 21 November 2013
Available online 9 December 2013

Keywords:
Dynamic slicing
Execute slicing
Fault localization

a b s t r a c t

Most of the existing fault localization approaches use execution coverage of test cases to isolate the sus-
picious codes that likely contain faults. Program slicing can extract the dependencies of program entities
with respect to a specific criterion. Therefore this technique is expected to have a beneficial effect on fault
localization. In this paper, we propose a novel approach using a hybrid spectrum of full slices and execu-
tion slices to improve the effectiveness of fault localization. In particular, our approach firstly computes
full slices of failed test cases and execution slices of passed test cases respectively. Secondly it constructs
the hybrid spectrum by intersecting full slices and execution slices. Finally it computes the suspicious-
ness of each statement in the hybrid slice spectrum and generates a fault location report with descending
suspiciousness of each statement. We also implement our proposed approach in our prototype tool HSFal
by Java programming language. To verify the effectiveness of our approach, we performed an empirical
study by the prototype on several widely used open source programs. Our approach is compared with
eight representative coverage-based and slice-based fault localization approaches. Final experimental
results show that our proposed approach is more effective in fault localization than other compared
approaches, and can reduce almost 2.98–31.79% of the average cost of examined code significantly.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Locating faults in a program is one of the most tedious and
time-consuming tasks in program debugging (DeMillo et al., 1997;
Renieris and Reiss, 2003; Wong and Qi, 2004; Jones and Harrold,
2005). It usually aims to narrow the search domain of the bugs to
improve its efficiency, and therefore decreases debugging cost. One
intuitive way of fault localization is to find the statements which
cause abnormal output directly or indirectly. Nowadays a more
popular way is to create a ranking list according to the likelihood of
containing a bug for entities (e.g., statements, predicates, or basic
blocks). This way can guide the developer to search for bugs along
the ranking list (Renieris and Reiss, 2003; Wong and Qi, 2004; Jones
and Harrold, 2005; Wong et al., 2012; Jones et al., 2002).

In the last decade, researchers have proposed many fault local-
ization approaches. Most of these approaches are coverage-based,
and they compute the suspiciousness of each statement using
the coverage of program executions (Jones and Harrold, 2005;
Wong et al., 2012; Jones et al., 2002; Santelices et al., 2009). The

∗ Corresponding author.
E-mail addresses: shjjiang@cumt.edu.cn, Ju.xl@ntu.edu.cn (S. Jiang).

assumption of these approaches is that program executing cover-
age could approximate fault causality. This assumption is generally
made to facilitate software testing automation. In practice, the cov-
erage information of test cases can be easily obtained and stored by
code instrumentation. In addition, experimental evaluation indi-
cates that coverage-based fault localization approaches can be
more effective and only need to examine less than 20% of program
codes (Ali et al., 2009). However, the effectiveness and efficiency
of fault localization would decrease with the increase of faults, and
the root cause of this issue is the cumulative impact on the same
statement by the different faults.

Program slicing, which can extract the data and/or control
dependencies of program entities, has been used to improve the
effectiveness of fault localization (Lyle, 1984). Existing program
slicing techniques can be classified into two categories: the static
slicing and the dynamic slicing. The static slicing analyzes the
dependencies without running the program while the dynamic slic-
ing obtains the dependencies along the execution path. Although
both the static and dynamic slicing can be used in fault localiza-
tion, the former has a greater time complexity and may produce
false positives, while the latter has a higher space complexity and
may generate false negatives (Gyimóthy et al., 1999; Agrawal and
Horgan, 1990; Agrawal et al., 1995; Al-Khanjari et al., 2005; Zhang

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.11.1109

鞠小林�

Author's personal copy

4 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

et al., 2004). Besides, most program slicing techniques (e.g., Agrawal
and Horgan, 1990) tend to suffer from the high cost of creating
a dependence graph when using backward traversal algorithms.
However, we construct slices by using a forward computation algo-
rithm which does not need to construct the dynamic dependence
graph. Therefore, the cost of slicing would be reduced. In addition,
we conjecture that ranking the statements of a slice might be help-
ful to provide guidance for the developer and further improve the
fault localization effectiveness.

In this paper, we propose a novel fault localization approach
HSS (hybrid slice spectrum), based on a combination of full slices
and execution slices. The intuition of our approach is that only the
faulty program entities on which the output dynamically depends
can trigger the failure. Thus, the idea of our approach is to exclude
the coverage of those program entities whose execution does not
return the wrong output by dynamic slicing. So the coverage slices
of our approach might be smaller than that of coverage-based
approaches because of the removal of the fault-irrelevant state-
ments by program slicing with slice criteria of any known faulty
statements. Therefore, HSS might have a better performance in
suspiciousness computing for fault localization. We also propose
a suspiciousness evaluation formula, which is theoretically proved
to be maximal in performance of fault localization, for ranking the
statements of HSS to provide a guidance for the developer. Firstly,
we compute full slices with respect to abnormal output. Secondly,
we trace and record the execution slices of successful execution.
Thirdly, we intersect the union of full slices with execution slices,
and then combine with full slices to form a hybrid slice spectrum.
Finally, we compute and rank the suspiciousness of each statement
in the intersection of full slices and execution slices in descending
order. Therefore, programmers can examine the code along with
the ranking list. We also developed a prototype tool HSFal (hybrid
slice spectrum fault locator) to incorporate our proposed approach.
To demonstrate the effectiveness of our proposed approach, we
designed and performed an empirical study on 14 open source pro-
grams which are widely used by other researchers in their empirical
studies. The results from our study suggest that our approach can
reduce almost 2.98% up to 31.79% of the average cost of examined
code.

The main contributions of this paper can be summarized as:

• A novel fault localization approach (HSS) based on compounding
full slices and execution slices.

• A maximal risk evaluation formula which is theoretically proved,
for calculating suspiciousness based on a hybrid spectrum of full
slices and execution slices.

• Effectiveness and efficiency of HSS are evaluated across vari-
ous open source programs, the LOC of these programs ranges
from 181 to 22,318, compared approaches include most of the
representative coverage-based and slice-based fault localization
techniques. The experimental results show that HSS is more effec-
tive in fault location than the compared techniques.

The rest of this paper is organized as follows. Section 2 pro-
vides the background of fault localization and program slicing.
Section 3 firstly gives a motivating example to show the intu-
ition of our approach, secondly presents the framework and the
implementation of our approach. Section 4 describes our empiri-
cal study including experiment subjects, experiment design, data
analysis, and threats to validity. Section 5 summarizes the related
work of fault localization and emphasizes the contribution of our
research. Finally, Section 6 provides the conclusion and future
work.

Fig. 1. Coverage of m executions of program.

Table 1
Notations widely used in suspiciousness calculating.

Notation Value Description

N m The number of test cases
NF m − k The number of failed test cases
NS k The number of passed test cases

NCF

∑m

i=l
Cij The number of failed test cases that

can cover the statement sj

NCS

∑k

i=1
Cij The number of passed test cases

that can cover the statement sj

NC NCF + NCS The number of test cases that can
cover the statement sj

NUF

∑m

i=l
(1 − Cij) The number of failed test cases that

cannot cover the statement sj

NUS

∑k

i=1
(1 − Cij) The number of passed test cases

that cannot cover the statement sj

NU NUF + NUS The number of test cases that
cannot cover the statement sj

2. Background

2.1. Fault localization

Fault location aims to locate the wrong instruction, process, or
data definition in programs. Existing fault location approaches can
be divided into two categories: static analysis based approaches
and dynamic testing based approaches. The locating granularity
can be a statement, basic block, function, or class. In this paper, we
mainly focus on dynamic testing based fault location approaches
and the locating granularity is statement.

Suppose we have a program P = {s1, s2, . . ., sn}, and this program
consists of n executable statements. Though we consider program
elements to be statements in this paper. Without loss of general-
ity, the program component can be also set to be predicates, basic
blocks or functions. At the same time, we suppose corresponding
test suite T = {t1, t2, . . ., tm} that consists of m distinct test cases.
After instrumenting the program under test and executing each of
these test cases or just monitoring the running of program through
debugging interface, we can gather the execution traces and the
running result (i.e., passed or failed) conveniently.

According to the running result, we further divide T into Tp and
Tf. All the test cases in Tp = {tp1, tp2, . . ., tpk} lead to successful exe-
cutions, and all the test cases in Tf = {tfl, tf(l+1), . . ., tfm} lead to failed
executions (here l = k + 1). In Fig. 1, we use Tcover to indicate the cov-
erage of statements collected after running m test cases. The value
of cij is 1 if the statement sj is covered by the test case ti. Otherwise
the value of cij is 0.

We summarize nine notations commonly used in suspicious-
ness computing as shown in Table 1. The value of all these notations

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 5

Table 2
Five maximal suspiciousness evaluation formulas.

Group Name Formula description

ER1 Naish1 Naish1(s) =
{

−1, if NCF (s) < NF

NS − NCS(s), if NCF (s) = NF

(1)

Naish2 Naish2(s) = NCF (s) − NCS(s)
NCS(s) + NUS(s) + 1

(2)

Wong1 Wong1(s) = NCF (s) (3)

ER2 Russel&Rao Russel & Rao(s) = NCF (s)
NCF (s) + NUF (s) + NCS(s) + NUS(s)

(4)

Binary Binary(s) =
{

0, if NCF (s) < NF

1, if NCF (s) = NF

(5)

can be obtained from the matrix shown in Fig. 1. Moreover, NCF,
NCS, NUF and NUS are the most essential factors among these nine
factors due to all the rest factors can be obtained by them. For
example, NC = NCF + NCS, NU = NUF + NUS, NF = NCF + NUF, NS = NCS + NUS,
N = NC + NU = NS + NF.

In this paper, we define the suspiciousness of the statement si as
the likelihood of containing a fault. Most of the existing coverage-
based fault localization techniques calculate suspiciousness of each
statement based on the matrix Tcover in Fig. 1 (e.g., Renieris and
Reiss, 2003; Wong et al., 2012, 2008; Jones et al., 2002; Agrawal
et al., 1995; Weiglhofer et al., 2009; Abreu et al., 2009; Jones, 2004).
After analyzing previous research work, we propose four assump-
tions for our work as follows:

• The more a statement is executed by failed test cases, the more
suspicious it should be, therefore, the greater suspiciousness it
should be assigned to. That is to say, the suspiciousness of a
statement should be directly proportional to the number of failed
executions that can cover it.

• The more a statement is executed by passed test cases, the less
suspicious it should be, therefore, the lower suspiciousness it
should be assigned to. That is to say, the suspiciousness of a state-
ment should be inversely proportional to the number of passed
executions that can cover it.

• The more a statement is not executed by failed test cases, the
less suspicious it should be, therefore, the lower suspiciousness it
should be assigned to. That is to say, the suspiciousness of a state-
ment should be inversely proportional to the number of failed
executions that cannot cover it.

• The more a statement is not executed by passed test cases, the
more suspicious it should be, therefore, the greater suspicious-
ness it should be assigned to. That is to say, the suspiciousness
of a statement should be directly proportional to the number of
passed executions that cannot cover it.

