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 A B S T R A C T

Software Vulnerability Assessment plays a crucial role in identifying and evaluating security vulnerabilities 
in software systems and prioritizing their resolution. However, as concerns about data privacy and security 
continue to grow, traditional vulnerability assessment methods struggle to balance effectiveness with privacy 
protection, particularly in heterogeneous data environments. To address this challenge, we propose a novel 
federated multimodal vulnerability assessment framework (FedMVA), designed with privacy preservation 
at its core. FedMVA leverages federated learning, enabling local model training without sharing data, 
thereby protecting sensitive information while ensuring efficient vulnerability evaluation. Our framework 
also incorporates multimodal data, including code structure, lexical features, and developer comments, fully 
utilizing the complementary nature of these modalities. We introduce a weighted variance minimization loss 
function to improve the alignment between local and global models and adopt a momentum-based weight 
allocation strategy with a dynamic learning rate mechanism to enhance the model’s robustness and adaptability 
across diverse data environments. Extensive ablation studies demonstrate that FedMVA outperforms existing 
methods in multiple performance metrics, significantly improving the precision of vulnerability assessment. 
This work highlights the advantages of integrating multimodal data within a federated learning framework, 
providing an innovative and promising solution for effective and privacy-preserving vulnerability assessment 
in complex software systems.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Software vulnerabilities pose significant threats to the security and 
reliability of computer systems, potentially leading to substantial eco-
nomic losses. Effective automated detection methods (Liu et al., 2024; 
Lu et al., 2024; Cai et al., 2024) are crucial for mitigating these risks 
and ensuring the stability of digital ecosystems. Consequently, software 
vulnerability assessment (SVA) (Le et al., 2022; Dissanayake et al., 
2022; Elder et al., 2024) has become an essential part of software 
development and maintenance, aiming to identify vulnerabilities, accu-
rately assess their severity, and ensure timely remediation. However, 
due to the complexity of the software and the limited resources for 
remediation, it is not feasible to address all vulnerabilities immedi-
ately. Thus, it is necessary to prioritize the remediation of high-risk 
vulnerabilities. The Common Vulnerability Scoring System (CVSS) is 
a widely used assessment framework that generates severity scores 
based on various vulnerability attributes, helping developers prioritize 
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remediation efforts. However, in handling many vulnerability reports, 
relying on expert knowledge for CVSS scoring often struggles to keep 
pace with the rate of new vulnerabilities. Zhou et al. (2021) and Feutrill 
et al. (2018) found that the time between the initial disclosure of a 
vulnerability and the update of its CVSS score could span several hun-
dred days, preventing high-risk vulnerabilities from being addressed 
promptly. Therefore, there is an urgent need for automated assessment 
tools that assist developers in effectively prioritizing vulnerabilities, 
reducing response times, and mitigating risks.

Current SVA methods primarily rely on centralized data analysis 
models, which predict the severity of vulnerabilities using informa-
tion such as vulnerability descriptions (Han et al., 2017; Sun et al., 
2023b; Babalau et al., 2021; Le et al., 2019; Gong et al., 2019), source 
code (Le and Babar, 2022; Hao et al., 2023), or code commits (Le 
et al., 2021). Although centralized approaches improve model accuracy 
and generalization by aggregating data from multiple sources, they 
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face significant privacy protection and sharing challenges. Yang et al. 
(2024) pointed out that industrial data, especially source code, is 
often inaccessible to researchers due to strict privacy policies, signif-
icantly limiting the applicability of centralized methods in industrial 
settings. Furthermore, organizations are reluctant to share sensitive 
data out of concern for potential data breaches that could harm their 
commercial interests. These issues make centralized analysis unsuit-
able for distributed environments, mainly where data privacy and 
cross-organizational collaboration are critical.

To address these limitations, federated learning has emerged as 
a promising distributed machine learning paradigm. It enables par-
ticipants to train models locally and share only model parameters, 
eliminating the need to transfer raw data. Federated learning effectively 
addresses the following challenges:

• Data Privacy Protection (Khraisat et al., 2024; Xu et al., 2023). 
Federated learning follows the principle of ‘‘data stays local, 
models move’’. Each client trains a local model and only shares 
model updates, reducing privacy risks.

• Reducing Data Sharing Barriers. Federatedlearning enables or-
ganizations to retain data privacy while leveraging patterns from 
other participants’ data, enhancing model performance and reduc-
ing the barriers to data sharing.

• Enhancing Model Generalizability. By utilizing data from dif-
ferent organizations, federated learning can learn diverse vul-
nerability patterns, improving model generalizability, which is 
essential in vulnerability assessment.

Although federated learning mitigates centralized methods’ privacy 
and data-sharing challenges, traditional SVA approaches often rely on 
single-modal data, such as vulnerability descriptions or source code. 
While vulnerability descriptions may not raise privacy concerns, source 
code and developer annotations can contain sensitive information. 
Relying on a single-modal approach fails to capture the multifaceted 
nature of vulnerabilities, limiting the accuracy and comprehensive-
ness of the assessments. To address this limitation, we propose an 
innovative federated multimodal vulnerability assessment framework 
(FedMVA), which combines federated learning with multimodal data 
fusion. FedMVA integrates lexical features of code, structured graph 
representations (e.g., control flow graphs Zeng et al., 2023, data flow 
graphs Guo et al., 2020 and abstract syntax trees Sun et al., 2023a), 
and developer annotations to exploit the complementary strengths of 
these modalities fully.

To support this framework, we constructed a high-quality SVA 
dataset aligned with the CVSS standard, incorporating three modal-
ities: lexical features, structured graph information, and developer 
annotations. We removed empty lines, leading spaces, and irrelevant 
comments during data preprocessing to simplify the code structure 
(as detailed in Section 4.2). Experimental results demonstrate that 
FedMVA achieves a strong balance between privacy protection and 
assessment performance, offering an innovative and promising solution 
for practical vulnerability assessment in complex software systems.

We validated the effectiveness of FedMVA through systematic com-
parisons with several state-of-the-art baseline methods. These baseline 
methods include single-modal and multimodal models, representing 
mainstream vulnerability assessment approaches. Experimental results 
demonstrate that FedMVA achieves superior performance across all 
key metrics, including accuracy, recall, and F1-score, and consistently 
improves in various evaluation scenarios. To further examine the con-
tributions of individual components, we conducted ablation studies 
by progressively removing the federated learning framework, multi-
modal inputs, or the feature fusion module. The results confirm that 
each component is crucial to the overall performance. Specifically, 
the federated learning framework ensures data privacy and enhances 
the model’s generalization capabilities. The multimodal inputs, which 
integrate code structure, lexical features, and developer annotations, 
2 
enable the model to capture vulnerability characteristics from multiple 
dimensions. Moreover, the feature fusion strategy effectively leverages 
the complementary strengths of these modalities, significantly improv-
ing assessment accuracy. The novelty and contributions of this study 
can be summarized as follows:

• Methodology. We propose the first SVA framework integrating 
tri-modal data fusion with federated learning. FedMVA leverages 
federated learning models and incorporates tri-modal information 
with a tailored fusion strategy to enhance SVA performance.

