
The Journal of Systems and Software 228 (2025) 112469

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

FedMVA: Enhancing software vulnerability assessment via federated

multimodal learningI

Qingyun Liu a, Xiaolin Ju a ,∗, Xiang Chen a ,∗, Lina Gong b
a School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, Jiangsu, China
b School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China

A R T I C L E I N F O

Keywords:
Software vulnerability assessment
Federated learning
Multimodal fusion
Privacy-preserving

 A B S T R A C T

Software Vulnerability Assessment plays a crucial role in identifying and evaluating security vulnerabilities
in software systems and prioritizing their resolution. However, as concerns about data privacy and security
continue to grow, traditional vulnerability assessment methods struggle to balance effectiveness with privacy
protection, particularly in heterogeneous data environments. To address this challenge, we propose a novel
federated multimodal vulnerability assessment framework (FedMVA), designed with privacy preservation
at its core. FedMVA leverages federated learning, enabling local model training without sharing data,
thereby protecting sensitive information while ensuring efficient vulnerability evaluation. Our framework
also incorporates multimodal data, including code structure, lexical features, and developer comments, fully
utilizing the complementary nature of these modalities. We introduce a weighted variance minimization loss
function to improve the alignment between local and global models and adopt a momentum-based weight
allocation strategy with a dynamic learning rate mechanism to enhance the model’s robustness and adaptability
across diverse data environments. Extensive ablation studies demonstrate that FedMVA outperforms existing
methods in multiple performance metrics, significantly improving the precision of vulnerability assessment.
This work highlights the advantages of integrating multimodal data within a federated learning framework,
providing an innovative and promising solution for effective and privacy-preserving vulnerability assessment
in complex software systems.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Software vulnerabilities pose significant threats to the security and
reliability of computer systems, potentially leading to substantial eco-
nomic losses. Effective automated detection methods (Liu et al., 2024;
Lu et al., 2024; Cai et al., 2024) are crucial for mitigating these risks
and ensuring the stability of digital ecosystems. Consequently, software
vulnerability assessment (SVA) (Le et al., 2022; Dissanayake et al.,
2022; Elder et al., 2024) has become an essential part of software
development and maintenance, aiming to identify vulnerabilities, accu-
rately assess their severity, and ensure timely remediation. However,
due to the complexity of the software and the limited resources for
remediation, it is not feasible to address all vulnerabilities immedi-
ately. Thus, it is necessary to prioritize the remediation of high-risk
vulnerabilities. The Common Vulnerability Scoring System (CVSS) is
a widely used assessment framework that generates severity scores
based on various vulnerability attributes, helping developers prioritize

I Editor: Nicole Novielli.
∗ Corresponding authors.
E-mail addresses: Lqy_1213@outlook.com (Q. Liu), ju.xl@ntu.edu.cn (X. Ju), xchencs@ntu.edu.cn (X. Chen), gonglina@nuaa.edu.cn (L. Gong).

remediation efforts. However, in handling many vulnerability reports,
relying on expert knowledge for CVSS scoring often struggles to keep
pace with the rate of new vulnerabilities. Zhou et al. (2021) and Feutrill
et al. (2018) found that the time between the initial disclosure of a
vulnerability and the update of its CVSS score could span several hun-
dred days, preventing high-risk vulnerabilities from being addressed
promptly. Therefore, there is an urgent need for automated assessment
tools that assist developers in effectively prioritizing vulnerabilities,
reducing response times, and mitigating risks.

Current SVA methods primarily rely on centralized data analysis
models, which predict the severity of vulnerabilities using informa-
tion such as vulnerability descriptions (Han et al., 2017; Sun et al.,
2023b; Babalau et al., 2021; Le et al., 2019; Gong et al., 2019), source
code (Le and Babar, 2022; Hao et al., 2023), or code commits (Le
et al., 2021). Although centralized approaches improve model accuracy
and generalization by aggregating data from multiple sources, they
https://doi.org/10.1016/j.jss.2025.112469
Received 18 December 2024; Received in revised form 8 April 2025; Accepted 17
vailable online 2 May 2025
164-1212/© 2025 Elsevier Inc. All rights are reserved, including those for text and
April 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0003-2579-5359
https://orcid.org/0000-0002-1180-3891
mailto:Lqy_1213@outlook.com
mailto:ju.xl@ntu.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:gonglina@nuaa.edu.cn
https://doi.org/10.1016/j.jss.2025.112469
https://doi.org/10.1016/j.jss.2025.112469

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
face significant privacy protection and sharing challenges. Yang et al.
(2024) pointed out that industrial data, especially source code, is
often inaccessible to researchers due to strict privacy policies, signif-
icantly limiting the applicability of centralized methods in industrial
settings. Furthermore, organizations are reluctant to share sensitive
data out of concern for potential data breaches that could harm their
commercial interests. These issues make centralized analysis unsuit-
able for distributed environments, mainly where data privacy and
cross-organizational collaboration are critical.

To address these limitations, federated learning has emerged as
a promising distributed machine learning paradigm. It enables par-
ticipants to train models locally and share only model parameters,
eliminating the need to transfer raw data. Federated learning effectively
addresses the following challenges:

• Data Privacy Protection (Khraisat et al., 2024; Xu et al., 2023).
Federated learning follows the principle of ‘‘data stays local,
models move’’. Each client trains a local model and only shares
model updates, reducing privacy risks.

• Reducing Data Sharing Barriers. Federatedlearning enables or-
ganizations to retain data privacy while leveraging patterns from
other participants’ data, enhancing model performance and reduc-
ing the barriers to data sharing.

• Enhancing Model Generalizability. By utilizing data from dif-
ferent organizations, federated learning can learn diverse vul-
nerability patterns, improving model generalizability, which is
essential in vulnerability assessment.

Although federated learning mitigates centralized methods’ privacy
and data-sharing challenges, traditional SVA approaches often rely on
single-modal data, such as vulnerability descriptions or source code.
While vulnerability descriptions may not raise privacy concerns, source
code and developer annotations can contain sensitive information.
Relying on a single-modal approach fails to capture the multifaceted
nature of vulnerabilities, limiting the accuracy and comprehensive-
ness of the assessments. To address this limitation, we propose an
innovative federated multimodal vulnerability assessment framework
(FedMVA), which combines federated learning with multimodal data
fusion. FedMVA integrates lexical features of code, structured graph
representations (e.g., control flow graphs Zeng et al., 2023, data flow
graphs Guo et al., 2020 and abstract syntax trees Sun et al., 2023a),
and developer annotations to exploit the complementary strengths of
these modalities fully.

To support this framework, we constructed a high-quality SVA
dataset aligned with the CVSS standard, incorporating three modal-
ities: lexical features, structured graph information, and developer
annotations. We removed empty lines, leading spaces, and irrelevant
comments during data preprocessing to simplify the code structure
(as detailed in Section 4.2). Experimental results demonstrate that
FedMVA achieves a strong balance between privacy protection and
assessment performance, offering an innovative and promising solution
for practical vulnerability assessment in complex software systems.

We validated the effectiveness of FedMVA through systematic com-
parisons with several state-of-the-art baseline methods. These baseline
methods include single-modal and multimodal models, representing
mainstream vulnerability assessment approaches. Experimental results
demonstrate that FedMVA achieves superior performance across all
key metrics, including accuracy, recall, and F1-score, and consistently
improves in various evaluation scenarios. To further examine the con-
tributions of individual components, we conducted ablation studies
by progressively removing the federated learning framework, multi-
modal inputs, or the feature fusion module. The results confirm that
each component is crucial to the overall performance. Specifically,
the federated learning framework ensures data privacy and enhances
the model’s generalization capabilities. The multimodal inputs, which
integrate code structure, lexical features, and developer annotations,
2
enable the model to capture vulnerability characteristics from multiple
dimensions. Moreover, the feature fusion strategy effectively leverages
the complementary strengths of these modalities, significantly improv-
ing assessment accuracy. The novelty and contributions of this study
can be summarized as follows:

• Methodology. We propose the first SVA framework integrating
tri-modal data fusion with federated learning. FedMVA leverages
federated learning models and incorporates tri-modal information
with a tailored fusion strategy to enhance SVA performance.

• Dataset. We constructed a high-quality SVA dataset that inte-
grates structured information, lexical features, and annotations
from source code. This dataset provides a robust foundation for
multimodal research.

• Evaluation. We evaluated the proposed framework on the con-
structed dataset, demonstrating that FedMVA outperforms state-
of-the-art SVA baseline models, with improvements of at least
9.19%, 8.66%, and 24.75% in accuracy, F1 score, and MCC,
respectively. Ablation studies further validate the effectiveness of
our customized FedMVA framework.

We share data, code, and detailed results at our project home
to encourage follow-up studies for applying decentralized learning
to software vulnerability assessment: https://github.com/Liuqy1213/
FedMVA.

The remainder of this paper is organized as follows: Section 2
introduces the background and motivation for this study, focusing
on Software Vulnerability Assessment (SVA) and federated learning.
Section 3 details the proposed FedMVA framework and its compo-
nents. Section 4 describes the experimental setup, including datasets,
performance metrics, and baseline methods employed in this research.
Section 5 reports the study results, accompanied by an analysis of the
formulated research questions. Section 6 discusses key findings, their
implications, and the limitations of the proposed approach. Section 7
reviews the related literature, emphasizing the novelty and contri-
butions of this study. Finally, Section 8 concludes the research by
summarizing the findings and proposing potential directions for future
work.

2. Background

2.1. Software vulnerability assessment

As software systems become increasingly complex and intercon-
nected, the number and complexity of software vulnerabilities (Le et al.,
2022) have risen dramatically, posing unprecedented challenges to
system security. To address these challenges, Software Vulnerability
Assessment (SVA) has become a core tool for ensuring system secu-
rity. SVA enables developers and security experts to optimize resource
allocation by identifying, assessing, and prioritizing vulnerabilities,
thereby reducing the risk of system attacks. Currently, SVA largely
relies on publicly available database resources, such as the National
Vulnerability Database (NVD)1 and the Common Vulnerabilities and Ex-
posures (CVE) repository. These databases provide detailed descriptions
of vulnerabilities and use the Common Vulnerability Scoring System
(CVSS)2 to rate the severity of vulnerabilities, aiding developers and
security teams in determining remediation priorities. CVSS is among
the most widely applied frameworks in SVA, offering standardized
evaluation criteria for developers by quantifying multiple vulnerability
characteristics.

CVSS comprises three main components: Base, Temporal, and En-
vironmental Metrics. The Base Metrics evaluate the intrinsic charac-
teristics of a vulnerability and are regarded as the most critical part

1 https://nvd.nist.gov/.
2 https://www.first.org/cvss/.

https://github.com/Liuqy1213/FedMVA
https://github.com/Liuqy1213/FedMVA
https://github.com/Liuqy1213/FedMVA
https://nvd.nist.gov/
https://www.first.org/cvss/

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
of the scoring process. Temporal Metrics reflect changes in vulnerabil-
ity characteristics over time, such as the availability of exploit code
or patches. Environmental Metrics allow organizations to customize
vulnerability assessments based on their specific operational contexts.
Although these metrics provide a comprehensive perspective for assess-
ing vulnerabilities, in practice, data for Temporal and Environmental
Metrics are often difficult to extract directly from source code or textual
descriptions. Consequently, most studies and applications primarily
focus on Base Metrics. The Base Metrics of CVSS version 2 (CVSS
v2) include seven key indicators: Access Vector, Access Complexity,
Authentication, Confidentiality Impact, Integrity Impact, Availability
Impact, and Exploitability. These indicators collectively determine the
severity of a vulnerability, which is ranked into three levels: Low
(0.1–3.9), Medium (4.0–6.9), and High (7.0–10.0). These categories
assist developers and security teams in effectively prioritizing remedia-
tion efforts, enabling them to allocate limited resources to address the
most critical vulnerabilities.