Based on the above assumptions, most coverage-based fault
localization techniques calculate suspiciousness by the notations
listed in Table 1. Researchers usually performed empirical investi-
gations on their proposed approaches (Jones and Harrold, 2005;
Abreu et al., 2006; Wong et al., 2007, 2012) have further com-
pared 12 similarity coefficient based techniques. However, Xie et al.
(2013) conducted a theoretical analysis of 30 risk evaluation formu-
las for coverage-based fault localization based on four presupposed
assumptions recently. Among all the 30 investigated formulas, they
have proved two groups of maximal formulas listed in Table 2, and
they also indicated that the formulas from the two groups are not
equivalent in fault locating performance.

2.2. Program slicing

Program slicing, firstly proposed by Weiser, can select all the
statements that can affect the value of a variable in a statement

directly or indirectly (Weiser, 1982). The set of selected statements
is called a slice of the program with respect to the variable. Pro-
gram slicing, which indicates the dependencies among program
elements, has been widely used in program analysis and software
testing (Gyimóthy et al., 1999; Agrawal and Horgan, 1990; Sun et al.,
2007). In this section, we give some related definitions of program
slicing as follows.

Definition 1 (A Ref set). A Ref set of the statement s is a set of
variables that are used in statement s. We use notation Ref(s) to
denote the Ref set of statement s.

Definition 2 (A Def set). A Def set of the statement s is a set of
variables that its value is changed in s. We use notation Def(s) to
denote the Def set of statement s.

Definition 3 (Data dependency). A data dependency between two
statements s2 and s1 satisfies three conditions (1) s1 is executed
before s2, (2) the variable v ∈ Ref (s2), v ∈ Def (s1), and (3) there are
no other statements between s1 to s2 on the execution trace which

changes the value of v. Notation s2
DD−→
v

s1 means s2 data depends on

s1 by the variable v.

Let {s′|s DD−→
v

s′̂v ∈ Ref (s)} to be a set of statements on which the

statement s data depends.

Definition 4 (Control dependency). A control dependency between
two statements s2 and s1 satisfies two conditions (1) s1 is executed
before s2 and (2) the s2’s execution is conditionally guarded by the

former executed statement s1. Notation s2
DD−→s1 means s2 control

depends on s1.

Let {s′|s CD−→s′} to be a set of statements on which the statement
s control depends.

Definition 5 (Full slice). A full slice (FS)1 is the transitive closure
of statements that directly or indirectly influence the slice criteria
statement through chains of dynamic data and control dependen-
cies (Zhang et al., 2005).

Let D0(s) = {s}, D1(s) = {s′′|s′′ ∈ DD(s′) ∪ CD(s′) ∧ s′ ∈ D0(s)},
D2(s) = {s′′|s′′ ∈ DD(s′) ∪ CD(s′) ∧ s′ ∈ D1(s)}, . . .,
Dn(s) = {s′′|s′′ ∈ DD(s′) ∪ CD(s′) ∧ s′ ∈ Dn−1(s)}. Furthermore, let
D*(s) = D1(s)∪ D2(s) ∪ . . . to be the transitive closure of D(s), then
the full slice of statement s can be denoted as FS(s) = {s′|s′ ∈ D*(s)}.

Definition 6 (Execution slice). An execution slice is a set of executed
statements after test case execution.

Let ES(t)={s|s ∈ P ∧ s is covered by t } to be a set of statements
covered by the test case t.

By program slicing, all of the statements can be partitioned into
the correct statement set and suspicious statement set. Although

1 In this paper, we used terms “full slice” and “dynamic slice” interchangeably.

Author's personal copy

6 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

Fig. 2. A motivating example.

we can simply regard both full slice and execution slice of failed
running as the suspicious statement set, the scale of these slices
usually could be too large to guide the programmers in locating
faults effectively in real world software debugging. Therefore, most
of the slice-based fault localization techniques locate faults using
different slices (e.g., dicing (Chen and Cheung, 1997), execution
slice (Agrawal et al., 1995; Wong and Qi, 2006)) for narrowing the
domain of suspicious statements.

3. Our approach

We will explain our approach by using an example program
shown in Fig. 2. The function foo() in Fig. 2 returns the calculated
results of three input integers. Considering all possible combina-
tions, we can generate eight test cases (dubbed t1 to t8), which
input values are as followed (1, 2, 1), (4, 2, 1), (3, 1, 1), (2, 1, 1), (0,
1, 1), (1, − 1, 1), (1, 2, 0), (8, 2, 1). We also manually seed a fault into
statement s2 as shown in Fig. 2.

The overall goal of our work is to give an effective solution
for fault localization. Since program slicing can extract a set of
statements from the program with respect to a certain slice cri-
terion, we compute all the full slices with the fault-related criteria
of failed runs by program slicing. Illuminated by coverage-based
approaches, we also compute execution slices and combine them
with full slices to form HSS in our approach. Comparing with exe-
cution coverage matrix used by coverage-based approaches, HSS
might have fewer rows and columns and then it can potentially
reduce the time cost of suspiciousness computing. Moreover, unlike
some slice-based approaches (e.g., Agrawal’s (Agrawal and Horgan,
1990)), our approach computes the full slices based on a static
Program Dependence Graph (PDG) which is constructed by the pre-
vious analysis and is used during all the tests, while those dynamic
slicing methods need to compute a dynamic dependence graph
during each test. Furthermore, our approach computes full slice
of statements with a forward computing algorithm. Based on HSS,
suspiciousness of statements in fault-related slices are computed
with a proposed maximal evaluation formula. Here we give some
related definitions which are used in our approach.

Definition 7. Of = {sj|the output of statement(sj) is unexpected under
some test cases} is a set of the statements which outputs mismatch
the expected output.

Definition 8. FS(oi, tfj) is a function that returns the full slice on
statement oi under test case tfj, where oi ∈ Of and tfj ∈ Tf.

3.1. The framework of our approach

The framework of our approach is shown in Fig. 3. Our approach
is mainly composed of three modules: Pre-Processing mod-
ule, Slice computing module, and Fault locating module.
The initial input of our approach is the source code of the program
P under test and a test suite T. After preprocessing by analyzing the
source code statically and running all the test cases in T, we divide
the test cases into two groups: passed test cases Tp and failed test
cases Tf. At the same time, we also compute the Of. In the slice
computing module, based on Program Dependence Graph (PDG)
constructed by the previous static analysis, we first compute the
full slice (FS) by a forward computing algorithm using P and Tf with
respect to Of. Then we compute the execution slice (ES) by a forward
computing algorithm using P and Tp. With full slices and execution
slices obtained, we compute the hybrid slice spectrum (HSS) by a
hybrid slice spectrum algorithm (HSSC). Finally, in the last module,
we compute the suspiciousness of each statement in HSS based
on a proposed formula and we generate a fault localization report
by sorting the suspiciousness in descending order. Next, we will
introduce the implementation of these modules in sequence.

3.2. Pre-processing module

The first phase of our approach focuses on preprocessing. Firstly,
we statically analyze the program under test and transform the
source code into intermediate code. Specifically, we obtain the Jim-
ple code,2 a 3-address code representation of Java bytecode, for
performing analysis. By analyzing Jimple code, we can compute the
static Program Dependence Graph (PDG) of the program, which is
beneficial for dynamic full slice computing in the following steps.
In reality, we utilize PDG to identify dynamic dependencies in the
computation of dynamic slices. Secondly, we run all test cases in T
and divide the test cases into two groups: passed test cases Tp and
failed test cases Tf. We also compute the Of when the running of

2 More information about Jimple code can be found at the website:
http://www.sable.mcgill.ca/soot/.

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 7

Compute

Full Slice

(FS)

Compute

Execution Slice

(ES)

Compute

Hybrid Slice

Spectrum

(HSS)

Compute

Suspiciousness
Test P

Under T
Test Su it

(T)

Program

Under Test

(P)

Static Analysis

Generate

FL Report

Pre-Processing Slice Computing Fault Locating

Fig. 3. The framework of our approach.

test cases results in the failure. After the preprocessing phase, we
can obtain Jimple code and PDG of program P, two test case groups
Tp and Tf, and the set of faulty output statements which are useful
for the next slice computation Of.

3.3. Slice computing module

In this module, we first conduct the computation of full slice (FS)
and execution slice (ES) using P, Tf, Tp, PDG and Of. After obtaining
full slices and execution slices, we can compute the hybrid slice
spectrum by the proposed hybrid slice spectrum algorithm (HSSC).

3.3.1. Execution slice computing
Execution slice describes the set of statements that executed in

a program run. In our approach, we use execution slices of passed
runs to construct hybrid spectrum slice (HSS) by combining with
full slices of failed runs. Generally, the execution slice generation
method can be classified into two categories: one category is to
trace and record executed statements by program instrumenta-
tion. Another category is to monitor and record the memory map
through the shadow memory. Both of them are required to measure
the program behavior without interfering with the normal opera-
tion of the program. We developed our tool HSFal using the second
way to trace the runtime information. In particular, we utilize the
interrupter mechanism of the JVM through JDI (Java Debug Inter-
face) to obtain the data related to the current executing statement.

We run all test cases to test the function foo() and gather
their statement coverage. The detail of execution coverage and test
results are shown in Fig. 2. The faulty program fails when running
test cases t1, t2, and t7 with different execution slices, and passes
when running the rest of test cases. Specially, the function foo()
has the same coverage under the test case t3 and t8. That is to say,
ES(t3) = ES(t8).

3.3.2. Full slice computing
In our approach, full slices of failed runs are also used to combine

hybrid spectrum slice (HSS). Full slices are the transitive closure
of statements on which the slice criteria data or control depend.
When a test case triggers a failure in the program, developers are
more concerned about the full slices on the undesired results. The
intuitive method of computing full slice is to travel from the faulty
outputs back along the Program Dependence Graph (PDG), but this
method needs to construct the PDG. In our prototype tool HSFal,
we adopted the forward computing full slice algorithm (Zhang
et al., 2005) to compute both the data dependency sets and con-
trol dependency sets with PDG along the program executing from
the entrance of the program. Although full slices of all statements
are computed, only the latest slices of statements are used. Our tool
HSFal continuously computes full slices as statements are executed
until the statement s′(s′ ∈ Of) is reached.

We use the example in Fig. 2 to explain the forward computing
the full slice algorithm. The program fails after running test cases
t1(1, 2, 1), t2(4, 2, 1) and t7(3, 1, 1). Let is be the ith execution of the

Table 3
Forward computation of full slices of faulty program under test case t7.

is Def(s) Ref(s) CD(s) FS(s)

1s1 {x, y, z} ∅ ∅ {s1}
1s2 {x} {x, y} ∅ {s1, s2}
1s3 {m} {y} ∅ {s1, s3}
1s4 ∅ {x} ∅ {s1, s2, s4}
1s5 {m} {x} {s4} {s1, s2, s4, s5}
1s6 {x} {x, y} {s4} {s1, s2, s4, s6}
1s7 {z} {y} {s4} {s1, s2, s4, s7}
1s8 ∅ {m} ∅ {s1, s2, s4, s5, s8}
1s9 {ret} {y, z} {s8} {s1, s2, s4, s5, s7, s8, s9}
1s11 ∅ {ret} ∅ {s1, s2, s4, s5, s7, s8, s9}

statement s. Table 3 shows the process of forward computation for
full slice under the test case t7. The return value is determined by
the statement 1s11 and the output of faulty program is 2 which is
mismatched with the expected output value −2. Looking up the full
slice of the variable ret at 1s11, we will find the real faulty statement
s2. In other words, the fault in s2 can be located in FS(1s11). Obvi-
ously, the size of FS(1s11) is smaller than that of ES(t7) by removing
statements s3 and s6.