• Dataset. We constructed a high-quality SVA dataset that inte-
grates structured information, lexical features, and annotations 
from source code. This dataset provides a robust foundation for 
multimodal research.

• Evaluation. We evaluated the proposed framework on the con-
structed dataset, demonstrating that FedMVA outperforms state-
of-the-art SVA baseline models, with improvements of at least 
9.19%, 8.66%, and 24.75% in accuracy, F1 score, and MCC, 
respectively. Ablation studies further validate the effectiveness of 
our customized FedMVA framework.

We share data, code, and detailed results at our project home 
to encourage follow-up studies for applying decentralized learning 
to software vulnerability assessment: https://github.com/Liuqy1213/
FedMVA.

The remainder of this paper is organized as follows: Section 2 
introduces the background and motivation for this study, focusing 
on Software Vulnerability Assessment (SVA) and federated learning. 
Section 3 details the proposed FedMVA framework and its compo-
nents. Section 4 describes the experimental setup, including datasets, 
performance metrics, and baseline methods employed in this research. 
Section 5 reports the study results, accompanied by an analysis of the 
formulated research questions. Section 6 discusses key findings, their 
implications, and the limitations of the proposed approach. Section 7 
reviews the related literature, emphasizing the novelty and contri-
butions of this study. Finally, Section 8 concludes the research by 
summarizing the findings and proposing potential directions for future 
work.

2. Background

2.1. Software vulnerability assessment

As software systems become increasingly complex and intercon-
nected, the number and complexity of software vulnerabilities (Le et al., 
2022) have risen dramatically, posing unprecedented challenges to 
system security. To address these challenges, Software Vulnerability 
Assessment (SVA) has become a core tool for ensuring system secu-
rity. SVA enables developers and security experts to optimize resource 
allocation by identifying, assessing, and prioritizing vulnerabilities, 
thereby reducing the risk of system attacks. Currently, SVA largely 
relies on publicly available database resources, such as the National 
Vulnerability Database (NVD)1 and the Common Vulnerabilities and Ex-
posures (CVE) repository. These databases provide detailed descriptions 
of vulnerabilities and use the Common Vulnerability Scoring System 
(CVSS)2 to rate the severity of vulnerabilities, aiding developers and 
security teams in determining remediation priorities. CVSS is among 
the most widely applied frameworks in SVA, offering standardized 
evaluation criteria for developers by quantifying multiple vulnerability 
characteristics.

CVSS comprises three main components: Base, Temporal, and En-
vironmental Metrics. The Base Metrics evaluate the intrinsic charac-
teristics of a vulnerability and are regarded as the most critical part 

1 https://nvd.nist.gov/.
2 https://www.first.org/cvss/.
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of the scoring process. Temporal Metrics reflect changes in vulnerabil-
ity characteristics over time, such as the availability of exploit code 
or patches. Environmental Metrics allow organizations to customize 
vulnerability assessments based on their specific operational contexts. 
Although these metrics provide a comprehensive perspective for assess-
ing vulnerabilities, in practice, data for Temporal and Environmental 
Metrics are often difficult to extract directly from source code or textual 
descriptions. Consequently, most studies and applications primarily 
focus on Base Metrics. The Base Metrics of CVSS version 2 (CVSS 
v2) include seven key indicators: Access Vector, Access Complexity, 
Authentication, Confidentiality Impact, Integrity Impact, Availability 
Impact, and Exploitability. These indicators collectively determine the 
severity of a vulnerability, which is ranked into three levels: Low 
(0.1–3.9), Medium (4.0–6.9), and High (7.0–10.0). These categories 
assist developers and security teams in effectively prioritizing remedia-
tion efforts, enabling them to allocate limited resources to address the 
most critical vulnerabilities.

2.2. Federated learning model

With the widespread adoption of distributed systems and cross-
organizational collaboration, achieving effective collaborative model 
training while safeguarding data privacy has become a critical chal-
lenge. To address this, Google introduced Federated Learning (FL)
(Hanzely and Richtárik, 2020; Zhuo et al., 2019; Yu et al., 2020) in 
2016 as an advanced distributed learning method designed to enable 
secure model training across devices without transferring raw data. FL 
facilitates local model training on multiple clients, sharing only model 
parameters to prevent data leakage. Due to its robust capabilities, 
FL has been widely adopted in fields such as autonomous driving, 
facial recognition, and system anomaly detection, attracting significant 
attention (Zhang et al., 2021) from both academia and industry for its 
potential applications.

However, the standard Federated Learning approach, FedAvg
(McMahan et al., 2017), faces significant challenges when dealing with 
data heterogeneity (non-IID data) (Ma et al., 2022) across clients. 
This often leads to reduced generalization ability of the global model, 
making it challenging to meet the specific needs of individual par-
ticipants. To address this limitation, Personalized Federated Learning 
(PFL) (Tan et al., 2022) was introduced. PFL aims to generate per-
sonalized models for each client by combining global collaborative 
learning with client-specific adaptation, thus better accommodating the 
unique data distributions of individual clients. Most PFL approaches 
adopt parameter decoupling, dividing the model into two components: 
a shared feature extractor and a client-specific classifier. For instance, 
the FedPer method (Arivazhagan et al., 2019) retains client-specific 
classifiers while sharing a common feature extractor, striking a balance 
between global knowledge sharing and local adaptation to enhance 
model personalization significantly.

Recent studies have highlighted the potential of Federated Learning 
in software engineering tasks (Li et al., 2020b; Yang et al., 2019; 
Abyane et al., 2023), including code analysis, requirements prediction, 
debugging, and refactoring.  Yang et al. (2024) proposed a data ag-
gregation strategy that dynamically adjusts based on data scale, class 
balance, and the learnability of minority classes, focusing on tasks 
including code clone detection and defect prediction to improve model 
performance on imbalanced and sensitive industrial datasets. Zhang 
et al. (2024) introduced a horizontally federated learning framework 
for vulnerability detection, addressing privacy concerns in multi-party 
data sharing while enhancing detection accuracy. Similarly, Yamamoto 
et al. (2023) developed a federated cross-project defect prediction 
model using logistic regression for distributed training, ensuring project 
data privacy by avoiding raw data sharing. Building on these advance-
ments, our study develops a federated vulnerability assessment method 
based on FedPer. By integrating code structure, lexical features and 
comments, our approach offers a comprehensive capture of vulnera-
bility characteristics, thereby enhancing the accuracy and efficiency of 
vulnerability assessment.
3 
3. Methodology

The overall framework of our proposed FedMVA is presented in
Fig.  1, which consists of three main stages: data preprocessing stage,
federated training and optimization phase, and vulnerability as-
sessment stage. ¬In the data preprocessing stage, we constructed 
a high-quality software vulnerability assessment (SVA) dataset com-
prising source code, lexical information, and comment information. 
Graph-structured information was extracted to capture the syntax and 
dependency relationships of the code, while lexical and comment infor-
mation was treated as textual data inputs. These were processed using 
the pre-trained model CodeT5 (Wang et al., 2021) to extract semantic 
features, which were then combined with label information to generate 
a unified multi-modal representation. In the federated training and 
optimization phase of the proposed FedMVA framework, we enhanced 
tri-modal data integration through self-attention weighted fusion. We 
introduced three key improvements, including a weighted variance 
minimization loss to align global and local models, a momentum-
based weight allocation strategy to optimize client contributions, and a 
dynamic learning rate mechanism to handle heterogeneous data, all of 
which improve the robustness and accuracy of the global model. ®In 
the vulnerability assessment stage, we leveraged the complementary 
strengths of the tri-modal information, significantly improving the 
model’s evaluation performance and practical applicability.