2.2. Federated learning model

With the widespread adoption of distributed systems and cross-
organizational collaboration, achieving effective collaborative model
training while safeguarding data privacy has become a critical chal-
lenge. To address this, Google introduced Federated Learning (FL)
(Hanzely and Richtárik, 2020; Zhuo et al., 2019; Yu et al., 2020) in
2016 as an advanced distributed learning method designed to enable
secure model training across devices without transferring raw data. FL
facilitates local model training on multiple clients, sharing only model
parameters to prevent data leakage. Due to its robust capabilities,
FL has been widely adopted in fields such as autonomous driving,
facial recognition, and system anomaly detection, attracting significant
attention (Zhang et al., 2021) from both academia and industry for its
potential applications.

However, the standard Federated Learning approach, FedAvg
(McMahan et al., 2017), faces significant challenges when dealing with
data heterogeneity (non-IID data) (Ma et al., 2022) across clients.
This often leads to reduced generalization ability of the global model,
making it challenging to meet the specific needs of individual par-
ticipants. To address this limitation, Personalized Federated Learning
(PFL) (Tan et al., 2022) was introduced. PFL aims to generate per-
sonalized models for each client by combining global collaborative
learning with client-specific adaptation, thus better accommodating the
unique data distributions of individual clients. Most PFL approaches
adopt parameter decoupling, dividing the model into two components:
a shared feature extractor and a client-specific classifier. For instance,
the FedPer method (Arivazhagan et al., 2019) retains client-specific
classifiers while sharing a common feature extractor, striking a balance
between global knowledge sharing and local adaptation to enhance
model personalization significantly.

Recent studies have highlighted the potential of Federated Learning
in software engineering tasks (Li et al., 2020b; Yang et al., 2019;
Abyane et al., 2023), including code analysis, requirements prediction,
debugging, and refactoring. Yang et al. (2024) proposed a data ag-
gregation strategy that dynamically adjusts based on data scale, class
balance, and the learnability of minority classes, focusing on tasks
including code clone detection and defect prediction to improve model
performance on imbalanced and sensitive industrial datasets. Zhang
et al. (2024) introduced a horizontally federated learning framework
for vulnerability detection, addressing privacy concerns in multi-party
data sharing while enhancing detection accuracy. Similarly, Yamamoto
et al. (2023) developed a federated cross-project defect prediction
model using logistic regression for distributed training, ensuring project
data privacy by avoiding raw data sharing. Building on these advance-
ments, our study develops a federated vulnerability assessment method
based on FedPer. By integrating code structure, lexical features and
comments, our approach offers a comprehensive capture of vulnera-
bility characteristics, thereby enhancing the accuracy and efficiency of
vulnerability assessment.
3
3. Methodology

The overall framework of our proposed FedMVA is presented in
Fig. 1, which consists of three main stages: data preprocessing stage,
federated training and optimization phase, and vulnerability as-
sessment stage. ¬In the data preprocessing stage, we constructed
a high-quality software vulnerability assessment (SVA) dataset com-
prising source code, lexical information, and comment information.
Graph-structured information was extracted to capture the syntax and
dependency relationships of the code, while lexical and comment infor-
mation was treated as textual data inputs. These were processed using
the pre-trained model CodeT5 (Wang et al., 2021) to extract semantic
features, which were then combined with label information to generate
a unified multi-modal representation. ­In the federated training and
optimization phase of the proposed FedMVA framework, we enhanced
tri-modal data integration through self-attention weighted fusion. We
introduced three key improvements, including a weighted variance
minimization loss to align global and local models, a momentum-
based weight allocation strategy to optimize client contributions, and a
dynamic learning rate mechanism to handle heterogeneous data, all of
which improve the robustness and accuracy of the global model. ®In
the vulnerability assessment stage, we leveraged the complementary
strengths of the tri-modal information, significantly improving the
model’s evaluation performance and practical applicability.

3.1. Data preprocessing stage

We preprocessed the data at this stage to construct a high-quality
dataset suitable for software vulnerability assessment. Based on the
federated learning framework, we emphasize data distribution and
privacy protection. To this end, we applied de-identification tech-
niques (Youm, 2020) to ensure sensitive information remained secure.
We partitioned the data based on the code sources of different clients,
simulating the real-world scenario of distributed data storage. To ad-
dress the issue of data heterogeneity (Ye et al., 2023), we introduced
a standardization step to unify data of varying formats into a struc-
tured representation. Furthermore, to ensure consistency and enhance
model performance, each data instance was assigned a three-class label
based on the CVSS v2 standard, reflecting the diversity of vulnerability
types. This approach satisfies the decentralized learning framework’s
privacy protection and data decentralization requirements and pro-
vides high-quality input data for multimodal feature fusion and model
training.

The primary objective of this phase is to map the lexical informa-
tion, comments, and structural information of the code into a continu-
ous vector space, enabling unified representation to support subsequent
analysis and comparison. While both lexical information and comment
information are textual in nature, they serve distinct roles in software
vulnerability assessment. Lexical information refers to tokenized rep-
resentations of source code, capturing syntactic patterns and function
structures, whereas comment information consists of natural language
annotations that provide additional explanations written by developers.
Unlike lexical data, which directly reflects the structural composition
of the code, comments often introduce domain-specific context but may
not follow strict syntactic rules. To preserve their unique characteris-
tics, we adopt different processing strategies. Lexical information is first
tokenized and normalized to extract syntactic and symbolic features,
ensuring consistency in representation. It is then processed using a pre-
trained CodeT5 to extract semantic embeddings. Conversely, comment
information is directly fed into CodeT5 as raw natural language text
to capture its contextual meaning. By processing these inputs sepa-
rately, we ensure that lexical and comment information contribute
complementary yet distinct insights into the vulnerability assessment
process.

In addition to textual representations, structural properties of the
code also play a crucial role in vulnerability assessment. During the

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Fig. 1. The architecture of FedMVA, which mainly contains three stages: (A) Data preprocessing module; (B) Federated training model; (C) Vulnerability assessment module.
graph construction step, we use Joern3 to generate the Code Property
Graph (CPG) (Suneja et al., 2020), which encodes both syntactic and
control-flow dependencies in the code. To effectively utilize these
structural features, we employ a Graph Neural Network (GNN) (Ruiz
et al., 2020) to aggregate information from adjacent nodes in the
CPG. Additionally, we leverage a convolutional neural network (CNN)
to extract global structural representations of the code, complement-
ing the local feature aggregation of the GNN. Finally, we employ
binary hash encoding to align multimodal features, establishing an
initial semantic unification. We then refine feature representations
through a self-attention mechanism, enabling deep fusion and enhanc-
ing cross-modal interactions. This mechanism dynamically adjusts the
contribution of each modality, effectively mitigating conflicts and in-
consistencies among text, code, and comments. By prioritizing the most
relevant modalities while suppressing noise from less informative ones,
each data source meaningfully contributes to the overall evaluation.

We first use Joern to generate the CPG, which captures the syntactic
structures and dependencies within the code. Specifically, each node
𝑣𝑖 in the CPG represents a program element in the code (such as a
function, variable, or statement), and an edge (𝑣𝑖, 𝑣𝑗) represents the
dependency relationship between node 𝑣𝑖 and node 𝑣𝑗 . Next, we use
GNN to aggregate information from neighboring nodes, extracting local
syntactic features. The following equation gives the feature update for
each node:

h(𝑘+1)𝑖 = AGGREGATE
(

{𝐡(𝑘)𝑗 |𝑣𝑗 ∈  (𝑣𝑖)}
)

+ 𝐡(𝑘)𝑖 , (1)

where ℎ(𝑘)𝑖 represents the feature of node 𝑣𝑖 at the 𝑘th iteration,  (𝑣𝑖)
is the set of neighboring nodes of 𝑣𝑖, and AGGREGATE(⋅) is the ag-
gregation operation (such as sum, average, etc.). To further capture

3 https://github.com/joernio/joern
4
global structural information, we integrate CNNs on top of the GNN-
aggregated node features. CNNs are utilized to model the global syn-
tactic structure of the code by processing the local features extracted by
GNNs. Simultaneously, lexical and comment information from the code
is treated as text data and processed by the pre-trained Transformer
model CodeT5 to extract semantic features. To align the features from
different modalities, we use binary hash encoding to reduce semantic
discrepancies between the graph structure, lexical features, and com-
ments. This alignment step ensures that the modalities are compatible
and can be effectively fused. Finally, we use a self-attention mechanism
to perform weighted fusion of the features from all modalities, which
is mathematically represented as:

𝐡final𝑖 = Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊⊤
√

𝑑𝑘

)

𝐕, (2)

where 𝐐, 𝐊, 𝐕 are the query, key, and value vectors for the graph
structure and other modalities. The final feature representation 𝐡final𝑖 is
obtained by applying the self-attention mechanism. The self-attention
mechanism dynamically adjusts the contribution of each modality
based on its relevance to the task, ensuring that conflicts or inconsis-
tencies are resolved and that each modality contributes meaningfully
to the final representation. Our ablation experiments support this
process, demonstrating that the fusion of all three modalities (code
structure, lexical information, and comments) significantly improves
model performance compared to single or dual-modal inputs.

To enhance the model’s ability to concentrate on essential informa-
tion and minimize extraneous noise, we implemented a data prepro-
cessing step that removed redundant comments, blank lines, and other
irrelevant elements. Essential code information was preserved, ensuring
that the functionality and integrity of the code remained unaffected.
These optimizations significantly improved data quality and relevance,
laying a solid foundation for subsequent model training.

In the federated learning scenario, the original SVA dataset was
randomly split into training and testing sets at an 8:2 ratio, ensuring

https://github.com/joernio/joern

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
both sets contained vulnerability samples for reliable model evaluation.
To eliminate errors caused by random experiments, we conducted 10
repeated trials during the federated learning and vulnerability assess-
ment phases, using the average results as the final performance metrics.
This approach ensured the model’s stability and generalization ability
in a continual learning setting.

3.2. Federated training and optimization phase

During the training phase of the proposed FedMVA framework,
our goal is to enhance the performance and adaptability of the global
model in heterogeneous data environments. Federated learning, as
implemented in FedMVA, is built on the foundational principles of
federated learning, where multiple clients collaboratively train a global
model without sharing their local data. Each client trains the model
using its local data and only sends model updates (such as gradients
or weight updates) to the server, aggregating the updates from all
clients to update the global model. This approach ensures data privacy
while enabling the global model to learn from diverse data distributions
across clients. In FedMVA, we further enhance this process by address-
ing key challenges such as data heterogeneity and model alignment
gaps, which are critical for effective federated learning. To address
these challenges, we propose three key enhancements based on the tra-
ditional FedPer (Arivazhagan et al., 2019) method: First, we introduce
a weighted variance minimization loss function to optimize the consis-
tency between the global and local models, reducing the alignment gap.
Second, we design a momentum-based weight allocation strategy to
dynamically adjust the significance of clients, balancing their influence
on the global model. Finally, we incorporate a dynamic learning rate
mechanism to improve clients’ adaptability to heterogeneous data.
These enhancements are grounded in the principles of federated learn-
ing, ensuring that the global model not only integrates knowledge
from diverse clients but also maintains stability and generalization in
heterogeneous environments.