3.3.3. Hybrid slice spectrum computing
We calculate the hybrid slice spectrum (HSS) using full slices

and execution slices obtained from the previous two steps. A union
of all full slices is calculated firstly. Then the union is respectively
intersected with both full slices and execution slices to construct
the hybrid slice spectrum. The coverage detail of HSS is shown in
Fig. 4.

Let UF denotes the union of FS(oi, tfj), oi ∈ Of, tfj ∈ Tp. In fact, UF can
be denoted by a set of statements {s′

1, s′
2, . . ., s′

m} shown in Fig. 4.

Fig. 4. Coverage of hybrid spectrum slices (HSS).

Author's personal copy

8 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

Table 4
Hybrid slice spectrum for foo() after running all test cases.

Test cases Pass/fail s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

t1 Fail 1 1 1 1 0 0 0 1 1 0 1
t2 Fail 1 1 0 1 1 1 1 1 0 1 1
t7 Fail 1 1 0 1 1 0 1 1 1 0 1
t3(t8) Pass 1 1 1 1 1 1 1 1 1 0 1
t4 Pass 1 1 1 1 1 1 1 1 0 1 1
t5 Pass 1 1 1 1 0 0 0 1 1 0 1
t6 Pass 1 1 1 1 0 0 0 1 0 1 1

The elements dij and eij which denote the coverage of full slices and
execution slices are computed by formula (6), respectively.

dij =
{

1, if s′
j
∈ FS(ok, tfi)

0, otherwise
and eij =

{
1, if s′

j
∈ ES(tpi) ∩ (

⋃
oh∈Of

FS(oh, tfk)) ∧ tpi ∈ Tp ∧ tfk ∈ Tf

0, otherwise
(6)

We use Algorithm 1 to explain the computation of hybrid slice
spectrum based on full slices and execution slices. FS(Of) denote
the set of all the full slices FS(oi, tfj), oi ∈ Of, tfj ∈ Tp. The lines 1–3
fetch each slice in FS(Of) and add them to HSS matrix. The function
Addline(fs) is to add slice fs to HSS satisfying formula (6). The lines
5–7 intersect each slice in execution slices with the union set of
all statements in FS(Of) and add the result to HSS. The function
Merge(HSS) is to remove the redundancy execution slices that are
same with others in HSS matrix.

Algorithm 1. [Hybrid slice spectrum computing algorithm: HSSC]

Require:
<FS(Of), ES(TP)>

Ensure
H S S

1: for each f s in FS(Of) do
2: H S S . Addline(f s) ;
3: end for
4: ALLStmsInFS = ∪ FS(Of);
5: for each es in ES(TP) do
6: H S S . Addline(es ∩ ALLStmsInFS);
7: end for
8: H S S = Merge(H S S);
9: return H S S;

In the motivating example shown in Fig. 2, considering that the
function foo() fails after running test cases t1, t2 and t7, we fur-
ther compute the full slices with respect to statement s11. With full
slices and execution slices obtained, we can compute the hybrid
slice spectrum (HSS) by Algorithm 1. Table 4 shows the hybrid slice
spectrum of the example. It is demonstrated that the test case t3
and t8 have the same hybrid slice spectrum.

Generally speaking, both the number of rows and columns in
Scover computed by Algorithm 1 might be smaller than that of Tcover

matrix shown in Fig. 1. That is to say, HSS can reduce the computa-
tional costs at the stage of suspiciousness computing. But we also
notice that HSS would spend quite a number of time computing full
slices, execution slices and hybrid slice spectrum. We will discuss
the total computational costs in Section 4.

3.4. Fault locating module

In general, the suspiciousness of a statement is directly pro-
portional to the number of covering by failed executions and
uncovering by passed executions, and inversely proportional to
the number of covering by passed executions and uncovering
by failed executions. Moreover, for both passed tests and failed

tests, the covered entities should make more contributions to fault
localization than the uncovered entities do. Thus, the number of
covering entities by tests is more influential and should carry
a greater weight than that of uncovering entities in suspicious-
ness computing. Dozens of formulas for suspiciousness calculation
were proposed and evaluated by empirical studies during the last
decades. In our approach, based on the above intuitions, we first
choose two maximal formulas (Naish2 and Russel&Rao) within
five formulas from each maximal group, theoretically proved by
Xie et al. (2013). Since that the formulas from each group are not
equivalent in performance of fault localization, we multiply them to
construct a new formula shown as follows. Furthermore, we expect

that the multiply operation of constructing new formula might hold
the advantages of the two existing maximal formulas.

HSS0(s) =
(

NCF (s) − NCS(s)
NCS(s) + NUS(s) + 1

)
×

(
NCF (s)

NCF (s) + NUF (s) + NCS(s) + NUS(s)

)
(7)

In formula (7), notation NCF(s) and NCS(s) denote the number
of covering by failed and passed slices in HSS, respectively. Simi-
larly, notation NUF(s) and NUS(s) denote the number of uncovering
by failed and passed slices in HSS, respectively. Let NS(s) denote
the sum of NCS(s) and NUS(s), and let NF(s) denote the sum of NCF(s)
and NUF(s). Though the formula (7) is mutated form Naish2 and
Russel&Rao, it holds its trends of the two maximal formulas math-
ematically, and it also complies with the intuitions discussed above.
The reason is that the assessed suspiciousness by both Naish2 and
Russel&Rao are nonnegative, and formula (7) is the product of the
two maximal formulas by multiplying. Furthermore, Considering
NS(s) > =0, NF(s) > =0 and NS(s) + NF(s) > 0 in our scenario, we replace
NCS(s) + NUS(s) + 1 with N. Therefore, the formula (7) can be modified
as follows:

HSS(s) = N2
CF (s)
N

− NCF (s) × NCS(s)
N2

(8)

Based on the HSS matrix in Fig. 4, all the parameters in the for-
mula (8) can be computed as follows, NCS(sj) =

∑u
i=veij , NCF (sj) =∑l

i=1dij , NS = l, NF = u − q + 1 and N = NS + NF. Formula (8) is artificially
constructed as an intuitively suspiciousness evaluation formula.
But the underlying assumption of this formula is that the statement
covered by more failed or less passed tests should have a greater
suspiciousness value, and this assumption also complies with the
assumptions adopted by other formulas.

Illuminated by the work of Xie et al. (2013), we will give a
theoretical analysis to show the effectiveness of our proposed for-
mula by comparing with two maximal formulas (i.e., Naish2 and
Russel&Rao). In our analysis, we will use some notations and defi-
nitions appeared in Xie’s paper. Such as SR

B = {si|R(si) > R(sf)},SR
F =

{si|R(si) = R(sf)} and SR
A = {si|R(si) < R(sf)}, si is a statement of pro-

gram, sf is the real fault of program, R is a suspiciousness evaluation
formula. Given two suspiciousness formulas R1 and R2, it is said that
R1 is better than R2 in the effectiveness of fault localization (denoted
as R1 → R2) if and only if SR1

B ⊆ SR2
B and SR2

A ⊆ SR1
A (Xie et al., 2013).

Here, the relation “→” means “better than”. Before presenting our
theoretical analysis of the effectiveness of these formulas, we firstly
propose one assumption as a complementary to Xie’s four assump-
tions (Xie et al., 2013). Our assumption is that a test case will always

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 9

yield the result of fail if the real fault is executed under the test
case, then we have NCF(sf) = NF, and NCS(sf) = 0. Then we will prove
the following two propositions.

Proposition 1. HSS → Russel & Rao.

Proof. (We dubbed Russel & Rao as R & R in our proof)
(A) To prove that SHSS

B ⊆ SR&R
B .

Assume si ∈ SHSS
B . Then, according to the definition of SHSS

B , we
have

N2
CF (si)
N

− NCF (si) × NCS(si)
N2

>
N2

CF (sf)
N

− NCF (sf) × NCS(sf)

N2
. (9)

Considering our proposed assumption, we have NCS(sf) = 0, then
the above inequality (9) can be re-arranged to

N2
CF (si)
N

− NCF (si) × NCS(si)
N2

>
N2

CF (sf)
N

. (10)

Also considering NCF(si) ≥ 0, NCS(si) ≥ =0, we have

NCF (si) × NCS(si)
N2

> 0. (11)

Therefore, the inequality (10) can be re-arranged
to N2

CF (si) > N2
CF (sf). Also because NCF(sf) > 0 and

N = NCF(si) + NCS(si) + NUF(si) + NUS(si) = NCF(sf) + NCS(sf) + NUF(sf)
+ NUS(sf), we have

NCF (si)
NCF (si) + NCS(si) + NUF (si) + NUS(si)

>
NCF (sf)

NCF (sf) + NCS(sf) + NUF (sf) + NUS(sf)
.

(12)

Thus, si ∈ SR&R
B according to the definition of SR&R

B . Therefore, we
have SHSS

B ⊆ SR&R
B .

(B) To prove that SR&R
A ⊆ SHSS

A .
Assume si ∈ SR&R

A . Then, according to the definition of SR&R
A , we

have

NCF (si)
NCF (si) + NCS(si) + NUF (si) + NUS(si)

<
NCF (sf)

NCF (sf) + NCS(sf) + NUF (sf) + NUS(sf)
.

(13)

Considering NCF(si) > = 0, NCS(si) > = 0 and
N = NCF(si) + NCS(si) + NUF(si) + NUS(si) = NCF(sf) + NCS(sf) + NUF(sf)
+ NUS(sf), we have (((NCF(si) × NCS(si))/N2) > 0) and the inequality
(13) can be re-written into

N2
CF (si)
N

<
N2

CF (sf)
N

. (14)

Following the above assumptions, we have
((NCF(sf) × NCS(sf))/N2) = 0. Then, the inequality (14) can be
re-arranged into

N2
CF (si)
N

− NCF (si) × NCS(si)
N2

<
N2

CF (sf)
N

− NCF (sf) × NCS(sf)

N2
. (15)

Thus, si ∈ SHSS
A according to the definition of SHSS

A . Therefore, we
have SR&R

A ⊆ SHSS
A .

In conclusion, we have SHSS
B ⊆ SR&R

B and SR&R
A ⊆ SHSS

A . So it is suf-
ficient to prove HSS → Russel & Rao. In an other words, HSS is better
than Russel&Rao.

Proposition 2. HSSandNaish2arethemaximalformulas.