3.1. Data preprocessing stage

We preprocessed the data at this stage to construct a high-quality 
dataset suitable for software vulnerability assessment. Based on the 
federated learning framework, we emphasize data distribution and 
privacy protection. To this end, we applied de-identification tech-
niques (Youm, 2020) to ensure sensitive information remained secure. 
We partitioned the data based on the code sources of different clients, 
simulating the real-world scenario of distributed data storage. To ad-
dress the issue of data heterogeneity (Ye et al., 2023), we introduced 
a standardization step to unify data of varying formats into a struc-
tured representation. Furthermore, to ensure consistency and enhance 
model performance, each data instance was assigned a three-class label 
based on the CVSS v2 standard, reflecting the diversity of vulnerability 
types. This approach satisfies the decentralized learning framework’s 
privacy protection and data decentralization requirements and pro-
vides high-quality input data for multimodal feature fusion and model 
training.

The primary objective of this phase is to map the lexical informa-
tion, comments, and structural information of the code into a continu-
ous vector space, enabling unified representation to support subsequent 
analysis and comparison. While both lexical information and comment 
information are textual in nature, they serve distinct roles in software 
vulnerability assessment. Lexical information refers to tokenized rep-
resentations of source code, capturing syntactic patterns and function 
structures, whereas comment information consists of natural language 
annotations that provide additional explanations written by developers. 
Unlike lexical data, which directly reflects the structural composition 
of the code, comments often introduce domain-specific context but may 
not follow strict syntactic rules. To preserve their unique characteris-
tics, we adopt different processing strategies. Lexical information is first 
tokenized and normalized to extract syntactic and symbolic features, 
ensuring consistency in representation. It is then processed using a pre-
trained CodeT5 to extract semantic embeddings. Conversely, comment 
information is directly fed into CodeT5 as raw natural language text 
to capture its contextual meaning. By processing these inputs sepa-
rately, we ensure that lexical and comment information contribute 
complementary yet distinct insights into the vulnerability assessment 
process.

In addition to textual representations, structural properties of the 
code also play a crucial role in vulnerability assessment. During the 
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Fig. 1. The architecture of FedMVA, which mainly contains three stages: (A) Data preprocessing module; (B) Federated training model; (C) Vulnerability assessment module.
graph construction step, we use Joern3 to generate the Code Property 
Graph (CPG) (Suneja et al., 2020), which encodes both syntactic and 
control-flow dependencies in the code. To effectively utilize these 
structural features, we employ a Graph Neural Network (GNN) (Ruiz 
et al., 2020) to aggregate information from adjacent nodes in the 
CPG. Additionally, we leverage a convolutional neural network (CNN) 
to extract global structural representations of the code, complement-
ing the local feature aggregation of the GNN. Finally, we employ 
binary hash encoding to align multimodal features, establishing an 
initial semantic unification. We then refine feature representations 
through a self-attention mechanism, enabling deep fusion and enhanc-
ing cross-modal interactions. This mechanism dynamically adjusts the 
contribution of each modality, effectively mitigating conflicts and in-
consistencies among text, code, and comments. By prioritizing the most 
relevant modalities while suppressing noise from less informative ones, 
each data source meaningfully contributes to the overall evaluation.

We first use Joern to generate the CPG, which captures the syntactic 
structures and dependencies within the code. Specifically, each node 
𝑣𝑖 in the CPG represents a program element in the code (such as a 
function, variable, or statement), and an edge (𝑣𝑖, 𝑣𝑗) represents the 
dependency relationship between node 𝑣𝑖 and node 𝑣𝑗 . Next, we use 
GNN to aggregate information from neighboring nodes, extracting local 
syntactic features. The following equation gives the feature update for 
each node: 

h(𝑘+1)𝑖 = AGGREGATE
(

{𝐡(𝑘)𝑗 |𝑣𝑗 ∈  (𝑣𝑖)}
)

+ 𝐡(𝑘)𝑖 , (1)

where ℎ(𝑘)𝑖  represents the feature of node 𝑣𝑖 at the 𝑘th iteration,  (𝑣𝑖)
is the set of neighboring nodes of 𝑣𝑖, and AGGREGATE(⋅) is the ag-
gregation operation (such as sum, average, etc.). To further capture 

3 https://github.com/joernio/joern
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global structural information, we integrate CNNs on top of the GNN-
aggregated node features. CNNs are utilized to model the global syn-
tactic structure of the code by processing the local features extracted by 
GNNs. Simultaneously, lexical and comment information from the code 
is treated as text data and processed by the pre-trained Transformer 
model CodeT5 to extract semantic features. To align the features from 
different modalities, we use binary hash encoding to reduce semantic 
discrepancies between the graph structure, lexical features, and com-
ments. This alignment step ensures that the modalities are compatible 
and can be effectively fused. Finally, we use a self-attention mechanism 
to perform weighted fusion of the features from all modalities, which 
is mathematically represented as: 

𝐡final𝑖 = Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊⊤
√

𝑑𝑘

)

𝐕, (2)

where 𝐐, 𝐊, 𝐕 are the query, key, and value vectors for the graph 
structure and other modalities. The final feature representation 𝐡final𝑖  is 
obtained by applying the self-attention mechanism. The self-attention 
mechanism dynamically adjusts the contribution of each modality 
based on its relevance to the task, ensuring that conflicts or inconsis-
tencies are resolved and that each modality contributes meaningfully 
to the final representation. Our ablation experiments support this 
process, demonstrating that the fusion of all three modalities (code 
structure, lexical information, and comments) significantly improves 
model performance compared to single or dual-modal inputs.

To enhance the model’s ability to concentrate on essential informa-
tion and minimize extraneous noise, we implemented a data prepro-
cessing step that removed redundant comments, blank lines, and other 
irrelevant elements. Essential code information was preserved, ensuring 
that the functionality and integrity of the code remained unaffected. 
These optimizations significantly improved data quality and relevance, 
laying a solid foundation for subsequent model training.