In federated training, the global model must integrate client updates
with diverse data distributions. However, the heterogeneity of client
data often results in significant alignment gaps between the global and
local models. To mitigate this issue, we extend the standard cross-
entropy loss by incorporating a weighted variance minimization term
to enhance consistency across all clients. The proposed loss function is
defined as:

L = CE + 𝜆 ⋅
𝑀
∑

𝑖=1
𝑤𝑖‖𝜃global − 𝜃local,𝑖‖

2
2, (3)

here CE is the cross-entropy loss used for classification tasks, and 𝜆 is a
regularization coefficient balancing the trade-off between classification
accuracy and alignment consistency. The dynamic client weight 𝑤𝑖
captures the relative contribution of client 𝑖 to the global model and
is computed as:

w𝑖 =
𝛥𝜃𝑖

∑𝑀
𝑗=1 𝛥𝜃𝑗

, (4)

where 𝛥𝜃𝑖 measures the parameter update magnitude of client 𝑖. By
prioritizing clients with larger updates, this mechanism ensures that
critical clients with unique data distributions play a more signifi-
cant role in global model optimization, enhancing its robustness and
stability.

Second, we introduce a momentum-based weight adjustment strat-
egy to balance the influence of clients on the global model. This strategy
combines historical weights with current updates to ensure smooth and
dynamic weight adjustments. The updated formula is given as:

w(𝑡+1)
𝑖 = 𝛽 ⋅𝑤(𝑡)

𝑖 + (1 − 𝛽) ⋅
𝛥𝜃(𝑡)𝑖

∑𝑀
𝑗=1 𝛥𝜃

(𝑡)
𝑗

, (5)

where 𝛽 is the momentum coefficient (typically between 0.8 and 0.9),
and 𝛥𝜃(𝑡) represents the parameter update magnitude of client 𝑖 at
𝑖

5
iteration 𝑡. This approach ensures smoother weight changes while
emphasizing clients with substantial contributions.

Finally, we propose a dynamic learning rate mechanism to adapt
learning rates to client-specific data distributions. The learning rate is
updated as:

𝜂𝑖 = 𝜂0 ⋅
⎛

⎜

⎜

⎝

1 +
‖𝐡global𝑖 − 𝐡local𝑖 ‖2

max𝑗∈[1,𝑀] ‖𝐡
global
𝑗 − 𝐡local𝑗 ‖2

⎞

⎟

⎟

⎠

, (6)

here 𝜂0 is the base learning rate, and 𝐡global𝑖 and 𝐡local𝑖 denote the
global and local feature representations of client 𝑖. Clients with greater
discrepancies receive higher learning rates to accelerate convergence,
while clients with smaller discrepancies maintain lower rates to ensure
stability.

These three improvements collectively address the challenges of
federated environments, demonstrating improvements in training effi-
ciency and model generalization. Experimental results show that the
FedMVA framework outperforms traditional methods in evaluation
performance.

3.3. Vulnerability assessment stage

The vulnerability assessment stage represents the final step in the
FedMVA framework, focusing on utilizing the aligned and fused tri-
modal features — graph structure, lexical, and comment information
— produced during the earlier stages for precise vulnerability clas-
sification. Building on the outcomes of the federated training and
feature fusion phases, this stage ensures that the processed multi-modal
representations are effectively employed to classify vulnerabilities into
three severity levels: high, medium, and low.

In this stage, the tri-modal features, aligned and fused during the
previous phases, are input into a multi-layer perceptron (MLP) classifier
designed for three-class classification. The classifier leverages the com-
bined strengths of the structural, semantic, and contextual information
captured in the tri-modal data. A key distinguishing feature of this
stage is its ability to refine and exploit the complementary relationships
among the modalities. By integrating the optimized feature represen-
tations from the training stage with the model’s dynamic adaptation
capabilities, the assessment module achieves a robust balance between
precision and generalizability. The enhanced attention mechanism in-
troduced earlier plays a critical role here, dynamically focusing on the
most relevant modal contributions for accurate predictions.

Through this comprehensive approach, the vulnerability assessment
stage not only ensures reliable classification performance across diverse
data distributions but also highlights the practical applicability of the
FedMVA framework in real-world software vulnerability evaluation
tasks. This stage demonstrates how the unified representations and
optimized model weights generated in the earlier phases translate into
tangible improvements in the model’s predictive power and reliability.

4. Experimental setup

In this section, we first present the research questions we designed
along with their underlying motivations. Then, we introduce the ex-
perimental subjects, performance evaluation metrics, baseline methods,
and detailed experimental settings.

4.1. Research questions

To evaluate the effectiveness of our proposed FedMVA, we design
the following five research questions (RQs):

RQ1: How does FedMVA perform compared to state-of-the-art
baselines in SVA?

Motivation: The purpose of RQ1 is to demonstrate the competitive-
ness of our proposed method FedMVA compared to current state-of-the-
art SVA baselines. Additionally, to ensure a comprehensive evaluation,

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
we considered five automatic evaluation metrics: accuracy, precision,
recall, F1 score, and MCC. These metrics provide a holistic measure of
performance across various aspects of vulnerability assessment.

RQ2: How do different input modality combinations impact the
performance of FedMVA?

Motivation: Our FedMVA method incorporates capturing the struc-
tural information of code by generating its CPG and combining it
with lexical information and comment information to create tri-modal
inputs for SVA model training. Therefore, in RQ2, we aim to inves-
tigate whether this tri-modal input design achieves optimal perfor-
mance for FedMVA. Additionally, we aim to compare different modality
configurations to determine which input modality contributes most
significantly to the performance of FedMVA.

RQ3: How does federated learning influence the effectiveness
of SVA compared to conventional training paradigms?

Motivation: In RQ3, we aim to analyze the impact of federated
learning on the effectiveness of SVA compared to conventional training
paradigms. Federated learning introduces both benefits and challenges:
while it enhances privacy preservation and allows federated collabora-
tion, it also faces issues such as client heterogeneity and communication
overhead. To systematically evaluate these factors, we conduct ablation
studies to compare different FL aggregation strategies, assess their
influence on model performance, and discuss the trade-offs introduced
by federated learning in software vulnerability assessment.

RQ4: How do different federated learning settings affect the
performance of FedMVA?

Motivation: Existing federated learning methods have limitations
in dealing with data heterogeneity and customer importance differ-
ences, which can lead to poor model fitting. To address these chal-
lenges, we reduce model variance by minimizing weighted variance,
using momentum-based updates to highlight key customers, and us-
ing dynamic learning rate strategies to accelerate convergence, en-
hancing model robustness and overall performance. This RQ will an-
alyze whether this adjustment can help FedMVA achieve the best
performance.

RQ5: How does the proposed multimodal fusion strategy im-
pact the performance of FedMVA and the interaction across modal-
ities?

Motivation: In this RQ, we aim to explore the impact of the
multi-modal fusion strategy on FedMVA’s performance and cross-modal
interactions. Multi-modal information is critical in vulnerability assess-
ment; however, existing methods often fall short of effectively fusing
modal features and facilitating information exchange across modalities.
To address these shortcomings, we employ a self-attention mechanism
for the weighted fusion of modal features to enhance cross-modal
interactions and improve overall model performance.

4.2. Experimental subject

To construct a high-quality SVA dataset, we aggregated data from
multiple sources, including the CVE database and associated Git repos-
itories. We pre-processed data by removing blank lines, leading spaces,
and irrelevant comments to simplify the code structure. The result-
ing dataset comprises 9,941 samples, each containing tri-modal infor-
mation: structural information from CPG, lexical features, and com-
ment information. Compared to existing datasets such as SARD (SARD,
2020), Devign (Zhou et al., 2019), and BigVul (Fan et al., 2020), our
dataset offers significant advantages in multi-modal characteristics. It
strictly adheres to the CVSS v2 standard, providing a robust foundation
for advanced SVA research.

During the data preprocessing stage, we applied de-identification
techniques to safeguard sensitive information and removed irrelevant
elements, such as blank lines and excessive comments, to optimize
model performance. This process not only enhanced data privacy but
also improved the robustness of the dataset, making it suitable for
federated learning applications. In the data processing phase, we used
6
Table 1
A tri-modal example including CPG information, lexical information, comment infor-
mation, and severity.
Code Property Graph (CPG):
𝑁𝑜𝑑𝑒1 ∶ Function process_request
𝑁𝑜𝑑𝑒2 ∶ Variable buffer[128]
𝐸𝑑𝑔𝑒1 ∶ Defines → Node2
𝐸𝑑𝑔𝑒2 ∶ Calls → process()
...

Lexical Information:
𝑠𝑡𝑎𝑡𝑖𝑐 𝑣𝑜𝑖𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∗ 𝑟𝑒𝑞)
{
𝑐ℎ𝑎𝑟 𝑏𝑢𝑓𝑓𝑒𝑟[128];
𝑖𝑓 (𝑟𝑒𝑞− > 𝑠𝑖𝑧𝑒 > 128){
𝑟𝑒𝑡𝑢𝑟𝑛;

}
𝑚𝑒𝑚𝑐𝑝𝑦(𝑏𝑢𝑓𝑓𝑒𝑟, 𝑟𝑒𝑞− > 𝑑𝑎𝑡𝑎, 𝑟𝑒𝑞− > 𝑠𝑖𝑧𝑒);
𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑏𝑢𝑓𝑓𝑒𝑟);

}

Comment Information:
∕ ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑎𝑓𝑒𝑙𝑦 ∗ ∕
∕ ∗ 𝐸𝑛𝑠𝑢𝑟𝑒𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑒𝑥𝑐𝑒𝑒𝑑𝑏𝑢𝑓𝑓𝑒𝑟𝑙𝑖𝑚𝑖𝑡 ∗ ∕
∕ ∗ 𝑚𝑒𝑚𝑐𝑝𝑦𝑖𝑠𝑢𝑠𝑒𝑑𝑓𝑜𝑟𝑐𝑜𝑝𝑦𝑖𝑛𝑔𝑑𝑎𝑡𝑎𝑖𝑛𝑡𝑜𝑏𝑢𝑓𝑓𝑒𝑟 ∗ ∕

Severity: 2 (High)

Joern to extract CPGs, capturing the source code’s syntactic structures
and dependency relationships. Additionally, lexical and comment infor-
mation was treated as textual data and processed using the pre-trained
CodeT5 model to generate semantic embeddings. Each data sample
was ultimately labeled with one of three severity levels — low (0),
medium (1), or high (2) — according to the CVSS v2 standard, ensuring
consistent and reliable labeling. The final dataset includes 2,138 low-
severity samples (21.5%), 3,587 medium-severity samples (36.1%), and
4,216 high-severity samples (42.4%).

By integrating structural, lexical, and semantic features, this tri-
modal dataset provides a comprehensive foundation for the FedMVA
framework, enabling in-depth and reliable vulnerability assessments.
Table 1 illustrates a tri-modal data sample, including its CPG, lexical
information, comment information, and severity label. This example
highlights the composition of the tri-modal data and its potential value
in vulnerability evaluation tasks.

4.3. Baseline methods

To validate the effectiveness of our proposed FedMVA framework,
we compared it against six representative baselines. These baselines
encompass a range of mainstream methods, from feature-level process-
ing to model design, representing the forefront of research in the SVA
domain. We briefly describe these baseline methods as follows.

CWM (Character-Word Model) (Le et al., 2019) addresses the chal-
lenge of concept drift in SVA by combining character and word features
from vulnerability descriptions. Depending on the classifier used, CWM
is further divided into three baselines:

• CWMNB. Employing the Naïve Bayes (NB) (Russell and Norvig,
2016) classifier, this approach is rooted in Bayesian decision
theory. NB assumes conditional independence among features,
which may limit performance when the assumption is violated. Its
simplicity and efficiency make NB well-suited for large-scale clas-
sification tasks. No hyperparameter optimization was performed
for this baseline.

• CWMSVM. Utilizing the Support Vector Machine (Cortes, 1995)
classifier, this baseline maps input features into a high-
dimensional space and identifies the optimal hyperplane to sepa-
rate different classes. Regularization parameters were fine-tuned
within a predefined range to enhance classification performance.

• CWMXGB. This baseline uses Extreme Gradient Boosting (XGB)
(Chen, 2015), an ensemble learning method that integrates mul-
tiple tree models to form a robust classifier. Key hyperparameters
were optimized to improve accuracy, including the number of
trees, tree depth, and leaf nodes.