Proof. First, we will prove that HSS → Naish2 does not hold. (We
dubbed Naish2 as Na in our proof). Assume HSS → Naish2, then we
have (SHSS

B ⊆ SNa
B) and (SNa

A ⊆ SHSS
A).

∀si ∈ SHSS
B , we have si ∈ SNa

B because of SHSS
B ⊆ SNa

B . Then, accord-
ing to the definitions of SHSS

B andSNa
B , we have⎧⎪⎨⎪⎩

N2
CF

(si)

N
− NCF (si) × NCS(si)

N2
>

N2
CF

(sf)

N
− NCF (sf) × NCS(sf)

N2

NCF (si) − NCS(si)
NCS(si) + NUS(si) + 1

> NCF (sf) − NCS(sf)

NCS(sf) + NUS(sf) + 1

(16)

According to our assumptions, we have NCF(sf) = Nf, NCS(sf) = 0
and NCS(si) + NUS(si) = NCS(sf) + NUS(sf) = NS. Thus, the above inequal-
ity group (16) can be re-arranged to⎧⎨⎩

NCF (si) > NCF (sf)

NCF (si) − NCS(si)
NS + 1

> NCF (sf)

Thus, NCS(si)
NS+1 < NCF (si) − NCF (sf) due to NCF(si) − NCF(sf) < =0 and

NS + 1 >0. Then, we will get the result NCS(si) < 0. But in fact
NCS(si) > 0. Therefore, the relation (“SHSS

B ⊆ SNa
B ”) does not hold. In

conclusion, HSS is not “better” (“→”) than Naish2.
Secondly, we will prove that Naish2 → HSS does not hold.

Assume Naish2 → HSS, then we have (SNa
B ⊆ SHSS

B) and (SHSS
A ⊆ SNa

A).
Similar to the first step of our proof, we can prove that the relation
(“SNa

B ⊆ SHSS
B ”) does not hold. Therefore, Naish2 is also not “better”

(“→”) than HSS.
Following Propositions 1 and 2, we can conclude that both our

proposed formula HSS and Naish2 are the maximal formulas.
Next we will give a mini experiment to illustrate the effective-

ness of our approach based on the motivating example shown in
Table 5. The suspiciousness of each statement in foo() are com-
puted by formula (8) and three other formulas using coverage and
hybrid slice spectrum, respectively. It shows that our proposed
formula (HSS) shares the same effectiveness with the other two
maximal formulas, namely Naish2 and Russel&Rao (dubbed R&R),
based on both coverage and hybrid slice spectrum. Moreover, the
formula (8) always performs better than Tarantula does. For exam-
ple, based on hybrid slice spectrum, we need to examine 1 up to 5
statements using formulas HSS, Naish2, or Russel&Rao. However,
we need to examine 4 up to 8 statements using formula Tarantula.

In addition, using Xie et al.’s two sample programs PG1 and PG2
(Xie et al., 2013) with the test suite TS3, we also compute the suspi-
ciousness of each statement in PG1 and PG2 with our formula and
two maximal formulas (Russe&Rao and Naish2) to make a com-
parison. The experiment result shows that the rank of the faulty
statement by our formula is always the same as that of Naish2 and
smaller than that of Russel&Rao. Thus, we can consider that the
performance of our formula is as good as Naish2 and is always bet-
ter than Russel&Rao which is exactly brought into correspondence
with our previous theoretical analysis.

However, in real program debugging scenarios, the assumptions
of our theoretical analysis are not always satisfied. Therefore, we
need more empirical studies to evaluate our approach. In the next
section, we will use more complex programs and conduct empirical
studies to show the effectiveness and efficiency of our approach and
the proposed formula.

4. Empirical study

To evaluate the effectiveness and efficiency of our approach
(HSS), we implemented it in a prototype tool HSFal and applied the
tool to 14 subject programs and corresponding faults. In our empir-
ical study, we want to investigate the following research questions:

• RQ1: Can the hybrid slice spectrum of our approach perform bet-
ter than other refined spectrum based on the same suspiciousness
evaluation formula? If so, by how much?

Author's personal copy

10 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

Table 5
Suspiciousness of statements for foo() computed by different approaches.

Statement Coverage based Hybrid slice spectrum based

Tarantula Naish2 R&R HSS Tarantula Naish2 R&R HSS

s1 0.5 2.17 0.38 0.89 0.5 2.2 0.38 0.91
s2 0.5 2.17 0.38 0.89 0.5 2.2 0.38 0.91
s3 0.5 2.17 0.38 0.89 0.25 0.2 0.13 0.05
s4 0.5 2.17 0.38 0.89 0.5 2.2 0.38 0.91
s5 0.53 1.5 0.25 0.41 0.57 1.6 0.25 0.43
s6 0.53 1.5 0.25 0.41 0.4 0.6 0.13 0.09
s7 0.53 1.5 0.25 0.41 0.57 1.6 0.25 0.43
s8 0.5 2.17 0.38 0.89 0.5 2.2 0.38 0.91
s9 0.53 1.5 0.25 0.41 0.57 1.6 0.25 0.43
s10 0.45 0.67 0.13 0.09 0.4 0.6 0.13 0.09
s11 0.5 2.17 0.38 0.89 0.5 2.2 0.38 0.91
Fault rank 5–10 1–6 1–6 1–6 4–8 1–5 1–5 1–5
Loc. cost (%) 45.5–90.9 9.1–54.5 9.1–54.5 9.1–54.5 36.4–72.7 9.1–45.5 9.1–45.5 9.1–45.5

Table 6
The characteristics of subjects.

Subject Description LOC Tests Faults

Print tokens1 Lexical analyzer 478 1200 5
Print tokens2 Lexical analyzer 410 1200 10
Schedule1 Priority scheduler 290 2650 9
Schedule2 Priority scheduler 317 2710 9
Tot info Information measure 283 1052 10
Jtcas Collision avoidance 181 1201 12
Sorting Five sorting algorithms 222 100 3
NanoXML v1 XML parser 3497 214 7
NanoXML v2 XML parser 4009 214 6
NanoXML v3 XML parser 4608 216 4
NanoXML v5 XML parser 4782 216 8
XML-sec v1 XML encryption 21,613 92 8
XML-sec v2 XML encryption 22,318 94 6
XML-sec v3 XML encryption 19,895 84 7

• RQ2: Can the ranking of HSS computed by our proposed maximal
formula improve the effectiveness of fault localization signifi-
cantly? If so, by how much?

• RQ3: Since HSS is a heavyweight fault localization technique, how
about the time cost of HSS used for fault localization?

4.1. Experiment subjects

We summarize the characteristics of the subjects used in our
empirical study in Table 6. These subjects are implemented by
Java programming language. For each subject, it provides a brief
description (column 2), the number of executable lines of code (col-
umn 3), the number of test cases (column 4) and the number of
faults studied (column 5). The former five subjects were Java ver-
sion of Siemens programs which were translated from C version
by Santelices et al. (2009),3 and the rest of subjects were down-
loaded from the Subject Infrastructure Repository (SIR) (Do et al.,
2005). Specially, NanoXML and XML-security are large scale sub-
jects which we treat as representative of real-world subjects in our
empirical study. Moreover, we studied four releases of NanoXML and
three releases of XML-security.

The numbers of executable lines of all the subjects are rang-
ing from hundreds of lines to tens of thousands of lines (column
3). All test cases for these subjects excluding Sorting were down-
loaded from the two above web site. We only use parts of them
(the numbers of test cases are listed in column 4 of Table 6), and
we randomly generated 100 groups of various integers for testing
the subject program Sorting. Each version of the subjects listed in

3 These subjects can be downloaded from his personal website:
http://www3.nd.edu/ rsanteli/subjects.

Table 6 has been seeded single fault. All the faults in these subjects
excluding Sorting were manually seeded by other researchers. For
Sorting, we manually seeded three faults and the considered fault
types include predicate based fault and assignment based fault. For
Jtcas, we randomly selected 12 faults from 41 faulty versions to
avoid biasing the average cost toward this subject. In all, we studied
104 different faults in our experiment.

4.2. Variables and measures

The primary goal of this study is to evaluate the effectiveness and
efficiency of the fault localization approach proposed in this paper.
To accomplish this, we utilize one independent and four depen-
dent variables. The independent variable is the fault-localization
technique. We examine our proposed approach comparing with a
set of fault-localization techniques. The first dependent variable is
the cumulative number of statements examined, the second depen-
dent variable is the EXAM score, the third dependent variable is the
average costs, and the last dependent variable is the time overhead
of each fault localization technique used in locating faults.

Intuitively, we consider the cumulative number of statements
examined with respect to all faulty versions as the effectiveness
of a fault localization technique. For each approach, the cumula-
tive number of statements examined is recorded and computed for
comparing the effectiveness with each other. Additionally, we com-
pute EXAM score defined as the percentage of statements that has
to be examined in order to find the fault. Thus, the effectiveness
of a fault localization technique can also be illustrated by EXAM
score. In other words, Technique A is considered to be more effec-
tive than technique B if its EXAM score assigned is less than that
of technique B. Furthermore, we compute the average costs on each
subject defined as the percentage of examined statements per fault.
Finally, we collect the time used in each phase of a fault localization
to illustrate its efficiency.

We compare HSS with both other coverage-based and slice-
based fault localization techniques, based on the above four
dependent variables (i.e., cumulative number of statements exam-
ined, EXAM-score, average costs, time overhead). Since we intend to
demonstrate that HSS is more effective than other compared fault
localization techniques, we use the one-tail alternative hypothe-
sis to evaluate that HSS requires examining fewer statements than
that of other techniques.

4.3. Experimental set up

To verify the effectiveness of our approach, we compare our
approach HSS with both four coverage-based approaches (i.e.,
Tarantula (Jones, 2004), DStar (Wong et al., 2012), Naish2, and

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 11

Russel&Rao (Xie et al., 2013)) and four slice-based approaches (i.e.,
Set Intersection (Renieris and Reiss, 2003), Set Union (Renieris and
Reiss, 2003), ADBS (Lei et al., 2012), and Wen (2012)). We select
these approaches by considering that Tarantula is widely compared
in most literatures, Naish2 and Russel&Rao are proved to be the
maximal evaluation formulas by Xie et al. (2013) while DStar is not
included in Xie’s theoretical analysis work. Tarantula, which eval-
uation formula is (NCF/NF)/((NCS/NS) + (NCF/NF)), takes the intuition
that the program entities which are primarily covered by failed
runs are more likely to be faulty than those by passed runs. DStar,
which evaluation formula is N∗

CF /(NUF + NCS, (∗ = 2, 2.5, . . .)), eval-
uates the suspiciousness of statements by modifying the Kulczynski
coefficient (a/(b + c)) to DStar (i.e., by adding an exponent to its
numerator). Since we cannot theoretically prove that other values
of its exponent shall always be more efficient in fault localization,
without loss of generality, the exponent of DStar is set to 2 for sim-
plified calculation in our empirical study. Naish2 and Russel&Rao
gather the coverage of all the executions and calculate the sus-
piciousness of statements by the evaluation formulas which are
listed in Table 2. With each proposed risk evaluation formula, these
coverage-based approaches can calculate the suspiciousness of all
statements. Finally these approaches can generate a fault localiza-
tion report with descending suspiciousness of each statement.