In the federated learning scenario, the original SVA dataset was 
randomly split into training and testing sets at an 8:2 ratio, ensuring 

https://github.com/joernio/joern
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both sets contained vulnerability samples for reliable model evaluation. 
To eliminate errors caused by random experiments, we conducted 10 
repeated trials during the federated learning and vulnerability assess-
ment phases, using the average results as the final performance metrics. 
This approach ensured the model’s stability and generalization ability 
in a continual learning setting.

3.2. Federated training and optimization phase

During the training phase of the proposed FedMVA framework, 
our goal is to enhance the performance and adaptability of the global 
model in heterogeneous data environments. Federated learning, as 
implemented in FedMVA, is built on the foundational principles of 
federated learning, where multiple clients collaboratively train a global 
model without sharing their local data. Each client trains the model 
using its local data and only sends model updates (such as gradients 
or weight updates) to the server, aggregating the updates from all 
clients to update the global model. This approach ensures data privacy 
while enabling the global model to learn from diverse data distributions 
across clients. In FedMVA, we further enhance this process by address-
ing key challenges such as data heterogeneity and model alignment 
gaps, which are critical for effective federated learning. To address 
these challenges, we propose three key enhancements based on the tra-
ditional FedPer (Arivazhagan et al., 2019) method: First, we introduce 
a weighted variance minimization loss function to optimize the consis-
tency between the global and local models, reducing the alignment gap. 
Second, we design a momentum-based weight allocation strategy to 
dynamically adjust the significance of clients, balancing their influence 
on the global model. Finally, we incorporate a dynamic learning rate 
mechanism to improve clients’ adaptability to heterogeneous data. 
These enhancements are grounded in the principles of federated learn-
ing, ensuring that the global model not only integrates knowledge 
from diverse clients but also maintains stability and generalization in 
heterogeneous environments.

In federated training, the global model must integrate client updates 
with diverse data distributions. However, the heterogeneity of client 
data often results in significant alignment gaps between the global and 
local models. To mitigate this issue, we extend the standard cross-
entropy loss by incorporating a weighted variance minimization term 
to enhance consistency across all clients. The proposed loss function is 
defined as: 

L = CE + 𝜆 ⋅
𝑀
∑

𝑖=1
𝑤𝑖‖𝜃global − 𝜃local,𝑖‖

2
2, (3)

here CE is the cross-entropy loss used for classification tasks, and 𝜆 is a 
regularization coefficient balancing the trade-off between classification 
accuracy and alignment consistency. The dynamic client weight 𝑤𝑖
captures the relative contribution of client 𝑖 to the global model and 
is computed as: 

w𝑖 =
𝛥𝜃𝑖

∑𝑀
𝑗=1 𝛥𝜃𝑗

, (4)

where 𝛥𝜃𝑖 measures the parameter update magnitude of client 𝑖. By 
prioritizing clients with larger updates, this mechanism ensures that 
critical clients with unique data distributions play a more signifi-
cant role in global model optimization, enhancing its robustness and 
stability.

Second, we introduce a momentum-based weight adjustment strat-
egy to balance the influence of clients on the global model. This strategy 
combines historical weights with current updates to ensure smooth and 
dynamic weight adjustments. The updated formula is given as: 

w(𝑡+1)
𝑖 = 𝛽 ⋅𝑤(𝑡)

𝑖 + (1 − 𝛽) ⋅
𝛥𝜃(𝑡)𝑖

∑𝑀
𝑗=1 𝛥𝜃

(𝑡)
𝑗

, (5)

where 𝛽 is the momentum coefficient (typically between 0.8 and 0.9), 
and 𝛥𝜃(𝑡) represents the parameter update magnitude of client 𝑖 at 
𝑖

5 
iteration 𝑡. This approach ensures smoother weight changes while 
emphasizing clients with substantial contributions.

Finally, we propose a dynamic learning rate mechanism to adapt 
learning rates to client-specific data distributions. The learning rate is 
updated as: 

𝜂𝑖 = 𝜂0 ⋅
⎛

⎜

⎜

⎝

1 +
‖𝐡global𝑖 − 𝐡local𝑖 ‖2

max𝑗∈[1,𝑀] ‖𝐡
global
𝑗 − 𝐡local𝑗 ‖2

⎞

⎟

⎟

⎠

, (6)

here 𝜂0 is the base learning rate, and 𝐡global𝑖  and 𝐡local𝑖  denote the 
global and local feature representations of client 𝑖. Clients with greater 
discrepancies receive higher learning rates to accelerate convergence, 
while clients with smaller discrepancies maintain lower rates to ensure 
stability.

These three improvements collectively address the challenges of 
federated environments, demonstrating improvements in training effi-
ciency and model generalization. Experimental results show that the 
FedMVA framework outperforms traditional methods in evaluation 
performance.

3.3. Vulnerability assessment stage

The vulnerability assessment stage represents the final step in the 
FedMVA framework, focusing on utilizing the aligned and fused tri-
modal features — graph structure, lexical, and comment information 
— produced during the earlier stages for precise vulnerability clas-
sification. Building on the outcomes of the federated training and 
feature fusion phases, this stage ensures that the processed multi-modal 
representations are effectively employed to classify vulnerabilities into 
three severity levels: high, medium, and low.

In this stage, the tri-modal features, aligned and fused during the 
previous phases, are input into a multi-layer perceptron (MLP) classifier 
designed for three-class classification. The classifier leverages the com-
bined strengths of the structural, semantic, and contextual information 
captured in the tri-modal data. A key distinguishing feature of this 
stage is its ability to refine and exploit the complementary relationships 
among the modalities. By integrating the optimized feature represen-
tations from the training stage with the model’s dynamic adaptation 
capabilities, the assessment module achieves a robust balance between 
precision and generalizability. The enhanced attention mechanism in-
troduced earlier plays a critical role here, dynamically focusing on the 
most relevant modal contributions for accurate predictions.

Through this comprehensive approach, the vulnerability assessment 
stage not only ensures reliable classification performance across diverse 
data distributions but also highlights the practical applicability of the 
FedMVA framework in real-world software vulnerability evaluation 
tasks. This stage demonstrates how the unified representations and 
optimized model weights generated in the earlier phases translate into 
tangible improvements in the model’s predictive power and reliability.

4. Experimental setup

In this section, we first present the research questions we designed 
along with their underlying motivations. Then, we introduce the ex-
perimental subjects, performance evaluation metrics, baseline methods, 
and detailed experimental settings.

4.1. Research questions

To evaluate the effectiveness of our proposed FedMVA, we design 
the following five research questions (RQs):

RQ1: How does FedMVA perform compared to state-of-the-art 
baselines in SVA?

Motivation: The purpose of RQ1 is to demonstrate the competitive-
ness of our proposed method FedMVA compared to current state-of-the-
art SVA baselines. Additionally, to ensure a comprehensive evaluation, 
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we considered five automatic evaluation metrics: accuracy, precision, 
recall, F1 score, and MCC. These metrics provide a holistic measure of 
performance across various aspects of vulnerability assessment.

RQ2: How do different input modality combinations impact the 
performance of FedMVA?