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Fun (Function-Level SVA) (Le and Babar, 2022) focuses on function-
level vulnerability assessment by analyzing contextual information sur-
rounding vulnerable statements. It extracts features from code to de-
velop robust models for SVA. Depending on the classifier used, Fun is
divided into two baselines:

• FunRF. This baseline employs Random Forest (RF) (Ho, 1995), an
ensemble model combining multiple decision trees. Predictions
are finalized through majority voting, enhancing robustness and
predictive accuracy. Key hyperparameters were carefully tuned,
such as the number of trees, tree depth, and leaf nodes.

• FunLGBM. Leveraging the Light Gradient Boosting Machine
(LGBM) (Ke et al., 2017) classifier, this method is characterized
by high efficiency and scalability. LGBM shares similar hyper-
parameter structures with FuncRF but incorporates additional
optimizations to handle large-scale data.

DeepCVA (Deep Commit-Level SVA) (Le et al., 2021) is a deep
learning framework for commit-level vulnerability assessment, origi-
nally designed for multi-task learning to predict multiple CVSS metrics
such as confidentiality, integrity, and availability. To align with our
evaluation framework, we adapted DeepCVA into a three-class clas-
sification model based on the CVSS v2 standard, reformulating its
outputs to match our single-task learning setting. We simplified its
feature extraction by retaining only code change features, exclud-
ing repository-specific metadata, and ensuring consistency across all
baselines. These modifications allow DeepCVA to be fairly evaluated
in the same classification setting while preserving its commit-based
assessment capability.

CodeBERT (Sahar et al., 2024) is a bi-modal pre-trained transformer
model designed for natural language and programming language un-
derstanding. It is trained using a masked language modeling objective
and a replaced token detection task, enabling it to learn rich semantic
representations of source code. In our evaluation, we utilize the pre-
trained CodeBERT model to extract function-level code representations
and assess its effectiveness in vulnerability identification.

CodeT5 (Wang et al., 2021) is a pre-trained encoder–decoder model
tailored for code-related tasks, including code generation, comple-
tion, and translation. Unlike CodeBERT, which primarily focuses on
code understanding, CodeT5 captures syntactic structures and semantic
relationships within source code.

By comparing FedMVA with these baseline methods, we aim to
comprehensively demonstrate its competitiveness and advantages in
multi-modal vulnerability assessment. To ensure fairness, all baselines
were trained and evaluated under identical experimental conditions
and dataset splits.

4.4. Performance metrics

To comprehensively evaluate the performance of our proposed Fed-
MVA framework, we employ five commonly used metrics: Accuracy
(ACC), Precision (PR), Recall (RC), F1 Score (F1), and Matthews Cor-
relation Coefficient (MCC). These metrics collectively provide a mul-
tidimensional evaluation, covering overall classification accuracy and
positive and negative class prediction capabilities. These metrics were
chosen because they capture different aspects of model performance,
particularly in vulnerability assessment, where class imbalance and
varying severity levels are common.

For the SVA task, the first four metrics are standard, while MCC is
widely used for datasets with class imbalance. Since we need to predict
three severity levels (low, medium, and high), we use macro-averaged
metrics to present the final results. In the rest of the subsection, we
show the details of calculating these performance metrics.

• 𝑇𝑃 (True Positive): The number of positive class samples cor-
rectly classified. The SVA task represents cases where the model
accurately identifies different severity levels.
7
• 𝑇𝑁 (True Negative): The number of negative class samples cor-
rectly classified. For each severity level, it represents samples
correctly classified as not belonging to that severity level.

• 𝐹𝑁 (False Negative): The number of positive class samples in-
correctly classified as negative. Each severity level represents
samples wrongly classified as not belonging to that severity level.

• 𝐹𝑃 (False Positive): The number of negative class samples incor-
rectly classified as positive. Each severity level represents samples
wrongly classified as belonging to that severity level.

For each severity category 𝑖, these statistics can be represented as 𝑇𝑃𝑖,
𝑇𝑁𝑖, 𝐹𝑁𝑖, and 𝐹𝑃𝑖.

Accuracy: Accuracy represents the proportion of correctly classified
samples among all samples, calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑖 𝑇𝑃𝑖 +
∑

𝑖 𝑇𝑁𝑖
∑

𝑖(𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)
. (7)

Precision: Precision indicates the proportion of samples predicted
as positive that are truly positive. The macro-average precision is
calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
, (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
Precision𝑖. (9)

Recall: Recall measures the proportion of actual positive samples
correctly predicted as positive. The macro-average recall is calculated
as:

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
, (10)

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
Recall𝑖. (11)

F1-score: F1-score is the harmonic mean of Precision and Recall.
The macro-average F1 Score is calculated as:

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

, (12)

𝐹1-𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖
𝐹1𝑖. (13)

MCC: MCC considers 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 and is effective for
datasets with the class imbalance problem. For the multi-class classi-
fication problem, we calculate the macro average of each class’s MCC
as follows.

𝑀𝐶𝐶𝑖 =
𝑇𝑃𝑖 ⋅ 𝑇𝑁𝑖 − 𝐹𝑃𝑖 ⋅ 𝐹𝑁𝑖

√

(𝑇𝑃𝑖+𝐹𝑃𝑖)(𝑇𝑃𝑖+𝐹𝑁𝑖)(𝑇𝑁𝑖+𝐹𝑃𝑖)(𝑇𝑁𝑖+𝐹𝑁𝑖)
, (14)

𝑀𝐶𝐶𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
MCC𝑖. (15)

In the experiments, we conducted multiple independent runs for
each baseline method and the FedMVA framework to ensure the sta-
bility of the results. The results of the five metrics were calculated on
the test set, and the final scores were averaged over all runs. This design
ensures a reliable evaluation of the FedMVA framework’s competi-
tiveness in multi-modal-based vulnerability assessment and provides a
comprehensive analysis of its performance.

4.5. Implementation details

Our experiments and baseline methods were conducted on a com-
puter with a 3.50 GHz CPU and a GeForce RTX 4090 GPU with 24 GB
of graphics memory running on Windows 10.

In our study, we maintained consistent experimental settings across
all methods to ensure a fair comparison. The initial learning rate was
set to 5e−5 and progressively reduced using a linear decay strategy

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Table 2
Performance comparison between FedMVA and SVA baselines, with the best results for
each metric highlighted in bold.
 Method Accuracy Precision Recall F1 MCC
 CWMNB 0.654 0.683 0.547 0.515 0.501
 CWMSVM 0.691 0.627 0.577 0.551 0.465
 CWMXGB 0.703 0.693 0.639 0.635 0.492
 FunRF 0.672 0.645 0.508 0.549 0.424
 FunLGBM 0.718 0.707 0.526 0.541 0.484
 DeepCVA 0.67 0.575 0.572 0.583 0.473
 CodeBERT 0.721 0.69 0.621 0.634 0.523
 CodeT5 0.745 0.716 0.672 0.692 0.573
 FedMVA 0.784 0.739 0.712 0.690 0.625

throughout training. A batch size of 16 was adopted to strike a balance
between computational efficiency and model stability. The AdamW
optimizer was employed, with a weight decay parameter of 1e−2, to
reduce the risk of overfitting. Each training round consisted of 50
iterations, providing sufficient learning opportunities for the models
while maintaining reasonable computational demands.

For the federated learning phase, we conducted five communication
rounds, during which global model parameters were aggregated and
updated on the server after each round. This setup preserved data
privacy at the client level and ensured high training efficiency in
federated learning scenarios.

To guarantee the reliability of our results, we conducted 10 inde-
pendent runs for both the FedMVA framework and baseline methods.
The performance metrics for each method were calculated based on
the test set, and the final results were averaged across all runs. This
design allowed us to robustly evaluate the competitive performance of
the FedMVA framework in multi-modal vulnerability assessment tasks.

5. Experimental results

5.1. RQ1: How does FedMVA perform compared to state-of-the-art base-
lines in SVA?

Approach. To evaluate the effectiveness of our proposed method
FedMVA for the SVA task, we selected a diverse set of baseline methods,
including CWMNB, CWMSVM, CWMXGB (Le et al., 2019; Russell and
Norvig, 2016; Cortes, 1995; Chen, 2015), FunRF, FunLGBM (Le and
Babar, 2022; Ho, 1995; Ke et al., 2017), DeepCVA (Le et al., 2021),
CodeBERT (Sahar et al., 2024), and CodeT5 (Wang et al., 2021).
These baselines represent state-of-the-art methods in SVA, spanning
different approaches ranging from traditional machine learning to deep
learning-based models.

For FedMVA, we followed the experimental setup outlined in Sec-
tion 4.5 and assessed the method’s performance using the evaluation
metrics introduced in Section 4.4. These methods represent a vari-
ety of approaches in SVA and utilize different data modalities to
extract vulnerability information. The CWM category is based on vul-
nerability descriptions, extracting character- and word-level textual
features, making it suitable for scenarios with comprehensive vulner-
ability reports. The Fun category focuses on function-level source code
analysis, capturing patterns within vulnerable functions and their con-
text. DeepCVA is designed for commit-level vulnerability assessment,
integrating contextual information from code changes and metadata to
predict vulnerability properties through a multi-task learning frame-
work. CodeBERT is designed for code understanding tasks, leveraging
a masked language modeling objective to learn representations from
source code and paired natural language descriptions. And CodeT5
extends beyond code understanding by incorporating generative capa-
bilities, capturing both syntactic structures and semantic relationships
within code. In this study, we apply both models directly to function-
level vulnerability classification to assess their effectiveness in the SVA
task.
8
Table 3
Class-specific metrics and confusion matrix for the FedMVA model.
 (a) Class-wise performance metrics of FedMVA
 Class Precision Recall F1
 Low 0.672 0.633 0.652
 Medium 0.721 0.693 0.707
 High 0.805 0.774 0.789
 (b) Confusion matrix of FedMVA on the test set
 Actual∖Pred Low Med High
 Low 412 153 53
 Medium 85 867 137
 High 28 136 983

Result.The performance comparison between our proposed method
FedMVA and the baselines is shown in Table 2, with the best re-
sults for each metric highlighted in bold. It is clear from the table
that our method outperforms all baselines. Specifically, compared to
the baselines, FedMVA demonstrates improvements in MCC ranging
from 9.08% to 47.41%, F1-score from −0.28% to 33.98%, accuracy
from 5.96% to 19.88%, precision from 3.21% to 28.52%, and recall
from 5.95% to 40.16%. These results demonstrate the advantages of
FedMVA in capturing multi-faceted vulnerability characteristics that
are often overlooked in single-modality baselines. Traditional statis-
tical learning approaches, such as CWM and Fun, which rely solely
on handcrafted features, struggle to model the complex structural
and contextual dependencies in source code, leading to lower perfor-
mance. DeepCVA shows limited performance gains due to its reliance
on commit-level information, which lacks structural code representa-
tions and lexical details. CodeBERT achieves notable improvements
over traditional baselines, benefiting from its pre-trained contextual
embeddings. However, its bi-modal nature (code + natural language)
does not fully exploit the structural properties of code, resulting in
lower recall compared to FedMVA. CodeT5, designed for code genera-
tion and understanding, performs better than CodeBERT as it captures
richer syntactic and semantic relationships. CodeT5 achieves a slightly
higher F1-score than FedMVA, likely due to its token-level modeling
approach excels at capturing localized vulnerability patterns, leading
to a more balanced trade-off between precision and recall.

In contrast, FedMVA integrates structural, lexical, and comment-
based features through a self-attention fusion mechanism, allowing it
to extract complementary information from multiple modalities dy-
namically. This approach improves model robustness and generaliza-
tion, particularly in scenarios with heterogeneous data distributions.
Moreover, incorporating momentum mechanisms and dynamic learning
rates enables FedMVA to better adapt to non-IID (non-independent and
identically distributed) client data, improving model stability and con-
vergence. Overall, the combination of multimodal feature fusion and
adaptive learning mechanisms allows FedMVA to outperform baselines
in most metrics, demonstrating its effectiveness in SVA.