Set Intersection (dubbed Inter) and Set Union (dubbed
Union) which are described in Renieris and Reiss (2003) locate
faults based on execution slices. Different from those statistical
approaches, these two approaches do not need to compute sus-
piciousness. Given a random failed execution slice (fs) and a set
of passed execution slices (PS), Set Intersection computes the
difference (

⋂
ps∈PSps − fs)C and Set Union computes the difference

(fs −⋃
ps∈PSps) to form the search domain. Then the developer can

inspect the search domain according to the appearance order of
statements in the program under test until finding the fault. Consid-
ering that Set Intersection and Set Union approaches may generate
false negatives, we count all statements in execution slices as search
domain if these approaches missed the actual fault. Approximate
dynamic backward slicing (ADBS) approach (Zhang et al., 2007)
computes the statements in the intersection of the static back-
ward slice and the set of execution slices as the search domain of
faults. Furthermore, we apply a statistical approach to ADBS for
suspiciousness computing by Tarantula formula (Lei et al., 2012)
in our experiment. Wen’s approach (Wen, 2012) combines full
slices of failed runs and execution slices of passed runs to a matrix
which presents the frequency of each statement executed by each
test case. Based on this matrix, we compute the corresponding
suspiciousness for each statement by a Tarantula style formula
(Wen et al., 2011) represented as (

∑
PerCF(si, tfl)/NF)/((

∑
PerCS(si,

tpk)/NS) + (
∑

PerCF(si, tfl)/NF)), where
∑

PerCF(si, tfl) and
∑

PerCS(si,
tpk) denote the sum of the percentage of statement-frequency by
failed test and passed test, respectively. Let fre(si, tk) denotes the
frequency of si that is executed by the test case tk, then we have
PerCF(si, tfl) = (fre(si, tfl)/

∑
fre(sj, tfl)) where si is covered by a failed

test case tfl and PerCS(si, tpk) = (fre(si, tpk)/
∑

fre(sj, tpk)) where si is
covered by a passed test case tpk.

To answer our three research questions, we conduct an empir-
ical study to examine the behavior of faulty software and assess
the four assumptions previously discussed in Section 2. Main part
of HSFal includes analyzing the Java bytecode, tracing executions
of each subject program on the fly, and computing the ranking list
based on HSS. In practice, we firstly select a single fault subject
program listed in Table 6, and exclude multi-fault versions. Sec-
ondly, we run the faulty subjects by the test cases which is randomly
selected from the test suite. Thirdly, HSFal monitors each execution
through Java Debug Interface (JDI) with full slices and execution
slices computed at the same time. Finally, HSFal composes all slices
to HSS and generates a fault localization report based on the ranking

list computed by formula (8). For each faulty version, we compute
the EXAM score based on fault localization report considering the
seeded faults accordingly. Then, we compare the percent of code
examined and the percent of fault located of our technique with other
fault localization techniques, respectively.

Comparing with these above approaches, our approach (HSS)
which locates faults with a new refined spectrum might be smaller
than that of ADBS’s and Wen’s because of the removal of repeated
execution slices from the final spectrum. Moreover, our approach
adopts a maximal risk evaluation formula to compute the sus-
piciousness of statements. In summary, we have designed three
experiments to make a comparison between our approach and
these approaches discussed above. The designed experiments are
described as follows:

• The first experiment is to make an evaluation of the hybrid spec-
trum by comparing our approach with ADBS and Wen’s with the
same suspiciousness evaluation formula adopted. In this compar-
ison, we use the three maximal formulas (i.e., our formula, Naish2,
and Russel&Rao) to compute the suspiciousness of statements,
respectively.

• The second experiment is to make an evaluation of our approach
by comparing with coverage-based approaches.

• The third experiment is to make an evaluation of our approach
by comparing with slice-based approaches.

Note that we compute the suspiciousness of statements with
each formula proposed in original literatures in the latter two
experiments. In addition, we make a comparison of time cost
between coverage-based fault localization (CBFL) and our approach
(HSS).

The experiments were run on an Intel(R) Xeon(R) CPU at
3.07 GHz with 16G memory, and Ubuntu 12.04 64-bit operating
system with Open-JDK 1.7 installed.

4.4. Data analysis

We conduct the first experiment described in Section 4.3 and
present the results in Table 7. In this experiment, we employ
three maximal formulas (i.e., Naish2, Russel&Rao, and our proposed
formula) and compare the cumulative statements need to be exam-
ined by the refined spectrum (i.e., HSS, ADBS, and Wen’s) using the
same evaluation formula, respectively. As shown in Table 7, the
column of Naish2 illustrates the fault localization costs per sub-
ject based on three compared spectra when employing the formula
Naish2 to evaluate the suspiciousness of statements. Similar to col-
umn Naish2, the latter two columns, Russel & Rao and Ourformula,
represent the cumulative costs based on three refined spectra when
employing Russel&Rao and our formula, respectively.

From Table 7, we can observe that, our spectrum can always
need to examine fewer statements than that of the other two
spectra (i.e., ADBS and Wen’s) whatever formula is employed. For
example, when employing formula Naish2, the total cost of HSS,
which is only 9082, is much lower than the costs of other two
compared spectra which all exceed 10,000 lines. That is to say,
our hybrid slice spectrum (HSS) performs better in fault local-
ization comparing with ADBS and Wen’s. Besides, we can also
observe that, the costs of fault localization employing our formula
are always smaller than other two formulas (i.e., Naish2 and Rus-
sel & Rao) whatever spectra is employed. For example, the total cost
of HSS which is only 8844 when employing our formula, is much
lower than the costs of HSS when employing other two formulas
(i.e., Naish2 and Russel & Rao). It means that in the empirical study,
our formula can perform better than the compared formulas. This
result also complies with the two propositions of our theoretical
analysis in Section 3.4.

Author's personal copy

12 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

Table 7
Comparison on the cumulative statements need to be examined by HSS, ADBS and Wen’s based on maximal formulas.

Subject Naish2 Russel&Rao Our formula

ADBS Wen’s HSS ADBS Wen’s HSS ADBS Wen’s HSS

Print tokens1 154 149 141 173 153 143 164 147 136
Print tokens2 387 315 203 419 323 204 302 292 191
Schedule1 279 187 124 309 212 137 261 175 102
Schedule2 323 256 261 348 287 273 312 236 244
Tot info 395 337 322 401 357 323 381 346 317
Jtcas 226 179 185 251 234 211 212 185 182
Sorting 101 98 79 147 116 81 126 117 74
NanoXML v1 1232 1152 912 1315 1172 924 1253 1098 842
NanoXML v2 1583 1285 1156 1630 1467 1227 1561 1275 1151
NanoXML v3 975 942 891 1247 1152 1017 987 965 873
NanoXML v5 1431 1327 1173 1495 1372 1269 1483 1247 1150
XML-sec v1 1356 1203 1017 1326 1267 1052 1367 1185 986
XML-sec v2 1417 1173 1064 1392 1205 1083 1408 1115 1053
XML-sec v3 2743 2212 1554 2815 2247 1659 2763 2138 1543
Overall cost 12,602 10,815 9082 13,268 11,564 9603 12,580 10,521 8844

To evaluate the significance of improvement by our hybrid slice
spectrum (HSS), we applied the paired Wilcoxon tests between HSS
and other two spectra (i.e., ADBS and Wen’s) when using three
maximal formulas. In order to show that our spectrum (HSS) is
more effective in fault localization than the two compared spectra,
we carried out the one-tailed alternative hypothesis to verify that
HSS requires the least examination of statements than the com-
pared spectra employing the formulas in Table 7, respectively. The
p-values of all tests between HSS and ADBS range from 0.08178
to 0.1137, and the p-values of all tests between HSS and Wen’s
range from 0.179 to 0.2412. Therefore, we can accept the hypothe-
sis with confidence level 0.8863 of the test between HSS and ADBS,
and can accept the hypothesis with confidence level 0.7588 of the
test between HSS and Wen’s. In summary, comparing with spectra
ADBS and Wen’s with the same formula, our hybrid slice spec-
trum (HSS) can improve the effectiveness of fault localization even
though these improvements are not very significant.

Next, we conduct the second and the third experiments to eval-
uate the effectiveness of our approach with formula (8) comparing
with coverage-based approaches and slice-based approaches with
each formula proposed in original literatures. We present the
results of the cumulative number of statements examined over all
faulty versions for each subject in Tables 8 and 9, when employing
Tarantula, DStar, Naish2, Russel&Rao and our approach HSS. Due
to the real faulty statement may share the same suspiciousness
with others, the programmer might need to examine only one of
these statements fortunately (best cases) or to examine all these
statements to locate the real fault unfortunately (worst cases).

As shown in Table 8, the column of Best cases illustrates the
best fault-localization costs per subject (i.e., minimal cumulative
costs over all faults in all subjects) and the column of Worst cases
shows the worst fault-localization costs per subject (i.e., maximal
cumulative costs over all faults in all subjects).

From Table 8, we can observe that, under both best cases and
worst cases, the cumulative number of statements examined by
Tarantula and DStar are quite similar with each other. The cumu-
lative number of statements examined by Russel&Rao (dubbed R&R)
are smaller than three techniques (Tarantula, DStar and Nasish2)
under best cases. Excepting for the subjects Jtcas and Sorting under
the best cases, the cumulative number of statements examined by HSS
are much smaller than compared techniques. The last row overall
cost of Table 8, illustrates the total number of statements needed
to be examined over all subjects by each approach. We can also
observe that the total cost of HSS under best case, which is only
8299, is much lower than the costs of compared techniques which
all exceed 14,000 lines, and the same in worst case. Therefore, it is
obvious that the total costs of our approach HSS are significantly

lower than that of the compared approaches either the best or the
worst cases.

Table 9 indicates the comparison of slice-based approaches with
our proposed approach. Columns 2–6 shows the cumulative number
of statements examined by Set Intersection (dubbed Inter), Set Union
(dubbed Union), ADBS, Wen and our approach (HSS), respectively.
Columns 7–10 shows the improvement ratio of HSS comparing with
other approaches.

From Table 9, we can observe that the cumulative statements by
our approach (HSS) are always fewer than that by other compared
approaches. Although the cumulative number of examined state-
ments by our approach of each subject are close to that by Wen’s,
HSS, which overall cost is 8844, nearly reduced by one-third of cost
than that of Wen’s approach which is 12,755. All in all, our pro-
posed approach, HSS, reduced the cumulative statements greatly
than that of compared approaches.