Motivation: Our FedMVA method incorporates capturing the struc-
tural information of code by generating its CPG and combining it 
with lexical information and comment information to create tri-modal 
inputs for SVA model training. Therefore, in RQ2, we aim to inves-
tigate whether this tri-modal input design achieves optimal perfor-
mance for FedMVA. Additionally, we aim to compare different modality 
configurations to determine which input modality contributes most 
significantly to the performance of FedMVA.

RQ3: How does federated learning influence the effectiveness 
of SVA compared to conventional training paradigms?

Motivation: In RQ3, we aim to analyze the impact of federated 
learning on the effectiveness of SVA compared to conventional training 
paradigms. Federated learning introduces both benefits and challenges: 
while it enhances privacy preservation and allows federated collabora-
tion, it also faces issues such as client heterogeneity and communication 
overhead. To systematically evaluate these factors, we conduct ablation 
studies to compare different FL aggregation strategies, assess their 
influence on model performance, and discuss the trade-offs introduced 
by federated learning in software vulnerability assessment.

RQ4: How do different federated learning settings affect the 
performance of FedMVA?

Motivation: Existing federated learning methods have limitations 
in dealing with data heterogeneity and customer importance differ-
ences, which can lead to poor model fitting. To address these chal-
lenges, we reduce model variance by minimizing weighted variance, 
using momentum-based updates to highlight key customers, and us-
ing dynamic learning rate strategies to accelerate convergence, en-
hancing model robustness and overall performance. This RQ will an-
alyze whether this adjustment can help FedMVA achieve the best 
performance.

RQ5: How does the proposed multimodal fusion strategy im-
pact the performance of FedMVA and the interaction across modal-
ities?

Motivation: In this RQ, we aim to explore the impact of the 
multi-modal fusion strategy on FedMVA’s performance and cross-modal 
interactions. Multi-modal information is critical in vulnerability assess-
ment; however, existing methods often fall short of effectively fusing 
modal features and facilitating information exchange across modalities. 
To address these shortcomings, we employ a self-attention mechanism 
for the weighted fusion of modal features to enhance cross-modal 
interactions and improve overall model performance.

4.2. Experimental subject

To construct a high-quality SVA dataset, we aggregated data from 
multiple sources, including the CVE database and associated Git repos-
itories. We pre-processed data by removing blank lines, leading spaces, 
and irrelevant comments to simplify the code structure. The result-
ing dataset comprises 9,941 samples, each containing tri-modal infor-
mation: structural information from CPG, lexical features, and com-
ment information. Compared to existing datasets such as SARD (SARD, 
2020), Devign (Zhou et al., 2019), and BigVul (Fan et al., 2020), our 
dataset offers significant advantages in multi-modal characteristics. It 
strictly adheres to the CVSS v2 standard, providing a robust foundation 
for advanced SVA research.

During the data preprocessing stage, we applied de-identification 
techniques to safeguard sensitive information and removed irrelevant 
elements, such as blank lines and excessive comments, to optimize 
model performance. This process not only enhanced data privacy but 
also improved the robustness of the dataset, making it suitable for 
federated learning applications. In the data processing phase, we used 
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Table 1
A tri-modal example including CPG information, lexical information, comment infor-
mation, and severity.
Code Property Graph (CPG):
𝑁𝑜𝑑𝑒1 ∶ Function process_request
𝑁𝑜𝑑𝑒2 ∶ Variable buffer[128]
𝐸𝑑𝑔𝑒1 ∶ Defines → Node2
𝐸𝑑𝑔𝑒2 ∶ Calls → process()
...

Lexical Information:
𝑠𝑡𝑎𝑡𝑖𝑐 𝑣𝑜𝑖𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∗ 𝑟𝑒𝑞)
{
𝑐ℎ𝑎𝑟 𝑏𝑢𝑓𝑓𝑒𝑟[128];
𝑖𝑓 (𝑟𝑒𝑞− > 𝑠𝑖𝑧𝑒 > 128){
𝑟𝑒𝑡𝑢𝑟𝑛;

}
𝑚𝑒𝑚𝑐𝑝𝑦(𝑏𝑢𝑓𝑓𝑒𝑟, 𝑟𝑒𝑞− > 𝑑𝑎𝑡𝑎, 𝑟𝑒𝑞− > 𝑠𝑖𝑧𝑒);
𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑏𝑢𝑓𝑓𝑒𝑟);

}

Comment Information:
∕ ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑎𝑓𝑒𝑙𝑦 ∗ ∕
∕ ∗ 𝐸𝑛𝑠𝑢𝑟𝑒𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑒𝑥𝑐𝑒𝑒𝑑𝑏𝑢𝑓𝑓𝑒𝑟𝑙𝑖𝑚𝑖𝑡 ∗ ∕
∕ ∗ 𝑚𝑒𝑚𝑐𝑝𝑦𝑖𝑠𝑢𝑠𝑒𝑑𝑓𝑜𝑟𝑐𝑜𝑝𝑦𝑖𝑛𝑔𝑑𝑎𝑡𝑎𝑖𝑛𝑡𝑜𝑏𝑢𝑓𝑓𝑒𝑟 ∗ ∕

Severity: 2 (High)

Joern to extract CPGs, capturing the source code’s syntactic structures 
and dependency relationships. Additionally, lexical and comment infor-
mation was treated as textual data and processed using the pre-trained 
CodeT5 model to generate semantic embeddings. Each data sample 
was ultimately labeled with one of three severity levels — low (0), 
medium (1), or high (2) — according to the CVSS v2 standard, ensuring 
consistent and reliable labeling. The final dataset includes 2,138 low-
severity samples (21.5%), 3,587 medium-severity samples (36.1%), and 
4,216 high-severity samples (42.4%).

By integrating structural, lexical, and semantic features, this tri-
modal dataset provides a comprehensive foundation for the FedMVA 
framework, enabling in-depth and reliable vulnerability assessments. 
Table  1 illustrates a tri-modal data sample, including its CPG, lexical 
information, comment information, and severity label. This example 
highlights the composition of the tri-modal data and its potential value 
in vulnerability evaluation tasks.

4.3. Baseline methods

To validate the effectiveness of our proposed FedMVA framework, 
we compared it against six representative baselines. These baselines 
encompass a range of mainstream methods, from feature-level process-
ing to model design, representing the forefront of research in the SVA 
domain. We briefly describe these baseline methods as follows.

CWM (Character-Word Model) (Le et al., 2019) addresses the chal-
lenge of concept drift in SVA by combining character and word features 
from vulnerability descriptions. Depending on the classifier used, CWM 
is further divided into three baselines:

• CWMNB. Employing the Naïve Bayes (NB) (Russell and Norvig, 
2016) classifier, this approach is rooted in Bayesian decision 
theory. NB assumes conditional independence among features, 
which may limit performance when the assumption is violated. Its 
simplicity and efficiency make NB well-suited for large-scale clas-
sification tasks. No hyperparameter optimization was performed 
for this baseline.