To further assess the fairness and robustness of FedMVA, we provide
class-wise performance metrics and the confusion matrix in Table 3.
The class-wise results show that FedMVA achieves the highest recall
(0.774) and F1-score (0.789) on the High severity class, which is critical
in real-world applications where severe vulnerabilities must be priori-
tized. While the Medium class exhibits balanced performance, the Low
severity class shows relatively lower precision and recall. This is largely
attributed to class imbalance and the subtle characteristics of low-risk
vulnerabilities, which can be easily confused with medium-risk ones. As
shown in the confusion matrix, most misclassifications occur between
adjacent severity levels (e.g., Medium vs. High), whereas severe mis-
classifications (e.g., Low vs. High) are relatively rare. These findings
confirm that FedMVA not only performs well in overall metrics but
also maintains consistent effectiveness across different severity levels,
reinforcing its practical utility in triage and prioritization scenarios.

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Table 4
Performance comparison of FedMVA with different input modality combinations.
 Settings Accuracy Precision Recall F1 MCC
 FedMVA+S 0.632 0.503 0.549 0.519 0.584
 FedMVA+L 0.653 0.582 0.616 0.598 0.497
 FedMVA+L+C 0.621 0.643 0.559 0.592 0.463
 FedMVA+S+C 0.647 0.529 0.537 0.523 0.570
 FedMVA+S+L 0.712 0.689 0.623 0.664 0.591
 FedMVA+S+L+C 0.784 0.739 0.712 0.690 0.625

Summary for RQ1: Our proposed method FedMVA outper-
forms baseline methods across most performance metrics.
For example, FedMVA achieves an improvement of 9.08% to
47.41% in MCC and 5.95% to 40.16% in recall.

5.2. RQ2: How do different input modality combinations impact the perfor-
mance of FedMVA?

Approach. To investigate the impact of different input modalities
on the performance of FedMVA, we conducted an ablation study by
combining three types of input information. Our study involved three
modalities: (1) code structure information, (2) lexical information from
the code, and (3) comment information. We denote code structure
information as S, lexical information as L, and comment information as
C. By evaluating various combinations of these modalities, we assessed
the contribution of each modality to the model’s performance.

Result. Based on the experimental results shown in Table 4, we
observe a significant improvement in the performance of FedMVA as
the number of information modalities increases. Specifically, when
using single-modal information and dual-modal combinations, the per-
formance of our method, FedMVA, slightly decreased across all metrics.
However, FedMVA performs significantly better by incorporating three
modalities. The accuracy improved by 10.11% to 26.25%. Precision
saw the largest increase, rising by 7.26% to 46.92%. Recall improved
by 14.29% to 32.59%, the F1-score increased by 3.92% to 32.95%, and
the MCC increased by 5.75% to 32.14%. These results suggest that the
model’s performance improves as the number of information modalities
increases.

This improvement is primarily attributed to the effective combi-
nation of code structure and lexical information. When using code
structure information alone, the performance was relatively moderate.
However, when lexical information was added, the model significantly
improved across all metrics, particularly precision and MCC. While
including comment information led to slight performance regression
in some cases (e.g., with the FedMVA+L+C setting), it still provided
valuable supplementary information to the model, especially when
combined with code structure and lexical information. The fusion of
all three modalities further enhanced the model’s ability to make
comprehensive assessments, enabling it to evaluate vulnerabilities from
multiple levels — syntax, lexical features, and the semantic content
of comments — thereby improving the performance of the SVA. We
did not conduct experiments using comments alone, mainly because
comment information did not significantly improve the model’s per-
formance when used in isolation. Its value was more apparent when
combined with code structure and lexical information, which served as
a complementary factor rather than an independent contributor.

Summary for RQ2: Integrating all three modalities–code
structure, lexical information, and comments–yields better
performance than single-modal and dual-modal inputs. This
indicates that these three modalities provide complementary
information to each other.
9
Fig. 2. The impact of federated learning for FedMVA.

5.3. RQ3: How does federated learning influence the effectiveness of SVA
compared to conventional training paradigms?

Approach. To investigate how the federated learning framework
enhances the effectiveness of FedMVA in the SVA task, we designed
three experimental setups: a centralized setting without federated
learning, a standard federated learning setup using the FedAvg algo-
rithm, and our proposed FedMVA method. In the centralized setting, all
data was stored on a single server for training, with no collaboration
or parameter sharing between clients, serving as the baseline for
comparison. The FedAvg approach enables clients to independently
train local models and send their parameters to a central server for
aggregation, facilitating distributed learning but struggling to han-
dle data heterogeneity. In contrast, FedMVA incorporates momentum
mechanisms and dynamic learning rates, optimizing parameter updates
and dynamically adjusting client contributions through adaptive weight
allocation. We employed three evaluation metrics, accuracy, recall, and
F1-score, to compare the performance of each method and identify the
most effective approach.

Result. The performance comparison of the three methods is shown
in Fig. 2. The figure shows FedMVA demonstrates improved overall
performance under the federated learning setting, compared to both
the basic FedAvg method and the model without federated learning.
Specifically, accuracy increased by 3.29% to 14.79%, recall improved
by 4.25% to 9.71%, and the F1-score rose by 5.18% to 14.05%.
These results demonstrate that the federated learning framework ef-
fectively facilitates information sharing and collaborative optimization
between clients, enabling the integration of local knowledge into the
global model and significantly enhancing its generalization ability.
Furthermore, FedMVA leverages momentum mechanisms and dynamic
learning rates to mitigate the challenges posed by data heterogeneity,
improving both convergence speed and model stability. Notably, pre-
cision and MCC metrics are not presented here due to their minimal
improvement under federated learning. Instead, we focus on accuracy,
recall, and F1-score, which provide more meaningful insights into the
performance gains.

Summary for RQ3: Federated learning demonstrates improve-
ments over the basic FedAvg method and models without
federated learning. This suggests that federated learning helps
enhance collaboration between models, thereby improving the
effectiveness of vulnerability assessment.

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
5.4. RQ4: How do different federated learning settings affect the perfor-
mance of FedMVA?

Approach. To address RQ4, we conducted ablation experiments
to evaluate the impact of different configurations within the feder-
ated learning framework on model performance. These experiments
focused on three key enhancements to the FedPer method: the weighted
variance minimization loss function, the momentum-based weight allo-
cation strategy, and the dynamic learning rate mechanism. The exper-
iments were designed to progressively assess the effect of each modi-
fication and examine their role in improving the model’s performance
in vulnerability assessment tasks.

In addition, to further analyze the effectiveness of our proposed
loss function, we conducted a comparative study using several widely
adopted federated learning loss functions. Specifically, we evaluated
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), Fed-
Dyn (Acar et al., 2021), and MOON (Li et al., 2021), alongside our
proposed Loss Function. These loss functions were chosen due to their
effectiveness in addressing different challenges in federated optimiza-
tion, including model drift, data heterogeneity, and feature alignment.
To ensure a fair comparison, all experiments were conducted within
the same federated learning framework, keeping hyperparameters and
other experimental conditions constant.

Result. Fig. 3 presents the results obtained from our experiments.
The five configurations in the figure represent different variants of
FedMVA: FedMVA w/o All refers to the version without any feder-
ated enhancements, including dynamic learning rate, momentum-based
weighting, and the weighted variance minimization (WVM) loss; Fed-
MVA w/ LR, FedMVA w/ Momentum, and FedMVA w/ WVM enable
only one of these components respectively; while FedMVA (Full) ac-
tivates all enhancements. The model shows improvements across all
evaluation metrics based on the experimental results from different
federated learning settings. Specifically, accuracy increased by 4.81%
to 10.89%, recall improved by 3.04% to 6.43%, and F1-score increased
by 3.04% to 6.43%. These improvements suggest that the enhance-
ments made to the federated learning framework have contributed to
the model’s overall performance.

Further, Fig. 4 presents the accuracy comparison across different
loss functions over multiple communication rounds. The results demon-
strate that our proposed loss function consistently outperforms FedAvg,
FedProx, FedDyn, and MOON, particularly during the initial training
phases. The faster convergence observed in the early rounds suggests
that our method effectively mitigates local model drift while maintain-
ing stable and efficient global model updates. Since accuracy directly
reflects the model’s predictive performance and is widely regarded as a
primary evaluation metric in federated learning, we focus on its trends
to compare the effectiveness of different loss functions.

In detail, the weighted variance minimization loss function effec-
tively reduced the alignment gap between local and global models,
enhancing the global model’s generalization ability and performance
across diverse data distributions. The momentum-based weight alloca-
tion strategy dynamically adjusted client contributions, ensuring that
the most important clients were appropriately weighted, which im-
proved the model’s adaptability to heterogeneous data. Finally, the dy-
namic learning rate mechanism optimized the training process by fine-
tuning adjustments based on each client’s specific data distribution.
This led to improved accuracy and recall in vulnerability assessment
tasks. These enhancements worked synergistically, collectively boosting
the performance of the federated learning framework in vulnerability
evaluation.

Summary for RQ4: The experimental results demonstrate
that the carefully designed federated adjustments contribute
to model performance improvement. The enhancements in
the approach have strengthened the overall generalization
capability of the model, leading to better adaptability and
performance across various evaluation metrics.
10
Fig. 3. The impact of different federated learning settings for FedMVA.

Fig. 4. Accuracy comparison across different loss functions over communication
rounds.

5.5. RQ5: How does the proposed multimodal fusion strategy impact the
performance of FedMVA and the interaction across modalities?

Approach. To address RQ5, we conducted ablation experiments to
assess the impact of the proposed multimodal fusion strategy on the
performance of FedMVA and the interaction across modalities. Our
approach aligns multimodal features through binary hash encoding,
achieving an initial semantic unification. We further refine the feature
representations using a self-attention mechanism, enabling deep fusion
and enhancing the interaction between different modalities. To validate
the effectiveness of this fusion strategy, we compared it with four
alternative strategies: feature addition, feature concatenation, weighted
averaging, and element-wise multiplication.

Result. Fig. 5 presents the experimental results of different mul-
timodal fusion strategies. The results indicate that the proposed mul-
timodal fusion strategy leads to noticeable improvements in model
performance. Specifically, the Accuracy metric increased by 22.12%–
39.25%, the F1-score improved by 20.42%–30.93%, and MCC showed
an increase of 18.37%–43.02%. We focused on these three metrics
as Precision and Recall did not show significant changes across the
fusion strategies. These improvements highlight the advantages of the
proposed strategy in addressing the challenges of dimensionality re-
duction when integrating multimodal data within a federated learning
framework. The differences in performance can be attributed to how
information is retained during the feature integration process. In the
Addition, Concatenation, Weighted Averaging, and Element-wise Multi-
plication strategies, particularly for high-dimensional data, information
loss often occurs during feature merging, which weakens the inter-
action between modalities. In contrast, the proposed fusion strategy
leverages the self-attention mechanism to effectively minimize infor-
mation loss and enhance the integration of features across modalities.

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Fig. 5. The impact of different fusion methods for FedMVA.

This leads to better performance in combining cross-modal informa-
tion and significantly improves the overall model capabilities. These
findings demonstrate the clear advantages of the deep fusion strategy
in multimodal learning tasks, particularly for complex vulnerability
assessment scenarios. The proposed strategy effectively captures subtle
relationships across modalities, resulting in more accurate and reliable
evaluation outcomes.

Summary for RQ5: The proposed multimodal fusion strategy
outperforms traditional methods by better integrating cross-
modal information, reducing information loss, and improving
model performance. Its self-attention mechanism enhances
modality interaction, making it effective for complex tasks like
vulnerability assessment.