Next, as shown in Fig. 5, we present the EXAM scores over
all faulty versions by employing different fault localization tech-
niques considering the best, the worst, and the average cases.
Fig. 5 illustrates the EXAM score of our proposed approach and
other compared fault localization approaches using six subplots.
For each subplot, the horizontal axis represents the percentage of
code examined in all subjects. Along the vertical axis we represent
the percentage of fault located in all faulty versions. From subplot (a),
(b), (c) and (d), we can observe that, regardless of the best or worst
case is considered, HSS is always the most effective one than Taran-
tula, DStar, Naish2 and Russel&Rao when we examine less than
60% of the code, though Naish2 and Russel&Rao are proved to be
the maximal risk evaluation methods (Xie et al., 2013). Besides that,
Russel&Rao is less effective than other approaches while examining
code is less than 70% in the worst case. In summary, HSS can always
obtain the lower EXAM score than that of compared approaches (i.e.,
Tarantula, DStar, Naish2 and Russel&Rao). We present the aver-
age EXAM score of both coverage-based approaches and slice-based
approaches in subplot (e) and (f), from which we can observe that
HSS is more effective than others, and the EXAM score of Tarantula,
DStar, Naish2 and Russel&Rao are much closed with each other in
subplot (e), and the EXAM score of Inter and Union are also sim-
ilar to each other. For example, to detect 70% of faults, HSS only
needs to examine less than 10% of code while the other techniques
except Wen need to examine more than 20%. As shown in subplot
(f), HSS is slightly better than Wen in the EXAM score of locating
faults. In brief, HSS is the most effective one among all the compared
approaches in our experiments.

Furthermore, we computed the average costs of locating faults
employing HSS together with other compared techniques on each
subject as shown in Table 10. From Table 10, we can observe that,

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 13

Table 8
Comparison on the cumulative statements need to be examined by coverage-based approaches for all faulty versions of each subject.

Subject Best cases Worst cases

Tarantula DStar Naish2 R&R HSS Tarantula DStar Naish2 R&R HSS

Print tokens1 580 516 521 284 126 665 677 550 676 174
Print tokens2 780 590 388 163 110 1465 1247 904 1408 312
Schedule1 126 144 68 44 39 234 261 252 458 134
Schedule2 770 784 867 364 209 1116 1176 1063 1699 286
Tot info 550 500 421 386 314 650 750 804 973 467
Jtcas 194 135 144 12 84 521 453 459 730 253
Sorting 27 23 33 9 21 238 245 294 294 168
NanoXML v1 1636 1694 1771 1406 673 1881 1823 1891 2503 1815
NanoXML v2 1372 1193 1468 1350 1017 1560 1481 1756 1545 1493
NanoXML v3 1468 1246 970 967 548 1592 1348 1072 1061 858
NanoXML v5 2680 2289 2456 2096 1017 2993 2615 2769 3061 1582
XML-sec v1 3326 2847 2997 2820 1712 3925 3228 3540 4175 2124
XML-sec v2 2550 2310 2686 2652 1014 2718 2617 3061 3496 1556
XML-sec v3 4368 4438 4425 3673 1415 4790 4850 4813 6092 2935
Overall cost 20,427 18,709 19,215 16,226 8299 24,348 22,771 23,228 28,171 14,157

Table 9
Comparison on the cumulative statements need to be examined by slice-based approaches for all faulty versions of each subject.

Subject Inter Union ADBS Wen HSS �I−H
#HSS

�U−H
#HSS

�F−H
#HSS

�W−H
#HSS

Print tokens1 956 606 181 172 136 6.03 3.46 0.33 0.26
Print tokens2 2050 1835 681 394 191 9.73 8.61 2.57 1.06
Schedule1 1472 1427 472 183 102 13.43 12.99 3.63 0.79
Schedule2 1585 1868 490 243 244 5.50 6.66 1.01 0
Tot info 1208 1103 415 374 317 2.81 2.48 0.31 0.18
Jtcas 1086 784 248 160 182 4.97 3.31 0.91 −0.12
Sorting 331 424 197 174 74 3.47 4.73 1.66 1.35
NanoXML v1 10,240 3080 1683 1428 842 11.16 2.66 1 0.70
NanoXML v2 9327 3828 1690 1485 1151 7.10 2.33 0.47 0.29
NanoXML v3 6316 3882 1021 1013 873 6.23 3.45 0.17 0.16
NanoXML v5 12,127 7823 1327 1319 1150 9.55 5.80 0.15 0.15
XML-sec v1 11,718 11,009 2013 1965 986 10.88 10.17 1.04 0.99
XML-sec v2 8953 3765 1869 1369 1053 7.50 2.58 0.77 0.30
XML-sec v3 11,601 5870 3683 2476 1543 6.52 2.80 1.39 0.60
Overall cost 78,970 47,304 15,970 12,755 8844 7.93 4.35 0.81 0.44

Fig. 5. EXAM score-based comparison on all subjects.

Author's personal copy

14 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

Table 10
Average fault-localization costs (the percentages of examined code per fault).

Subject Tarantula DStar Naish2 R&R Inter Union ADBS Wen HSS

Print tokens1 26.05 24.96 22.41 20.08 40 25.36 7.57 7.20 5.06
Print tokens2 27.38 22.40 15.76 19.16 50 44.76 16.61 9.61 4.66
Schedule1 6.90 7.76 6.13 9.62 56.40 54.67 18.08 7.01 3.91
Schedule2 33.05 34.35 33.82 36.15 55.56 65.47 17.17 8.52 8.55
Tot info 21.20 22.08 21.64 24.01 42.69 38.98 14.66 15.22 11.2
Jtcas 16.46 13.54 13.88 17.08 50 36.10 16.02 7.37 8.38
Sorting 19.89 20.12 24.55 22.75 49.70 63.66 29.58 26.13 11.11
NanoXML v1 7.18 7.18 7.48 7.98 41.83 12.58 6.88 6.93 3.44
NanoXML v2 6.09 5.56 6.70 6.02 38.78 15.91 7.03 6.17 3.79
NanoXML v3 8.30 7.04 5.54 5.50 34.27 21.06 5.54 5.50 2.84
NanoXML v5 7.41 6.41 6.83 6.74 31.7 20.45 4.47 4.45 2.21
XML-sec v1 2.10 1.76 1.89 2.02 6.78 6.37 1.96 1.85 0.57
XML-sec v2 1.97 1.84 2.15 2.30 6.69 2.81 1.80 1.62 0.79
XML-sec v3 3.29 3.33 3.32 3.51 8.33 4.21 2.64 1.78 1.11
Average cost 13.38 12.74 12.29 13.07 36.62 29.46 10.72 7.81 4.83
Standard dev. 10.42 10.23 9.91 10.24 17.49 21.46 8.11 6.36 3.61

for all the subjects, the average fault localization costs of HSS are
much smaller than that of compared approaches except for Wen’s
approach. In addition, all subjects except for Schedule2 and Jtcas,
the costs of HSS are slightly lower than that of Wen’s approach.
Complying precisely with the trend illustrated in subplot (e) and (f)
in Fig. 5, the cost of Tarantula is very close to that of DStar, Naish2
and Russel&Rao (R&R in our table), and the costs of Inter and Union
are very similar and almost twice more than that of the techniques
as well as Tarantula. The last but one row of Table 10 illustrates the
average costs on all subjects of each technique. It shows that, for all
subjects, the average cost of HSS (which is only 4.83%) is less than
half of Tarantula, DStar, Naish2, R&R and ADBS which are 13.38%,
12.74%, 12.29%, 13.07% and 10.72%, respectively. Furthermore, the
cost of HSS is much smaller than that of Inter and Union, which
are 36.62% and 29.46%. That is to say, HSS is actually more effective
than these compared techniques in our experiments. The last row of
Table 10 illustrates the standard deviation of costs on different sub-
jects of each technique. The standard deviation value of HSS, which
is only 3.61%, is the smallest one in that of all the nine compared
approaches. In other words, HSS is more stable in effectiveness on
different subjects than other approaches in our experiments.

Additionally, we applied the paired Wilcoxon test between col-
umn HSS and rest of eight columns in Table 10, respectively. In
order to show that HSS is indeed more effective than the compared
fault localization approaches, we carried out the one-tailed alter-
native hypothesis to verify that HSS requires the least examination
of statements than the compared approaches. The p-values of all
tests are less than 0.05 except for Wen’s approach which p-value is
0.08906. Therefore, we can accept the alternative hypothesis with
confidence level 0.90 of the test between HSS and Wen’s approach,
and can accept the alternative hypothesis for the rest tests with con-
fidence level 0.95. In summary, compares with other approaches in
our experiment, there is a statistically significant reduction of the
cost on the set of subjects by HSS. Hence, HSS is the most effective
one among all the fault localization approaches in Table 10.

Finally, we present the time overhead of our approach HSS com-
paring with coverage-based approaches (CBFL) in Table 11. Without
loss of generality, we measured the time overhead of Tarantula as a
representative of CBFL approaches. Column test&trace illustrates
the time overhead spent for all test cases by CBFL and HSS, column
dyn.slicing presents the time required for computing full slices
by HSS, column susp.computing presents the computational time
of suspiciousness, column others presents the time costs of rest
tasks (i.e., writing and reading traced files), and the last column
presents the division of the total time required by HSS and CBFL to
illustrate the high time cost of our approach. We obtain the running
information through JDI, so the time of HSS and CBFL required in
testing and tracing are much longer than that of the running of the

original subjects. Due to the complexity of the full slice comput-
ing algorithm, our approach requires additional time to compute
full slices and construct hybrid slice spectrum. For example, our
approach requires 2953.92 seconds, which is almost more than
half of the running time by CBFL, to compute the dynamic slices of
Print tokens1. However, HSS requires a slightly less time in suspi-
ciousness computing than that of CBFL owing to the smaller scale of
the hybrid slice spectrum. Column # HSS/# CBFL in Table 11 shows
that the time overhead of HSS for all subjects are less than 1.8 times
of CBFL in our experiment.

Based on these above results, for this set of subjects, test suites
and faults used in our empirical study, we can answer the three
proposed research questions as follows:

• For RQ1, we can conclude that our hybrid slice spectrum can
improve the performance of fault localization to a certain degree.
In our experiments, comparing with ADBS and Wen’s spectra, the
costs of our spectrum can be reduced by 15.9% up to 27.9% at the
75.88% confidence level.

• For RQ2, we can conclude that HSS improves the effectiveness
of locating faults significantly. In our experiments, comparing
with eight fault localization techniques, the total costs of HSS are
reduced by 2.98% up to 31.79% at the 90% confidence level.

• For RQ3, we can conclude that HSS requires less than 1.8 times of
time-cost of CBFL approaches.

4.5. Threats to validity

Like any empirical study, there are some threats to the valid-
ity of our experiment. The external validity of this work lies in
generalizing our empirical results. We only perform the empiri-
cal study on four releases of the medium-size program (NanoXML)
and three releases of the large-scale program (XML-security), while
the other subjects are small-size. Therefore it is difficult to guaran-
tee the representativeness of our experimental results. However,
all of these subject programs are widely used in most fault local-
ization studies (e.g., Wong et al., 2012, 2008, 2010; Santelices et al.,
2009; Abreu et al., 2009, 2009; Lei et al., 2012; Zhang et al., 2006;
Yu et al., 2011). Another external validity lies in the using of seeded
faults. However, we only manually seeded 3 faults in the second
subject program Sorting by ourselves, and the other seeded faults
in the rest of programs are carefully designed by other researchers
(Do et al., 2005). Although seeded faults are not naturally-occurring
faults, they are widely used by many researchers. A recent study by
Ali et al. (2009) indicates that mutants were often found with the
same effect in coverage-based techniques such as Tarantula.