• CWMSVM. Utilizing the Support Vector Machine (Cortes, 1995) 
classifier, this baseline maps input features into a high-
dimensional space and identifies the optimal hyperplane to sepa-
rate different classes. Regularization parameters were fine-tuned 
within a predefined range to enhance classification performance.

• CWMXGB. This baseline uses Extreme Gradient Boosting (XGB)
(Chen, 2015), an ensemble learning method that integrates mul-
tiple tree models to form a robust classifier. Key hyperparameters 
were optimized to improve accuracy, including the number of 
trees, tree depth, and leaf nodes.
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Fun (Function-Level SVA) (Le and Babar, 2022) focuses on function-
level vulnerability assessment by analyzing contextual information sur-
rounding vulnerable statements. It extracts features from code to de-
velop robust models for SVA. Depending on the classifier used, Fun is 
divided into two baselines:

• FunRF. This baseline employs Random Forest (RF) (Ho, 1995), an 
ensemble model combining multiple decision trees. Predictions 
are finalized through majority voting, enhancing robustness and 
predictive accuracy. Key hyperparameters were carefully tuned, 
such as the number of trees, tree depth, and leaf nodes.

• FunLGBM. Leveraging the Light Gradient Boosting Machine
(LGBM) (Ke et al., 2017) classifier, this method is characterized 
by high efficiency and scalability. LGBM shares similar hyper-
parameter structures with FuncRF but incorporates additional 
optimizations to handle large-scale data.

DeepCVA (Deep Commit-Level SVA) (Le et al., 2021) is a deep 
learning framework for commit-level vulnerability assessment, origi-
nally designed for multi-task learning to predict multiple CVSS metrics 
such as confidentiality, integrity, and availability. To align with our 
evaluation framework, we adapted DeepCVA into a three-class clas-
sification model based on the CVSS v2 standard, reformulating its 
outputs to match our single-task learning setting. We simplified its 
feature extraction by retaining only code change features, exclud-
ing repository-specific metadata, and ensuring consistency across all 
baselines. These modifications allow DeepCVA to be fairly evaluated 
in the same classification setting while preserving its commit-based 
assessment capability.

CodeBERT (Sahar et al., 2024) is a bi-modal pre-trained transformer 
model designed for natural language and programming language un-
derstanding. It is trained using a masked language modeling objective 
and a replaced token detection task, enabling it to learn rich semantic 
representations of source code. In our evaluation, we utilize the pre-
trained CodeBERT model to extract function-level code representations 
and assess its effectiveness in vulnerability identification.

CodeT5 (Wang et al., 2021) is a pre-trained encoder–decoder model 
tailored for code-related tasks, including code generation, comple-
tion, and translation. Unlike CodeBERT, which primarily focuses on 
code understanding, CodeT5 captures syntactic structures and semantic 
relationships within source code.

By comparing FedMVA with these baseline methods, we aim to 
comprehensively demonstrate its competitiveness and advantages in 
multi-modal vulnerability assessment. To ensure fairness, all baselines 
were trained and evaluated under identical experimental conditions 
and dataset splits.

4.4. Performance metrics

To comprehensively evaluate the performance of our proposed Fed-
MVA framework, we employ five commonly used metrics: Accuracy 
(ACC), Precision (PR), Recall (RC), F1 Score (F1), and Matthews Cor-
relation Coefficient (MCC). These metrics collectively provide a mul-
tidimensional evaluation, covering overall classification accuracy and 
positive and negative class prediction capabilities. These metrics were 
chosen because they capture different aspects of model performance, 
particularly in vulnerability assessment, where class imbalance and 
varying severity levels are common.

For the SVA task, the first four metrics are standard, while MCC is 
widely used for datasets with class imbalance. Since we need to predict 
three severity levels (low, medium, and high), we use macro-averaged 
metrics to present the final results. In the rest of the subsection, we 
show the details of calculating these performance metrics.

• 𝑇𝑃  (True Positive): The number of positive class samples cor-
rectly classified. The SVA task represents cases where the model 
accurately identifies different severity levels.
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• 𝑇𝑁 (True Negative): The number of negative class samples cor-
rectly classified. For each severity level, it represents samples 
correctly classified as not belonging to that severity level.

• 𝐹𝑁 (False Negative): The number of positive class samples in-
correctly classified as negative. Each severity level represents 
samples wrongly classified as not belonging to that severity level.

• 𝐹𝑃  (False Positive): The number of negative class samples incor-
rectly classified as positive. Each severity level represents samples 
wrongly classified as belonging to that severity level.

For each severity category 𝑖, these statistics can be represented as 𝑇𝑃𝑖, 
𝑇𝑁𝑖, 𝐹𝑁𝑖, and 𝐹𝑃𝑖.

Accuracy: Accuracy represents the proportion of correctly classified 
samples among all samples, calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑖 𝑇𝑃𝑖 +
∑

𝑖 𝑇𝑁𝑖
∑

𝑖(𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)
. (7)

Precision: Precision indicates the proportion of samples predicted 
as positive that are truly positive. The macro-average precision is 
calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
, (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
Precision𝑖. (9)

Recall: Recall measures the proportion of actual positive samples 
correctly predicted as positive. The macro-average recall is calculated 
as: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
, (10)

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
Recall𝑖. (11)

F1-score: F1-score is the harmonic mean of Precision and Recall. 
The macro-average F1 Score is calculated as: 

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

, (12)

𝐹1-𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖
𝐹1𝑖. (13)

MCC: MCC considers 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 and is effective for 
datasets with the class imbalance problem. For the multi-class classi-
fication problem, we calculate the macro average of each class’s MCC 
as follows. 

𝑀𝐶𝐶𝑖 =
𝑇𝑃𝑖 ⋅ 𝑇𝑁𝑖 − 𝐹𝑃𝑖 ⋅ 𝐹𝑁𝑖

√

(𝑇𝑃𝑖+𝐹𝑃𝑖)(𝑇𝑃𝑖+𝐹𝑁𝑖)(𝑇𝑁𝑖+𝐹𝑃𝑖)(𝑇𝑁𝑖+𝐹𝑁𝑖)
, (14)

𝑀𝐶𝐶𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1
MCC𝑖. (15)

In the experiments, we conducted multiple independent runs for 
each baseline method and the FedMVA framework to ensure the sta-
bility of the results. The results of the five metrics were calculated on 
the test set, and the final scores were averaged over all runs. This design 
ensures a reliable evaluation of the FedMVA framework’s competi-
tiveness in multi-modal-based vulnerability assessment and provides a 
comprehensive analysis of its performance.

4.5. Implementation details

Our experiments and baseline methods were conducted on a com-
puter with a 3.50 GHz CPU and a GeForce RTX 4090 GPU with 24 GB 
of graphics memory running on Windows 10.