6. Discussion

6.1. Parameter analysis

This section discusses three key factors affecting model performance
in federated learning: hyperparameter settings, computational cost,
and data heterogeneity. By systematically analyzing these aspects, we
evaluate the effectiveness and robustness of our proposed approach
under different experimental conditions.

To investigate the influence of hyperparameters, we varied the
batch size and the number of epochs. The batch size was set to 8, 16,
32, 64, 128, and the epoch values were set to 20, 30, 40, 50, 60. The
experimental results are shown in Fig. 6, which presents the model’s
performance across different metrics under various configurations.

The results suggest that both batch size and epochs significantly im-
pact model performance. Specifically, the model performed best when
the batch size was 128. Larger batch sizes typically improve training
efficiency, particularly with large datasets, by enabling faster pro-
cessing without significantly increasing computational cost. However,
excessively large batch sizes can lead to higher memory consumption,
limiting scalability. For the batch size in our experiments, smaller
values (e.g., 8 and 16) led to slower convergence and more significant
fluctuations in evaluation metrics, which can be attributed to the
limited amount of gradient information processed in each iteration,
resulting in unstable updates during training. A batch size of 128 ap-
peared to offer the best trade-off while avoiding the memory overhead
associated with excessively large batches. In terms of local epochs,
the model achieved the best performance when trained for 50 epochs.
As the number of epochs increased, the model’s accuracy improved
steadily. However, the performance gains became negligible, and over-
fitting tendencies emerged beyond this point. Training for 50 epochs
struck a balance between learning capacity and generalization, making
11
Fig. 6. The figures illustrate the impact of batch size and local epochs on model
performance.

Fig. 7. Runtime comparison of FedMVA and centralized training under different client
settings.

it the most appropriate configuration for this task. The results indicate
that our method maintains solid performance across different batch
sizes and epoch values, showcasing its robustness. In particular, when
the batch size is set to 128 and the epochs to 50, the model achieves
optimal performance across all evaluated metrics. This shows that while
parameter settings influence model performance, our approach remains
effective and reliable across various configurations.

Beyond hyperparameter optimization, another critical factor in real-
world applications is computational efficiency. In federated learning,
computational cost is influenced not only by local training but also
by communication overhead, distinguishing it from centralized training
approaches. To better understand the practical feasibility of FedMVA,
we analyze its total runtime under different communication rounds and
compare it with a traditional centralized method.

As shown in Fig. 7, FedMVA’s total runtime increases with the
number of communication rounds due to iterative model synchroniza-
tion. However, compared to a centralized approach, FedMVA remains
computationally competitive when using a moderate number of rounds
(e.g., 4–6 rounds). And we examine how the number of clients impacts
computational efficiency by comparing FedMVA with 3 clients and
10 clients. With fewer clients (3 clients), each client is assigned a
larger portion of data, leading to longer local training time per round.
However, this also results in lower communication overhead, making
the overall runtime increase less pronounced compared to the 10-client
setting, where communication is more frequent but each client pro-
cesses less data per iteration. This trade-off underscores the scalability
of FedMVA, demonstrating that client allocation can be adjusted to
optimize computational efficiency.

Another key challenge in federated learning is the heterogeneity of
data distribution across clients, which affects both global model conver-
gence and final model performance. To assess this, we conducted a sen-
sitivity analysis by comparing balanced and highly imbalanced client
data distributions. As shown in Fig. 8, when client data distributions are
highly imbalanced, the model demonstrates slower convergence, main-
taining a higher loss over multiple communication rounds, indicating
that local training instability impacts global aggregation. Furthermore,
the data heterogeneity negatively affects key evaluation metrics, par-
ticularly recall, indicating that the model struggles to generalize when
learning from minority class samples. These findings highlight the

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
Fig. 8. Impact of Data Heterogeneity on Model Convergence and Performance.

importance of accounting for data heterogeneity in federated learning
frameworks. In scenarios where client data is highly skewed, strate-
gies such as adaptive weighting mechanisms or personalized learning
approaches may be required to mitigate imbalance-induced biases and
ensure stable model convergence.

Unlike conventional classification tasks, SVA involves highly im-
balanced data, complex code structures, and ambiguous vulnerability
patterns, making it difficult for models to achieve near-perfect per-
formance. Despite these challenges, FedMVA consistently outperforms
baseline methods across most evaluation metrics, demonstrating its
effectiveness in leveraging multimodal representations. Furthermore,
its federated learning framework enables privacy-preserving collabo-
ration across distributed clients, an essential feature for real-world
deployment scenarios where centralized data collection is infeasible.
These results highlight the practical feasibility of FedMVA for SVA, as
it balances privacy preservation, computational efficiency, and model
performance in federated environments.

6.2. Threats to validity

In this subsection, we primarily outline the potential threats to the
validity of our research.

Internal threat. One internal threat to the validity of our findings
could be related to the quality of the data used in our experiments.
While we have applied rigorous preprocessing steps, there may still
be latent biases or noise in the dataset that could affect model perfor-
mance. Factors such as parameter tuning and initialization could also
influence the model’s optimization process, which might lead to subop-
timal training or overfitting in specific configurations. To mitigate this,
we ensured our experiments’ reproducibility and validated our model’s
robustness using different settings.

External threat. An external threat to the validity of our study
could stem from the generalizability of our results. The dataset used in
our experiments is specific to the context of vulnerability assessment,
and our findings may not be directly applicable to other domains
or datasets without further validation. Moreover, the experimental
setup may not represent all real-world use cases, including the specific
choice of models, features, and evaluation metrics. Therefore, while our
results demonstrate strong performance in the context of our research,
additional studies are necessary to evaluate the applicability of our
approach in diverse scenarios and to broader populations of software
systems.

Construct threat. A key construct-related threat in our study is
whether the selected evaluation metrics and experimental design fully
capture the complexity of vulnerability assessment. While accuracy,
precision, recall, F1-score, and MCC provide a solid assessment of
model performance, they primarily reflect classification effectiveness
rather than deeper characteristics such as a model’s ability to generalize
across diverse vulnerability types or handle rare cases.

Another potential limitation lies in the contribution of different
input modalities within our multimodal framework. Our ablation study
12
Fig. 9. Importance of Different Modalities.

confirmed that integrating multiple modalities improves performance,
but it does not explicitly quantify how much each modality contributes
to the final prediction. To further investigate this, we conducted an at-
tention weight analysis, which offers an interpretability perspective by
revealing how the model allocates importance across different modal-
ities. As illustrated in Fig. 9, the analysis shows that code structure
information is the dominant modality, while lexical features play a
secondary role, and developer comments contribute the least. These
findings reinforce our previous experimental results: structural and
lexical information are the primary drivers of vulnerability prediction,
whereas comments provide limited independent value.

Despite the insights provided by attention-based attribution, it is
important to acknowledge its limitations. Attention weights indicate
how the model distributes focus across features but do not necessar-
ily imply causal importance. Furthermore, they do not fully capture
potential interactions between modalities, meaning that features with
lower individual weights, such as developer comments—might still
have indirect influence through their interplay with structural and
lexical elements.

Adversarial Threats. While FedMVA enhances data privacy by pre-
venting direct data sharing, federated learning frameworks remain sus-
ceptible to adversarial threats, including data poisoning attacks (Stein-
hardt et al., 2017), model inversion attacks (Song and Namiot, 2022),
and membership inference attacks (Shokri et al., 2017). Addressing
these risks is critical to ensuring the security and practical adoption
of FedMVA.

One critical threat is data poisoning, where malicious clients in-
troduce adversarial updates to degrade model performance. FedMVA
mitigates this risk at the design level by employing robust aggregation
mechanisms that limit the influence of individual client updates on
the global model. While we do not empirically evaluate this aspect in
the current work, prior studies (Blanchard et al., 2017) have shown
that robust aggregation strategies such as Krum and Multi-Krum can
effectively defend against Byzantine or poisoned updates. FedMVA’s
architecture is compatible with such mechanisms, and future work will
incorporate and benchmark these defenses under simulated poisoning
scenarios. Another potential risk is model inversion attacks (Fredrik-
son et al., 2015), where adversaries attempt to reconstruct private
data from model updates. FedMVA inherently reduces this risk by
limiting the granularity of shared updates and ensuring that no raw
data is ever transmitted. Additional protection could be achieved by
integrating gradient clipping (Chen et al., 2020) and differential pri-
vacy techniques (Hassan et al., 2019), which have been demonstrated
to obscure sensitive patterns in model updates. Membership infer-
ence attacks (Hu et al., 2022), which aim to determine whether a
specific data sample was part of the training set, may also compro-
mise client privacy. Although federated learning already provides a

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
degree of resistance by decentralizing training, this can be further
enhanced through adversarial regularization (Nasr et al., 2018) or
gradient masking techniques.

In summary, while the current version of FedMVA focuses on
architectural-level mitigation strategies, we acknowledge the impor-
tance of empirical validation and plan to explore it in future work.
Specifically, we aim to integrate poisoning simulations and privacy-
preserving defenses into the FedMVA framework to enable systematic
robustness evaluation.

7. Related work

Software vulnerability assessment (Elder et al., 2024; Le et al.,
2022) involves identifying, analyzing, and prioritizing vulnerabilities
within software systems to maintain their security and reliability. Ef-
fective SVA methods can assist developers in prioritizing high-risk
vulnerabilities and allocating remediation resources more efficiently.
With advances in network and software technologies, the number
of vulnerabilities in software systems has surged, making traditional
manual methods of vulnerability detection and patching inefficient
and increasingly impractical. Relying solely on expert knowledge for
individual assessments is time-consuming and insufficient in addressing
complex and evolving attack scenarios, thus emphasizing the need
for automated vulnerability assessment methods and models. Previous
SVA studies have introduced effective methods based on vulnerability
descriptions, source code, or code commits.

Vulnerability description-based SVA. A vulnerability description
provides a detailed account of software flaws, including their nature,
potential impact, and the conditions under which they can be exploited.
Prior research indicates that vulnerability descriptions hold valuable
information and are practical tools for predicting vulnerability traits
in SVA tasks. For example, Han et al. (2017) transformed the SVA
task into a text classification task by capturing word-level features
through word embeddings, then designed a shallow CNN to capture
sentence-level features for severity classification. Sun et al. (2023b)
argued that some elements in vulnerability descriptions are extrane-
ous, proposing instead using essential vulnerability elements rather
than full descriptions for severity assessment. Babalau et al. (2021)
introduced a deep learning approach that predicts severity scores and
metrics solely based on textual vulnerability descriptions. Their method
employs a multi-task learning framework and a pre-trained BERT model
to generate word vector representations, enhancing the prediction of
vulnerability severity. Le et al. (2019) proposed a systematic method
that combines character and word features, using time-based k-fold
cross-validation for model selection and vulnerability description-based
severity classification. Gong et al. (2019) suggested a multi-task ma-
chine learning approach that jointly predicts multiple vulnerability
features from descriptions, eliminating the need for balanced data.

Source code-based SVA. In addition to using vulnerability descrip-
tions, recent studies have also explored approaches to analyzing source
code related to vulnerabilities. For example, Le and Babar (2022)
investigated machine learning (ML) models for automating function-
level SVA tasks. Their approach used fine-grained vulnerable code
statements in the assessment model, combining vulnerable and non-
vulnerable statements to capture context around vulnerable code and
gather additional information about vulnerabilities from surrounding
code. Hao et al. (2023) focused on constructing function call graphs
centered on vulnerable functions. By leveraging a graph attention
neural network algorithm, they extracted key vulnerability features
from function call graphs and vulnerability attribute graphs, utilizing
information from both graphs to classify vulnerability severity.