The internal validity of this work lies in the accuracy of the
slicing result computed by our tool HSFal. However, we adopted

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 15

Table 11
Time costs of coverage-based fault localization (CBFL) and our approach (HSS) spent on all subjects.

Subject Approach Test &trace(s) Dyn. slicing(s) Susp. computing(s) Others(s) Total(s) #HSS
#CBFL

Print tokens1 CBFL 5357.27 0 356.50 52.25 5766.02 1.76
HSS 6785.88 2953.92 353.94 58.40 10,152.14

Print tokens2 CBFL 19,229.60 0 1428.69 155.54 20,813.83 1.37
HSS 26,097.32 749.46 1421.93 173.84 28,442.55

Schedule1 CBFL 3913.95 0 335.37 81.27 4330.59 1.80
HSS 5479.53 1923.40 327.43 83.63 7813.99

Schedule2 CBFL 15,933.90 0 2265.40 260.85 18,460.15 1.44
HSS 17,808.48 6251.04 2227.89 280.17 26,567.58

Tot info CBFL 813 0 214.52 23.27 26,567.58 1.54
HSS 917 462.51 210.21 27.43 1617.15

Jtcas CBFL 724.71 0 14.79 2.11 741.61 1.74
HSS 879.62 395.24 14.42 2.13 1291.41

Sorting CBFL 72.29 0 3.52 0.47 76.28 1.19
HSS 78.52 8.48 3.41 0.53 90.94

NanoXML v1 CBFL 1389.58 0 72.06 16.41 1478.05 1.31
HSS 1768.56 73.24 71.69 16.86 1930.35

NanoXML v2 CBFL 1469.01 0 83.51 12.84 1565.36 1.17
HSS 1736.10 5.35 83.38 13.59 1838.42

NanoXML v3 CBFL 1749.24 0 78.42 14.79 1842.45 1.19
HSS 1955.03 137.72 78.11 15.28 2186.14

NanoXML v5 CBFL 1523.16 0 94.04 12.04 1629.24 1.41
HSS 1762.44 435.55 93.69 12.72 2304.40

XML-sec v1 CBFL 2170.27 0 83.18 14.08 2267.53 1.16
HSS 2237.34 302.41 82.24 14.71 2636.70

XML-sec v2 CBFL 2078.65 0 95.12 11.81 2185.58 1.15
HSS 2139.73 278.90 93.44 12.26 2524.33

XML-sec v3 CBFL 1793.25 0 78.57 14.51 1886.33 1.21
HSS 1831.78 355.78 78.62 14.98 2281.16

and implemented a forward full slice computing algorithm sim-
ilar to the algorithm proposed by Zhang et al. (2005). Another
internal validity lies in the evaluation formula we proposed for sus-
piciousness computing. Although formula (8) is mutated from two
formulas that were theoretically proved to be maximal by Xie et al.
(2013), it complies with the general expectation as other widely
adopted formulas. Furthermore, we have conducted a theoretical
analysis of our evaluation formula under a complementary assump-
tion, and proved it to be a maximal formula. Finally to avoid faults in
our tool implementation, we prepared our data carefully and tested
our tool HSFal with simple programs.

5. Related work

There have been a number of lightweight and heavyweight fault
localization approaches proposed over the last decade. In this sec-
tion, we mainly focus on coverage-based and slicing-based fault
localization techniques that most similar to our approach (HSS) on
behalf of lightweight and heavyweight approaches, respectively.
Then, we briefly survey both of these studies.

5.1. Coverage-based fault localization techniques

Coverage-based fault localization techniques, which compute
the suspiciousness of program entities with the execution traces,
are widely applicable because they do not require any knowledge
of the program.

Renieris and Reiss (2003) presented a nearest neighbor queries
(NNQ) method for performing fault localization using similar cov-
erage of program. NNQ contrasts the failed execution trace with
a passed execution trace which is most similar to the failed one,
and produces a report of “suspicious” parts of the program. Differ-
ent from NNQ, our approach uses more than one execution slice of
both passed and failed execution.

There are numerous coverage-based approaches using statisti-
cal measures for fault localization. Chen et al. (2002) introduced a
statistical fault-localization algorithm, Jaccard, which predicts the
location of a fault by computing the percentages of passed and failed

tests that execute that statement. Similar to Jaccard, Jones et al.
(2002), Jones (2004), and Jones and Harrold (2005) proposed the
Tarantula technique that computes suspiciousness for each state-
ment and ranks those statements by the suspiciousness. Tarantula
is widely used and compared in the subsequent researches. Abreu
et al. (2006) applied the Ochiai coefficient in software fault local-
ization for locating single mistakes. Comparing with Tarantula,
their experiments indicated that the Ochiai coefficient consistently
outperforms Tarantula etc., and improves 5% on average over the
compared techniques in terms of the EXAM-score. A later study by
Abreu et al. (2009) evaluated the effectiveness of Tarantula and
other proposed methods, their experiments indicated that Ochiai
performs the best for statement coverage independent of test cases.

Tarantula and some similar fault location techniques equally
treat the each occurrence of statement execution. However, Wong
et al. (2007, 2010) proposed a code coverage-based fault local-
ization method that can automatically adjust the weight for
suspiciousness of a statement considering the execution times of
passed test. They also gave some heuristics for reducing the search
domain for fault locating. Wong et al. (2008) proposed a crosstab-
based statistical approach using the coverage of each executable
statement and the execution result (passed or failed) with respect
to each test case. In recent work, Wong et al. (2012) proposed a
technique named DStar(D*) which computed the suspiciousness of
statements by modifying the form of the Kulczynski coefficient in
the task of fault localization.

Furthermore, many researchers exploited the correlations
between program features and the coverage of program entities
as the clue in fault localization. Santelices et al. (2009) extended
the Tarantula technique for different entity types (i.e., branch and
du-pair) and combined these entity types by using the Ochiai coef-
ficient for more effective fault localization. Masri (2010) present a
fault localization technique which assigned the rank of statements
associated with an information flow by contrasting the percent-
age of failed runs to the percentage of passed runs. Wang et al.
(2009) proposed a technique to locate faults by strengthening the
correlation between faulty statements and failed runs with control-
flow and data-flow pattern. Unlike their techniques, HSS only needs

Ju
高亮
这里应该是 1077.79

Ju
删划线

Ju
替换文本
1077.79
�

Author's personal copy

16 X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17

to statistic the occurrences of statements in hybrid slice spectrum
for suspiciousness computing.

Moreover, a recent research by Xie et al. (2013), which provided
a theoretical investigation on the effectiveness of the formulas
based on four assumptions, have identified five maximal listed in
Table 2. Specially, our evaluation formula is mutated from the com-
bination of two maximal formulas, namely Naish2 and Russel&Rao.
Comparing with coverage-based techniques, our approach narrows
the search domain of fault localization by slicing the program, and
develops a better formula for suspiciousness computing in fault
localization.

5.2. Slicing-based fault localization techniques

Weiser (1982) first proposed program slicing for debugging, Lyle
(1984) evaluated variations on program slicing for debugging in his
Ph.D. thesis. Since then, many slicing algorithms (both static and
dynamic) are proposed for program debugging.

Since then, dynamic slicing has been introduced into program
debugging for narrowing the search domain of faults. Agrawal
and Horgan (1990) investigated the concept of dynamic slicing
and examined several approaches for computing dynamic slices. A
later study by Agrawal et al. (1995) introduced a fault localization
method using execution slices and dicing based on different test
cases. Wong and Qi (2004, 2006) presented a combined approach
using execution slices and inter-block data dependency to locate
the program faults effectively. All these approaches above are based
on execution slices which somewhat similar to the coverage of
statements during a test.

A lot of interesting studies other than execution slice based have
been carried on in fault localization. Al-Khanjari et al. (2005) stud-
ied the effectiveness of the critical slicing technique. Zhang et al.
(2007) proposed an approach using dynamic slices to locate execu-
tion omission errors by switching outcomes of relevant predicates.
Zhang et al. (2006) also developed a technique that prunes the
dynamic slice on analyzing the values of the variables involved in
dynamic slice. Rather than pruning dynamic slices of failed runs,
HSS takes advantage of the both full slices of failed runs and exe-
cution slices of passed runs for isolating the fault-irrelevant part of
the program automatically.

There are also some researches on fault localization using hybrid
slices. Lei et al. (2012) applied a new approximate dynamic back-
ward slice (ADBS) to statistical approach which is compared in our
empirical study. Although ADBS, which is the intersection of the
static backward slice (SBS) and the execution slice, will not lose any
faulty code presented in SBS once the faulty code is executed, it usu-
ally has a larger size than our hybrid slice spectrum (HSS). Yu et al.
(2011) proposed the LOUPE model for fault localization by integrat-
ing two suspiciousness that were computed on control dependence
model and data dependence model, respectively. Zhang et al. (2009)
proposed the CP model to locate fault by computing the propaga-
tion of suspicious program states through control flow edges with
the suspiciousness score assessed. Unlike HSS, LOUPE computes
two suspiciousness and mixes them to construct a new suspicious-
ness of statements, and CP locates faults along the control flow
graph (CFG) while HSS searches faults by the program dependence
graph (PDG).

Sun et al. (2007) proposed a heuristic approach using a dynamic
slice of one failed and execution slices of three passed test cases.
Unlike their approach, our approach requires more than one
dynamic slice of failed executions and more than three execution
slices. Moreover, our approach requires only one step to locate
faults after the suspiciousness are computed by HSS, while Sun’s
approach needs two phases: refining phase and augmenting phase.
Similar to our work, Wen et al. (2011) and Wen (2012) proposed
a statistical approach using a mixed slice spectrum to improve the

effectiveness of fault localization. The main difference between HSS
and Wen’s approach can be summarized as follows. Firstly, for all
statements in hybrid spectrum, Wen’s approach uses the frequency
of statements while HSS uses the coverage of statements. Secondly,
HSS removes the same execution slice from hybrid slice spectrum
while Wen’s approach does not. Finally, HSS calculates the suspi-
ciousness using a formula mutated from two maximal evaluation
formulas while Wen’s approach evaluates suspiciousness similar
to Tarantula using the frequency of statements.

6. Conclusions and future work

In this paper, we propose a novel approach (HSS) which can
improve the effectiveness of fault localization using hybrid full
slices and execution slices. To compare with coverage-based fault
localization approaches (i.e., Tarantula, DStar, Naish2, and Rus-
sel&Rao) and slice-based approaches (i.e., Set Intersection, Set
Union, ADBS, and Wen’s), we implemented a prototype tool HSFal,
and then designed and conducted an empirical study to answer
three research questions. These three questions are designed to
evaluate the effectiveness and efficiency of HSS. In summary, the
empirical results illustrate that our proposed approach (HSS) is
more effective than those compared ones.