In our study, we maintained consistent experimental settings across 
all methods to ensure a fair comparison. The initial learning rate was 
set to 5e−5 and progressively reduced using a linear decay strategy 
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Table 2
Performance comparison between FedMVA and SVA baselines, with the best results for 
each metric highlighted in bold.
 Method Accuracy Precision Recall F1 MCC  
 CWMNB 0.654 0.683 0.547 0.515 0.501 
 CWMSVM 0.691 0.627 0.577 0.551 0.465 
 CWMXGB 0.703 0.693 0.639 0.635 0.492 
 FunRF 0.672 0.645 0.508 0.549 0.424 
 FunLGBM 0.718 0.707 0.526 0.541 0.484 
 DeepCVA 0.67 0.575 0.572 0.583 0.473 
 CodeBERT 0.721 0.69 0.621 0.634 0.523 
 CodeT5 0.745 0.716 0.672 0.692 0.573 
 FedMVA 0.784 0.739 0.712 0.690 0.625 

throughout training. A batch size of 16 was adopted to strike a balance 
between computational efficiency and model stability. The AdamW 
optimizer was employed, with a weight decay parameter of 1e−2, to 
reduce the risk of overfitting. Each training round consisted of 50 
iterations, providing sufficient learning opportunities for the models 
while maintaining reasonable computational demands.

For the federated learning phase, we conducted five communication 
rounds, during which global model parameters were aggregated and 
updated on the server after each round. This setup preserved data 
privacy at the client level and ensured high training efficiency in 
federated learning scenarios.

To guarantee the reliability of our results, we conducted 10 inde-
pendent runs for both the FedMVA framework and baseline methods. 
The performance metrics for each method were calculated based on 
the test set, and the final results were averaged across all runs. This 
design allowed us to robustly evaluate the competitive performance of 
the FedMVA framework in multi-modal vulnerability assessment tasks.

5. Experimental results

5.1. RQ1: How does FedMVA perform compared to state-of-the-art base-
lines in SVA?

Approach. To evaluate the effectiveness of our proposed method 
FedMVA for the SVA task, we selected a diverse set of baseline methods, 
including CWMNB, CWMSVM, CWMXGB (Le et al., 2019; Russell and 
Norvig, 2016; Cortes, 1995; Chen, 2015), FunRF, FunLGBM (Le and 
Babar, 2022; Ho, 1995; Ke et al., 2017), DeepCVA (Le et al., 2021), 
CodeBERT (Sahar et al., 2024), and CodeT5 (Wang et al., 2021). 
These baselines represent state-of-the-art methods in SVA, spanning 
different approaches ranging from traditional machine learning to deep 
learning-based models.

For FedMVA, we followed the experimental setup outlined in Sec-
tion 4.5 and assessed the method’s performance using the evaluation 
metrics introduced in Section 4.4. These methods represent a vari-
ety of approaches in SVA and utilize different data modalities to 
extract vulnerability information. The CWM category is based on vul-
nerability descriptions, extracting character- and word-level textual 
features, making it suitable for scenarios with comprehensive vulner-
ability reports. The Fun category focuses on function-level source code 
analysis, capturing patterns within vulnerable functions and their con-
text. DeepCVA is designed for commit-level vulnerability assessment, 
integrating contextual information from code changes and metadata to 
predict vulnerability properties through a multi-task learning frame-
work. CodeBERT is designed for code understanding tasks, leveraging 
a masked language modeling objective to learn representations from 
source code and paired natural language descriptions. And CodeT5 
extends beyond code understanding by incorporating generative capa-
bilities, capturing both syntactic structures and semantic relationships 
within code. In this study, we apply both models directly to function-
level vulnerability classification to assess their effectiveness in the SVA 
task.
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Table 3
Class-specific metrics and confusion matrix for the FedMVA model.
 (a) Class-wise performance metrics of FedMVA
 Class Precision Recall F1  
 Low 0.672 0.633 0.652  
 Medium 0.721 0.693 0.707  
 High 0.805 0.774 0.789  
 (b) Confusion matrix of FedMVA on the test set
 Actual∖Pred Low Med High  
 Low 412 153 53  
 Medium 85 867 137  
 High 28 136 983  

Result.The performance comparison between our proposed method 
FedMVA and the baselines is shown in Table  2, with the best re-
sults for each metric highlighted in bold. It is clear from the table 
that our method outperforms all baselines. Specifically, compared to 
the baselines, FedMVA demonstrates improvements in MCC ranging 
from 9.08% to 47.41%, F1-score from −0.28% to 33.98%, accuracy 
from 5.96% to 19.88%, precision from 3.21% to 28.52%, and recall 
from 5.95% to 40.16%. These results demonstrate the advantages of 
FedMVA in capturing multi-faceted vulnerability characteristics that 
are often overlooked in single-modality baselines. Traditional statis-
tical learning approaches, such as CWM and Fun, which rely solely 
on handcrafted features, struggle to model the complex structural 
and contextual dependencies in source code, leading to lower perfor-
mance. DeepCVA shows limited performance gains due to its reliance 
on commit-level information, which lacks structural code representa-
tions and lexical details. CodeBERT achieves notable improvements 
over traditional baselines, benefiting from its pre-trained contextual 
embeddings. However, its bi-modal nature (code + natural language) 
does not fully exploit the structural properties of code, resulting in 
lower recall compared to FedMVA. CodeT5, designed for code genera-
tion and understanding, performs better than CodeBERT as it captures 
richer syntactic and semantic relationships. CodeT5 achieves a slightly 
higher F1-score than FedMVA, likely due to its token-level modeling 
approach excels at capturing localized vulnerability patterns, leading 
to a more balanced trade-off between precision and recall.

In contrast, FedMVA integrates structural, lexical, and comment-
based features through a self-attention fusion mechanism, allowing it 
to extract complementary information from multiple modalities dy-
namically. This approach improves model robustness and generaliza-
tion, particularly in scenarios with heterogeneous data distributions. 
Moreover, incorporating momentum mechanisms and dynamic learning 
rates enables FedMVA to better adapt to non-IID (non-independent and 
identically distributed) client data, improving model stability and con-
vergence. Overall, the combination of multimodal feature fusion and 
adaptive learning mechanisms allows FedMVA to outperform baselines 
in most metrics, demonstrating its effectiveness in SVA.

To further assess the fairness and robustness of FedMVA, we provide 
class-wise performance metrics and the confusion matrix in Table  3. 
The class-wise results show that FedMVA achieves the highest recall 
(0.774) and F1-score (0.789) on the High severity class, which is critical 
in real-world applications where severe vulnerabilities must be priori-
tized. While the Medium class exhibits balanced performance, the Low 
severity class shows relatively lower precision and recall. This is largely 
attributed to class imbalance and the subtle characteristics of low-risk 
vulnerabilities, which can be easily confused with medium-risk ones. As 
shown in the confusion matrix, most misclassifications occur between 
adjacent severity levels (e.g., Medium vs. High), whereas severe mis-
classifications (e.g., Low vs. High) are relatively rare. These findings 
confirm that FedMVA not only performs well in overall metrics but 
also maintains consistent effectiveness across different severity levels, 
reinforcing its practical utility in triage and prioritization scenarios.
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Table 4
Performance comparison of FedMVA with different input modality combinations.
 Settings Accuracy Precision Recall F1 MCC  
 FedMVA+S 0.632 0.503 0.549 0.519 0.584 
 FedMVA+L 0.653 0.582 0.616 0.598 0.497 
 FedMVA+L+C 0.621 0.643 0.559 0.592 0.463 
 FedMVA+S+C 0.647 0.529 0.537 0.523 0.570 
 FedMVA+S+L 0.712 0.689 0.623 0.664 0.591 
 FedMVA+S+L+C 0.784 0.739 0.712 0.690 0.625 

Summary for RQ1: Our proposed method FedMVA outper-
forms baseline methods across most performance metrics. 
For example, FedMVA achieves an improvement of 9.08% to 
47.41% in MCC and 5.95% to 40.16% in recall.