Commit-based SVA. In recent years, commit-based vulnerability
assessment has gained attention. Le et al. (2021) proposed the DeepCVA
model, a deep multi-task learning approach that directly predicts CVSS
metrics from changes in vulnerability-contributing commits. DeepCVA
extracts features from code changes and their surrounding context by
13
integrating attention mechanisms and convolutional gated recurrent
units, eliminating reliance on often-delayed vulnerability reports. This
approach enhances assessment efficiency and enables developers to
prioritize vulnerability remediation tasks more effectively at earlier
stages of the development lifecycle.

Traditional approaches to software vulnerability assessment often
rely on centralized models that require aggregating sensitive code or
vulnerability descriptions in a single location for analysis. This practice
increases the risk of data breaches and violates stringent data privacy
regulations, particularly in industrial settings where source code and
vulnerability data are highly confidential. To address these privacy
concerns, federated learning paradigms have emerged as a promis-
ing solution. By enabling collaborative training across organizations
without sharing raw data, federated learning ensures data privacy
while facilitating cross-organizational collaboration for vulnerability
assessment.

Recent advancements in privacy-preserving federated learning have
further enhanced its applicability in SVA tasks. Yazdinejad et al.
(2024a) proposed a privacy-preserving FL framework that integrates
Additive Homomorphic Encryption and a Gaussian Mixture Model to
detect malicious gradients with low computational overhead, enhanc-
ing robustness against adversarial attacks. Beyond cryptographic ap-
proaches, Yazdinejad et al. (2024b) introduced a hybrid FL framework
designed to handle irregular user participation and varying data quality
in next-generation IoT environments. By combining synchronous and
asynchronous update mechanisms, their approach improves FL perfor-
mance in highly dynamic network settings. Meanwhile, Namakshenas
et al. (2024) focused on enhancing FL explainability in industrial cyber–
physical systems. Their interpretation-based FL model employs Shapley
values alongside Additive Homomorphic Encryption, enabling both
privacy preservation and fairness in federated model training. These
studies highlight the importance of integrating security, adaptabil-
ity, and explainability in privacy-preserving FL frameworks for SVA.
However, existing methods primarily address communication efficiency
and data privacy, leaving optimization challenges in heterogeneous FL
environments underexplored.

In addition to privacy challenges, existing SVA methods often fo-
cus on single modalities, such as vulnerability descriptions or source
code, neglecting the structural and contextual information embedded
within code. These limitations hinder the model’s ability to capture
the complex characteristics of software vulnerabilities fully. Recent ad-
vancements in multimodal learning have shown promise in addressing
these limitations. For instance, as highlighted by Shiri Harzevili et al.
(2024), hybrid data sources and graph-based input representations are
increasingly used in software vulnerability detection, with 39.1% of
studies utilizing hybrid sources and 57.2% employing graph-based tech-
niques. These approaches demonstrate the importance of combining
multiple modalities, such as source code, graph structures, and textual
features, to improve vulnerability assessment accuracy.

To address these challenges, we propose a multimodal approach
that integrates structural, lexical, and comment-based features. Specif-
ically, we use a graph attention network (GAT) to capture local struc-
tural relationships, a convolutional neural network (CNN) to extract
global structural patterns, and the pre-trained language model CodeT5
to provide lexical insights by treating code as plain text. Developer
comments are also incorporated to enrich contextual understanding.
To combine these modalities effectively, we employ a self-attention
weighted fusion mechanism that dynamically adjusts the contribution
of each modality based on its relevance. This comprehensive integra-
tion enables a deeper understanding of vulnerabilities, improving the
accuracy and efficiency of vulnerability assessment while addressing
the dual challenges of privacy protection and feature representation.

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
8. Conclusion

This study proposes a multimodal vulnerability assessment method
based on a federated learning framework (FedMVA), effectively im-
proving performance by integrating graph structure information, lexical
features of code, and code comments. In the design of the method, we
introduce a weighted variance minimization loss function to optimize
the alignment between local and global models and incorporate a
momentum-based weight allocation strategy along with a dynamic
learning rate mechanism to further enhance the model’s robustness
and adaptability in heterogeneous data environments. Through ab-
lation experiments, we have validated that our multimodal fusion
strategy significantly improves model performance within the federated
learning framework, demonstrating its advantages in handling complex
vulnerability assessment tasks.

In the future, we aim to improve our proposed method by integrat-
ing advanced federated learning techniques, including incorporating
large language models (Achiam et al., 2023; Su et al., 2021) to enhance
the model’s ability to process and understand complex textual data.
Furthermore, we will focus on further validating FedMVA in more chal-
lenging distributed environments to assess its scalability and robustness
in real-world applications.

CRediT authorship contribution statement

Qingyun Liu: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Data curation. Xiaolin Ju: Writ-
ing – review & editing, Supervision, Methodology, Investigation, Con-
ceptualization. Xiang Chen: Writing – review & editing, Validation, Su-
pervision, Methodology, Investigation, Conceptualization. Lina Gong:
Writing – review & editing, Supervision, Methodology, Investigation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

References

Abyane, A.E., Zhu, D., Souza, R., Ma, L., Hemmati, H., 2023. Towards understanding
quality challenges of the federated learning for neural networks: a first look from
the lens of robustness. Empir. Softw. Eng. 28 (2), 44.

Acar, D.A.E., Zhao, Y., Navarro, R.M., Mattina, M., Whatmough, P.N., Saligrama, V.,
2021. Federated learning based on dynamic regularization. arXiv preprint arXiv:
2111.04263.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al., 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S., 2019. Federated learning
with personalization layers. arXiv preprint arXiv:1912.00818.

Babalau, I., Corlatescu, D., Grigorescu, O., Sandescu, C., Dascalu, M., 2021. Severity
prediction of software vulnerabilities based on their text description. In: 2021
23rd International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. SYNASC, IEEE, pp. 171–177.

Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J., 2017. Machine learning with
adversaries: Byzantine tolerant gradient descent. Adv. Neural Inf. Process. Syst. 30.

Cai, Z., Cai, Y., Chen, X., Lu, G., Pei, W., Zhao, J., 2024. CSVD-TF: Cross-project
software vulnerability detection with TrAdaBoost by fusing expert metrics and
semantic metrics. J. Syst. Softw. 213, 112038.

Chen, T., 2015. Xgboost: extreme gradient boosting. R Packag. Version 0. 4-2 1 (4).
Chen, X., Wu, S.Z., Hong, M., 2020. Understanding gradient clipping in private sgd: A

geometric perspective. Adv. Neural Inf. Process. Syst. 33, 13773–13782.
Cortes, C., 1995. Support-vector networks. Mach. Learn.
14
Dissanayake, N., Jayatilaka, A., Zahedi, M., Babar, M.A., 2022. Software security patch
management-A systematic literature review of challenges, approaches, tools and
practices. Inf. Softw. Technol. 144, 106771.

Elder, S., Rahman, M.R., Fringer, G., Kapoor, K., Williams, L., 2024. A survey on
software vulnerability exploitability assessment. ACM Comput. Surv. 56 (8), 1–41.

Fan, J., Li, Y., Wang, S., Nguyen, T.N., 2020. AC/C++ code vulnerability dataset
with code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. pp. 508–512.

Feutrill, A., Ranathunga, D., Yarom, Y., Roughan, M., 2018. The effect of common
vulnerability scoring system metrics on vulnerability exploit delay. In: 2018 Sixth
International Symposium on Computing and Networking. CANDAR, IEEE, pp. 1–10.

Fredrikson, M., Jha, S., Ristenpart, T., 2015. Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. pp. 1322–1333.

Gong, X., Xing, Z., Li, X., Feng, Z., Han, Z., 2019. Joint prediction of multiple
vulnerability characteristics through multi-task learning. In: 2019 24th International
Conference on Engineering of Complex Computer Systems. ICECCS, IEEE, pp.
31–40.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A.,
Fu, S., et al., 2020. Graphcodebert: Pre-training code representations with data
flow. arXiv preprint arXiv:2009.08366.

Han, Z., Li, X., Xing, Z., Liu, H., Feng, Z., 2017. Learning to predict severity of software
vulnerability using only vulnerability description. In: 2017 IEEE International
Conference on Software Maintenance and Evolution. ICSME, IEEE, pp. 125–136.

Hanzely, F., Richtárik, P., 2020. Federated learning of a mixture of global and local
models. arXiv preprint arXiv:2002.05516.

Hao, J., Luo, S., Pan, L., 2023. A novel vulnerability severity assessment method for
source code based on a graph neural network. Inf. Softw. Technol. 161, 107247.

Hassan, M.U., Rehmani, M.H., Chen, J., 2019. Differential privacy techniques for cyber
physical systems: A survey. IEEE Commun. Surv. Tutor. 22 (1), 746–789.

Ho, T.K., 1995. Random decision forests. In: Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, IEEE, pp. 278–282.

Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X., 2022. Membership inference
attacks on machine learning: A survey. ACM Comput. Surv. 54 (11s), 1–37.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017.
Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf.
Process. Syst. 30.

Khraisat, A., Alazab, A., Singh, S., Jan, T., Gomez, Jr., A., 2024. Survey on feder-
ated learning for intrusion detection system: Concept, architectures, aggregation
strategies, challenges, and future directions. ACM Comput. Surv. 57 (1), 1–38.

Le, T.H.M., Babar, M.A., 2022. On the use of fine-grained vulnerable code statements for
software vulnerability assessment models. In: Proceedings of the 19th International
Conference on Mining Software Repositories. pp. 621–633.

Le, T.H., Chen, H., Babar, M.A., 2022. A survey on data-driven software vulnerability
assessment and prioritization. ACM Comput. Surv. 55 (5), 1–39.

Le, T.H.M., Hin, D., Croft, R., Babar, M.A., 2021. Deepcva: Automated commit-level
vulnerability assessment with deep multi-task learning. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering. ASE, IEEE, pp.
717–729.

Le, T.H.M., Sabir, B., Babar, M.A., 2019. Automated software vulnerability assessment
with concept drift. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories. MSR, IEEE, pp. 371–382.

Li, L., Fan, Y., Tse, M., Lin, K.-Y., 2020a. A review of applications in federated learning.
Comput. Ind. Eng. 149, 106854.

Li, Q., He, B., Song, D., 2021. Model-contrastive federated learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10713–10722.

Li, T., Sahu, A.K., Talwalkar, A., Smith, V., 2020b. Federated learning: Challenges,
methods, and future directions. IEEE Signal Process. Mag. 37 (3), 50–60.

Liu, C., Chen, X., Li, X., Xue, Y., 2024. Making vulnerability prediction more practical:
Prediction, categorization, and localization. Inf. Softw. Technol. 171, 107458.

Lu, G., Ju, X., Chen, X., Pei, W., Cai, Z., 2024. GRACE: Empowering LLM-based software
vulnerability detection with graph structure and in-context learning. J. Syst. Softw.
212, 112031.

Ma, X., Zhu, J., Lin, Z., Chen, S., Qin, Y., 2022. A state-of-the-art survey on solving
non-IID data in federated learning. Future Gener. Comput. Syst. 135, 244–258.

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017.
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics. PMLR, pp. 1273–1282.

Namakshenas, D., Yazdinejad, A., Dehghantanha, A., Parizi, R.M., Srivastava, G., 2024.
IP2FL: Interpretation-based privacy-preserving federated learning for industrial
cyber-physical systems. IEEE Trans. Ind. Cyber-Phys. Syst.

Nasr, M., Shokri, R., Houmansadr, A., 2018. Machine learning with membership
privacy using adversarial regularization. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 634–646.

Ruiz, L., Gama, F., Ribeiro, A., 2020. Gated graph recurrent neural networks. IEEE
Trans. Signal Process. 68, 6303–6318.