In the future, we want to further consider the following issues.
Firstly, we want to apply info-flow analysis to our approach to pro-
mote the accuracy of our slicing algorithm. Secondly, we want to
adopt the methods like roBDDs to deal with the massive informa-
tion of slice computing, so that we can improve our tool HSFal to
locate faults in more large-scale and real-world applications. Last
but not least, we want to apply our approach to more subjects writ-
ten by other programming languages such as C++, C# and conduct
more detailed empirical studies; for example, we want to further
evaluate the effectiveness of the proposed formula and other for-
mulas for comparisons based on the same spectra, such as our
proposed spectra or other spectra.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful and constructive comments to improve the quality of this
paper. This work is supported in part by the NSFC Project under
Grant Nos. 61202006 and 60970032, the Fundamental Research
Funds for the Central Universities under Grant No. 2013QNB17,
the Qinlan Project of Jiangsu Province, the Nantong Application
Research Plan under Grant Nos. BK2011025 and BK2012023, the
University Natural Science Research Project of Jiangsu Province
under Grant No. 12KJB520014, the Graduate Training Innova-
tive Projects Foundation of Jiangsu Province under Grant No.
CXZZ12 0935, and the Open Project of State Key Laboratory for
Novel Software Technology at Nanjing University under Grant No.
KFKT2012B29.

References

Abreu, R., Zoeteweij, P., van Gemund, A.J.C., 2006. A evaluation of similarity coef-
ficients for software fault localization. In: Proceedings of the 12th Pacific Rim
International Symposium on Dependable Computing (PRDC 2006), pp. 39–46.

Abreu, R., Zoeteweij, P., van Gemund, A.J.C., 2009. Spectrum-based multiple fault
localization. In: Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2009), Auckland, New Zealand, pp.
88–99.

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C., 2009. A practical evaluation
of spectrum-based fault localization. Journal of Systems and Software 82 (11),
1780–1792.

Agrawal, H., Horgan, J.R., 1990. Dynamic program slicing. SIGPLAN Not 25 (6),
246–256.

Agrawal, H., Horgan, J.R., London, S., Wong, W.E., 1995. Fault localization
using execution slices and dataflow tests. In: Proceedings of the 6th

Author's personal copy

X. Ju et al. / The Journal of Systems and Software 90 (2014) 3–17 17

International Symposium on Software Reliability Engineering (ISSRE 1995),
pp. 143–151.

Ali, S., Andrews, J.H., Dhandapani, T., Wang, W., 2009. Evaluating the accuracy of fault
localization techniques. In: Proceedings of the 24th IEEE/ACM International Con-
ference on ACM International Conference on Automated Software Engineering
(ASE 2009), Auckland, New Zealand, pp. 76–87.

Al-Khanjari, Z.A., Woodward, M.R., Ramadhan, H., Kutti, N.S., 2005. The effi-
ciency of critical slicing in fault localization. Software Quality Journal 13 (2),
129–153.

Chen, T.Y., Cheung, Y.Y., 1997. Dynamic program dicing. Journal of Software
Maintenance-Research and Practice 9 (1), 33–46.

Chen, M., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., 2002. Pinpoint: problem deter-
mination in large, dynamic internet services. In: Proceedings of International
Conference on Dependable Systems and Networks (DSN 2002), pp. 595–604.

DeMillo, R.A., Pan, H., Spafford, E.H., 1997. Failure and fault analysis for software
debugging. In: Proceedings of the 21st Annual International Computer Soft-
ware and Applications Conference (COMPSAC 1997), Washington, DC, USA, pp.
515–521.

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled experimentation
with testing techniques: an infrastructure and its potential impact. Empirical
Software Engineering 10 (4), 405–435.

Gyimóthy, T., Beszédes, Á., Forgács, I.,1999. An efficient relevant slicing method
for debugging. In: Proceedings of the 2nd Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 1999), Vol. 1687. Springer,
Berlin/Heidelberg/Toulouse, France, pp. 303–321.

Jones, J.A., Harrold, M.J., 2005. Empirical evaluation of the tarantula automatic
fault-localization technique. In: Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering (ASE 2005), Long Beach, CA,
USA, pp. 273–282.

Jones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE 2002), Orlando, FL, USA, pp. 467–477.

Jones, J.A., 2004. Fault localization using visualization of test information. In: Pro-
ceedings of the 26th International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, UK, pp. 54–56.

Lei, Y., Mao, X., Dai, Z., Wang, C., 2012. Effective statistical fault localization using pro-
gram slices. In: Proceedings of the 36th Annual International Computer Software
and Applications Conference (COMPSAC 2012), pp. 1–10.

Lyle, J.R., 1984. Evaluating variations on program slicing for debugging. University
of Maryland (Ph.D. thesis).

Masri, W., 2010. Fault localization based on information flow coverage, Software
Testing. Verification and Reliability 20 (2), 121–147.

Renieris, M., Reiss, S.P., 2003. Fault localization with nearest neighbor queries. In:
Proceedings of the 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), Montreal, Canada, pp. 30–39.

Santelices, R., Jones, J.A., Yanbing, Y., Harrold, M.J., 2009. Lightweight fault-
localization using multiple coverage types. In: Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009), Vancouver,
Canada, pp. 56–66.

Sun, J.R., Li, Z.S., Ni, J.C., Yin, F., 2007. Software fault localization basel on testing
requirement and program slice. In: Proceedings of International Conference on
Networking, Architecture, and Storage (NAS 2007), pp. 168–174.

Wang, X.M., Cheung, S.C., Chan, W.K., Zhang, Z.Y., 2009. Taming coincidental correct-
ness: coverage refinement with context patterns to improve fault localization.
In: Proceedings of the 31st International Conference on Software Engineering
(ICSE 2009), Vancouver, Canada, pp. 45–55.

Weiglhofer, M., Fraser, G., Wotawa, F., 2009. Using spectrum-based fault localiza-
tion for test case grouping. In: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009), Auckland, New
Zealand, pp. 630–634.

Weiser, M., 1982. Programmers use slices when debugging. Communications of the
ACM 25 (7), 446–452.

Wen, W., Li, B., Sun, X., Li, J., 2011. Program slicing spectrum-based software fault
localization. In: Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pp. 213–218.

Wen, W.,2012. Software fault localization based on program slicing spectrum. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE
2012). IEEE Press, Zurich, Switzerland, pp. 1511–1514.

Wong, W.E., Qi, Y., 2004. An execution slice and inter-block data dependency-based
approach for fault localization. In: Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC 2004), Busan, Korea, pp. 366–373.

Wong, W.E., Qi, Y., 2006. Effective program debugging based on execution slices and
inter-block data dependency. Journal of Systems and Software 79 (7), 891–903.

Wong, W.E., Qi, Y., Zhao, L., Cai, K.Y., 2007. Effective fault localization using code cov-
erage. In: Proceedings of the 31st Annual International Computer Software and
Applications Conference, Vol. I (COMPSAC 2007), Beijing, China, pp. 449–456.

Wong, W.E., Wei, T., Qi, Y., Zhao, L., 2008. A crosstab-based statistical method for
effective fault localization. In: Proceedings of the 1st International Conference
on Software Testing, Verification, and Validation (ICST 2008), pp. 42–51.

Wong, W.E., Debroy, V., Choi, B., 2010. A family of code coverage-based heuristics
for effective fault localization. Journal of Systems and Software 83 (2), 188–208.

Wong, W.E., Debroy, V., Li, Y.H., Gao, R.Z., 2012. Software fault localization using
dstar (d*). In: Proceedings of the 6th IEEE International Conference on Software
Security and Reliability (SERE 2012), Gaithersburg, MD, USA, pp. 21–30.

Xie, X., Chen, T.Y., Kuo, F.-C., Xu, B., 2013. A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Transactions on Software
Engineering and Methodology 22 (4), 1–40.

Yu, K., Lin, M., Gao, Q., Zhang, H., Zhang, X.,2011. Locating faults using multiple
spectra-specific models. In: Proceedings of the 26th ACM Symposium on Applied
Computing (SAC 2011). ACM, TaiChung, Taiwan, pp. 1404–1410.

Zhang, X., Gupta, R., Zhang, Y., 2004. Efficient forward computation of dynamic
slices using reduced ordered binary decision diagrams. In: Proceedings of the
26th International Conference on Software Engineering (ICSE 2004), Edinburgh,
Scotland, UK, pp. 502–511.

Zhang, X., He, H., Gupta, N., Gupta, R.,2005. Experimental evaluation of using
dynamic slices for fault location. In: Proceedings of the 6th International Sym-
posium on Automated Analysis-driven Debugging (AADEBUG 2005). ACM, pp.
33–42.

Zhang, X.Y., Gupta, N., Gupta, R., 2006. Pruning dynamic slices with confidence.
SIGPLAN Not 41 (6), 169–180.

Zhang, X., Tallam, S., Gupta, N., Gupta, R., 2007. Toward locating execution omission
errors. SIGPLAN Not 42 (6), 415–424.

Zhang, Z.Y., Chan, W.K., Tse, T.H., Jiang, B., Wang, X.M., 2009. Capturing propaga-
tion of infected program states. In: Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE 2009), Amsterdam,
Netherlands. Association for Computing Machinery, pp. 43–52.

Xiaolin Ju is a Ph.D. candidate in computer science at China University of Mining
and Technology and a lecturer at Nantong University, 221116, Xuzhou, China. He
received his B.S. degree in information science from Wuhan University in 1998, and
M.Sc. degree in computer science from Southeast University in 2004. His research
interests are mainly in software testing, such as combinatorial testing, regression
testing, and fault localization.

Shujuan Jiang is a professor at School of Computer Science and Technology, China
University of Mining and Technology, 221116, Xuzhou, China. She received her Ph.D.
degree in computer science from Southeast University in 2006, and was a visiting
scholar at the Georgia Institute of Technology in 2008-2009. Her current research
interests include software dependability and reliability, software maintenance and
software development methodology.

Xiang Chen received the B.Sc. degree at school of management from Xi’an Jiao-
tong University, China in 2002. Then he received the M.Sc. and Ph.D. degrees in
computer science from Nanjing University, China in 2008 and 2011. Now he joined
the Department of Computer Science and Technology at Nantong University as an
assistant professor. His research interests are mainly in software testing, such as
combinatorial testing, regression testing, and fault localization.

Xingya Wang is a Ph.D. candidate in computer science at China University of Mining
and Technology, 221116, Xuzhou, China. He received his B.S. degree in computer sci-
ence from China University of Mining and Technology. His current research interests
include program slicing, software testing and analysis.

Yanmei Zhang is assistant professor at China University of Mining and Technology,
221116, Xuzhou, China. She received her Ph.D. degree from China University of Min-
ing and Technology, China in 2012. Her current research interests include Software
Analysis and Testing, Web Application Testing, Fault Localization Technique.

Heling Cao is a Ph.D. candidate in computer science at China University of Mining
and Technology, 221116, Xuzhou, China. She received her B.E. and M.E. degree in
computer science from Zhengzhou University. Her current research interests include
program slicing, software testing and analysis, and software debugging.