Russell, S.J., Norvig, P., 2016. Artificial Intelligence: A Modern Approach. Pearson.
Sahar, S., Younas, M., Khan, M.M., Sarwar, M.U., 2024. DP-CCL: A supervised

contrastive learning approach using CodeBERT model in software defect prediction.
IEEE Access 12, 22582–22594.

http://refhub.elsevier.com/S0164-1212(25)00137-2/sb1
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb1
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb1
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb1
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb1
http://arxiv.org/abs/2111.04263
http://arxiv.org/abs/2111.04263
http://arxiv.org/abs/2111.04263
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1912.00818
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb5
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb6
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb6
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb6
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb7
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb7
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb7
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb7
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb7
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb8
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb9
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb9
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb9
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb10
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb11
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb11
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb11
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb11
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb11
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb12
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb12
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb12
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb13
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb13
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb13
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb13
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb13
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb14
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb14
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb14
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb14
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb14
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb15
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb15
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb15
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb15
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb15
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb16
http://arxiv.org/abs/2009.08366
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb18
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb18
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb18
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb18
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb18
http://arxiv.org/abs/2002.05516
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb20
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb20
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb20
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb21
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb21
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb21
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb22
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb22
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb22
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb23
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb23
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb23
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb24
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb24
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb24
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb24
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb24
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb25
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb25
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb25
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb25
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb25
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb26
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb26
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb26
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb26
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb26
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb27
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb27
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb27
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb28
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb29
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb29
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb29
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb29
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb29
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb30
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb30
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb30
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb31
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb31
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb31
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb31
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb31
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb32
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb32
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb32
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb33
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb33
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb33
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb34
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb34
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb34
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb34
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb34
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb35
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb35
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb35
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb36
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb36
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb36
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb36
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb36
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb37
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb37
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb37
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb37
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb37
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb38
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb38
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb38
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb38
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb38
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb39
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb39
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb39
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb40
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb41
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb41
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb41
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb41
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb41

Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469
SARD, S., 2020. Software assurance reference dataset project.
Shiri Harzevili, N., Boaye Belle, A., Wang, J., Wang, S., Jiang, Z.M., Nagappan, N.,

2024. A systematic literature review on automated software vulnerability detection
using machine learning. ACM Comput. Surv. 57 (3), 1–36.

Shokri, R., Stronati, M., Song, C., Shmatikov, V., 2017. Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and
Privacy. SP, IEEE, pp. 3–18.

Song, J., Namiot, D., 2022. A survey of the implementations of model inversion
attacks. In: International Conference on Distributed Computer and Communication
Networks. Springer, pp. 3–16.

Steinhardt, J., Koh, P.W.W., Liang, P.S., 2017. Certified defenses for data poisoning
attacks. Adv. Neural Inf. Process. Syst. 30.

Su, J., Cao, J., Liu, W., Ou, Y., 2021. Whitening sentence representations for better
semantics and faster retrieval. arXiv preprint arXiv:2103.15316.

Sun, W., Fang, C., Miao, Y., You, Y., Yuan, M., Chen, Y., Zhang, Q., Guo, A., Chen, X.,
Liu, Y., et al., 2023a. Abstract syntax tree for programming language understanding
and representation: How far are we?. arXiv preprint arXiv:2312.00413.

Sun, X., Ye, Z., Bo, L., Wu, X., Wei, Y., Zhang, T., Li, B., 2023b. Automatic software
vulnerability assessment by extracting vulnerability elements. J. Syst. Softw. 204,
111790.

Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., Morari, A., 2020. Learning to map
source code to software vulnerability using code-as-a-graph. arXiv preprint arXiv:
2006.08614.

Tan, A.Z., Yu, H., Cui, L., Yang, Q., 2022. Towards personalized federated learning.
IEEE Trans. Neural Netw. Learn. Syst. 34 (12), 9587–9603.

Wang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859.

Xu, Z., Zhang, Y., Andrew, G., Choquette-Choo, C.A., Kairouz, P., McMahan, H.B.,
Rosenstock, J., Zhang, Y., 2023. Federated learning of gboard language models
with differential privacy. arXiv preprint arXiv:2305.18465.

Yamamoto, H., Wang, D., Rajbahadur, G.K., Kondo, M., Kamei, Y., Ubayashi, N.,
2023. Towards privacy preserving cross project defect prediction with federated
learning. In: 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering. SANER, IEEE, pp. 485–496.

Yang, Y., Hu, X., Gao, Z., Chen, J., Ni, C., Xia, X., Lo, D., 2024. Federated learning for
software engineering: A case study of code clone detection and defect prediction.
IEEE Trans. Softw. Eng..

Yang, Q., Liu, Y., Chen, T., Tong, Y., 2019. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol. (TIST) 10 (2), 1–19.

Yazdinejad, A., Dehghantanha, A., Karimipour, H., Srivastava, G., Parizi, R.M., 2024a.
A robust privacy-preserving federated learning model against model poisoning
attacks. IEEE Trans. Inf. Forensics Secur.

Yazdinejad, A., Dehghantanha, A., Srivastava, G., Karimipour, H., Parizi, R.M.,
2024b. Hybrid privacy preserving federated learning against irregular users in
next-generation Internet of Things. J. Syst. Archit. 148, 103088.

Ye, M., Fang, X., Du, B., Yuen, P.C., Tao, D., 2023. Heterogeneous federated learning:
State-of-the-art and research challenges. ACM Comput. Surv. 56 (3), 1–44.

Youm, H.Y., 2020. An overview of de-identification techniques and their standardization
directions. IEICE Trans. Inf. Syst. 103 (7), 1448–1461.

Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X., Niyato, D., Yang, Q., 2020.
A fairness-aware incentive scheme for federated learning. In: Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society. pp. 393–399.

Zeng, C., Yu, Y., Li, S., Xia, X., Wang, Z., Geng, M., Bai, L., Dong, W., Liao, X.,
2023. degraphcs: Embedding variable-based flow graph for neural code search.
ACM Trans. Softw. Eng. Methodol. 32 (2), 1–27.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y., 2021. A survey on federated learning.
Knowl.-Based Syst. 216, 106775.

Zhang, C., Yu, T., Liu, B., Xin, Y., 2024. Vulnerability detection based on federated
learning. Inf. Softw. Technol. 167, 107371.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Adv. Neural Inf. Process. Syst. 32.
15
Zhou, J., Pacheco, M., Wan, Z., Xia, X., Lo, D., Wang, Y., Hassan, A.E., 2021. Finding
a needle in a haystack: Automated mining of silent vulnerability fixes. In: 2021
36th IEEE/ACM International Conference on Automated Software Engineering. ASE,
IEEE, pp. 705–716.

Zhuo, H.H., Feng, W., Lin, Y., Xu, Q., Yang, Q., 2019. Federated deep reinforcement
learning. arXiv preprint arXiv:1901.08277.

Qingyun Liu is currently pursuing the Master degree at the School of Artificial
Intelligence and Computer Science, Nantong University. Her research interests include
vulnerability assessment and federated learning.

Xiaolin Ju (Member, IEEE) was born in April 1976. He received the B.S. degree in
information science from Wuhan University, in 1998, the M.Sc. degree in computer
science from Southeast University, in 2004, and the Ph.D. degree in computer science
from the Chinese University of Mining Technology, in 2014. He is currently an
Associate Professor with the School of Information Science and Technology, Nantong
University, Nantong, China. His current research interests include software testing, such
as collective intelligence, deep learning testing and optimization, and software defects
analysis.

Xiang Chen received the B.Sc. degree in the school of management from Xi’an Jiaotong
University, China in 2002. Then he received his M.Sc., and Ph.D. degrees in computer
software and theory from Nanjing University, China in 2008 and 2011 respectively.
He is currently an Associate Professor at the Department of Information Science and
Technology, Nantong University, Nantong, China. He has authored or co-authored more
than 120 papers in refereed journals or conferences, such as IEEE Transactions on
Software Engineering, ACM Transactions on Software Engineering and Methodology,
Empirical Software Engineering, Information and Software Technology, Journal of
Systems and Software, IEEE Transactions on Reliability, Journal of Software: Evolution
and Process, Software - Practice and Experience, Automated Software Engineering,
Journal of Computer Science and Technology, IET Software, Software Quality Journal,
Knowledge-based Systems, International Conference on Software Engineering (ICSE),
The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), International Conference Automated
Software Engineering (ASE), International Conference on Software Maintenance and
Evolution (ICSME), International Conference on Program Comprehension (ICPC), and
International Conference on Software Analysis, Evolution and Reengineering (SANER).
His research interests include software engineering, in particular software testing
and maintenance, software repository mining, and empirical software engineering. He
received two ACM SIGSOFT distinguished paper awards in ICSE 2021 and ICPC 2023.
He is the editorial board member of Information and Software Technology. More
information about him can be found at: https://smartse.github.io/index.html.

Lina Gong is an associate professor at the School of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China. She received
her Ph.D. degree (thesis: Study on Cross-Project Defect Prediction Based on Transfer
Learning) in Computer Software and Theory from China University of Mining and
Technology in December 2020. From September 2019 to September 2020, she studied
as a visiting researcher in the Software Analysis and Intelligence Lab (SAIL), School
of Computing, Queen’s University, Canada, under the supervision of Prof. Dr. Ahmed
Hassan. Her research focuses on helping developers gain insights from messy data
recorded in software repositories and developing machine learning (ML)-enabled
software development techniques (e.g., ML for software defects, ML for identifier
normalization, ML for issue classification) to improve the efficiency and productivity
of developers. These techniques aim to help developers find defects more precisely and
quickly, as well as make better data-informed decisions. The foundation of her research
has been published in prestigious journals and conferences, including IEEE Transactions
on Software Engineering (TSE), ACM Transactions on Software Engineering and
Methodology (TOSEM), International Conference on Automated Software Engineering
(ASE), IEEE Transactions on Reliability, and Journal of Software: Evolution and Process.

http://refhub.elsevier.com/S0164-1212(25)00137-2/sb42
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb43
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb43
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb43
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb43
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb43
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb44
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb44
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb44
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb44
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb44
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb45
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb45
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb45
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb45
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb45
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb46
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb46
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb46
http://arxiv.org/abs/2103.15316
http://arxiv.org/abs/2312.00413
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb49
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb49
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb49
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb49
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb49
http://arxiv.org/abs/2006.08614
http://arxiv.org/abs/2006.08614
http://arxiv.org/abs/2006.08614
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb51
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb51
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb51
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2305.18465
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb54
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb55
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb55
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb55
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb55
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb55
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb56
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb56
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb56
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb57
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb57
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb57
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb57
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb57
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb58
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb58
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb58
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb58
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb58
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb59
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb59
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb59
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb60
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb60
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb60
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb61
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb61
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb61
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb61
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb61
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb62
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb62
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb62
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb62
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb62
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb63
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb63
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb63
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb64
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb64
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb64
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb65
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb65
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb65
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb65
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb65
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://refhub.elsevier.com/S0164-1212(25)00137-2/sb66
http://arxiv.org/abs/1901.08277
https://smartse.github.io/index.html

	FedMVA: Enhancing software vulnerability assessment via federated multimodal learning
	Introduction
	Background
	Software Vulnerability Assessment
	Federated Learning Model

	Methodology
	Data Preprocessing Stage
	Federated Training and Optimization phase
	Vulnerability Assessment Stage

	Experimental Setup
	Research Questions
	Experimental Subject
	Baseline Methods
	Performance Metrics
	Implementation Details

	Experimental Results
	RQ1: How does FedMVA perform compared to state-of-the-art baselines in SVA?
	RQ2: How do different input modality combinations impact the performance of FedMVA?
	RQ3: How does federated learning influence the effectiveness of SVA compared to conventional training paradigms?
	RQ4: How do different federated learning settings affect the performance of FedMVA?
	RQ5: How does the proposed multimodal fusion strategy impact the performance of FedMVA and the interaction across modalities?

	Discussion
	Parameter Analysis
	Threats to Validity

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