5.2. RQ2: How do different input modality combinations impact the perfor-
mance of FedMVA?

Approach. To investigate the impact of different input modalities 
on the performance of FedMVA, we conducted an ablation study by 
combining three types of input information. Our study involved three 
modalities: (1) code structure information, (2) lexical information from 
the code, and (3) comment information. We denote code structure 
information as S, lexical information as L, and comment information as 
C. By evaluating various combinations of these modalities, we assessed 
the contribution of each modality to the model’s performance.

Result. Based on the experimental results shown in Table  4, we 
observe a significant improvement in the performance of FedMVA as 
the number of information modalities increases. Specifically, when 
using single-modal information and dual-modal combinations, the per-
formance of our method, FedMVA, slightly decreased across all metrics. 
However, FedMVA performs significantly better by incorporating three 
modalities. The accuracy improved by 10.11% to 26.25%. Precision 
saw the largest increase, rising by 7.26% to 46.92%. Recall improved 
by 14.29% to 32.59%, the F1-score increased by 3.92% to 32.95%, and 
the MCC increased by 5.75% to 32.14%. These results suggest that the 
model’s performance improves as the number of information modalities 
increases.

This improvement is primarily attributed to the effective combi-
nation of code structure and lexical information. When using code 
structure information alone, the performance was relatively moderate. 
However, when lexical information was added, the model significantly 
improved across all metrics, particularly precision and MCC. While 
including comment information led to slight performance regression 
in some cases (e.g., with the FedMVA+L+C setting), it still provided 
valuable supplementary information to the model, especially when 
combined with code structure and lexical information. The fusion of 
all three modalities further enhanced the model’s ability to make 
comprehensive assessments, enabling it to evaluate vulnerabilities from 
multiple levels — syntax, lexical features, and the semantic content 
of comments — thereby improving the performance of the SVA. We 
did not conduct experiments using comments alone, mainly because 
comment information did not significantly improve the model’s per-
formance when used in isolation. Its value was more apparent when 
combined with code structure and lexical information, which served as 
a complementary factor rather than an independent contributor.

Summary for RQ2: Integrating all three modalities–code 
structure, lexical information, and comments–yields better 
performance than single-modal and dual-modal inputs. This 
indicates that these three modalities provide complementary 
information to each other.
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Fig. 2. The impact of federated learning for FedMVA.

5.3. RQ3: How does federated learning influence the effectiveness of SVA 
compared to conventional training paradigms?

Approach. To investigate how the federated learning framework 
enhances the effectiveness of FedMVA in the SVA task, we designed 
three experimental setups: a centralized setting without federated 
learning, a standard federated learning setup using the FedAvg algo-
rithm, and our proposed FedMVA method. In the centralized setting, all 
data was stored on a single server for training, with no collaboration 
or parameter sharing between clients, serving as the baseline for 
comparison. The FedAvg approach enables clients to independently 
train local models and send their parameters to a central server for 
aggregation, facilitating distributed learning but struggling to han-
dle data heterogeneity. In contrast, FedMVA incorporates momentum 
mechanisms and dynamic learning rates, optimizing parameter updates 
and dynamically adjusting client contributions through adaptive weight 
allocation. We employed three evaluation metrics, accuracy, recall, and 
F1-score, to compare the performance of each method and identify the 
most effective approach.

Result. The performance comparison of the three methods is shown 
in Fig.  2. The figure shows FedMVA demonstrates improved overall 
performance under the federated learning setting, compared to both 
the basic FedAvg method and the model without federated learning. 
Specifically, accuracy increased by 3.29% to 14.79%, recall improved 
by 4.25% to 9.71%, and the F1-score rose by 5.18% to 14.05%. 
These results demonstrate that the federated learning framework ef-
fectively facilitates information sharing and collaborative optimization 
between clients, enabling the integration of local knowledge into the 
global model and significantly enhancing its generalization ability. 
Furthermore, FedMVA leverages momentum mechanisms and dynamic 
learning rates to mitigate the challenges posed by data heterogeneity, 
improving both convergence speed and model stability. Notably, pre-
cision and MCC metrics are not presented here due to their minimal 
improvement under federated learning. Instead, we focus on accuracy, 
recall, and F1-score, which provide more meaningful insights into the 
performance gains.

Summary for RQ3: Federated learning demonstrates improve-
ments over the basic FedAvg method and models without 
federated learning. This suggests that federated learning helps 
enhance collaboration between models, thereby improving the 
effectiveness of vulnerability assessment.



Q. Liu et al. The Journal of Systems & Software 228 (2025) 112469 
5.4. RQ4: How do different federated learning settings affect the perfor-
mance of FedMVA?

Approach. To address RQ4, we conducted ablation experiments 
to evaluate the impact of different configurations within the feder-
ated learning framework on model performance. These experiments 
focused on three key enhancements to the FedPer method: the weighted 
variance minimization loss function, the momentum-based weight allo-
cation strategy, and the dynamic learning rate mechanism. The exper-
iments were designed to progressively assess the effect of each modi-
fication and examine their role in improving the model’s performance 
in vulnerability assessment tasks.

In addition, to further analyze the effectiveness of our proposed 
loss function, we conducted a comparative study using several widely 
adopted federated learning loss functions. Specifically, we evaluated 
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), Fed-
Dyn (Acar et al., 2021), and MOON (Li et al., 2021), alongside our 
proposed Loss Function. These loss functions were chosen due to their 
effectiveness in addressing different challenges in federated optimiza-
tion, including model drift, data heterogeneity, and feature alignment. 
To ensure a fair comparison, all experiments were conducted within 
the same federated learning framework, keeping hyperparameters and 
other experimental conditions constant.

Result. Fig.  3 presents the results obtained from our experiments. 
The five configurations in the figure represent different variants of 
FedMVA: FedMVA w/o All refers to the version without any feder-
ated enhancements, including dynamic learning rate, momentum-based 
weighting, and the weighted variance minimization (WVM) loss; Fed-
MVA w/ LR, FedMVA w/ Momentum, and FedMVA w/ WVM enable 
only one of these components respectively; while FedMVA (Full) ac-
tivates all enhancements. The model shows improvements across all 
evaluation metrics based on the experimental results from different 
federated learning settings. Specifically, accuracy increased by 4.81% 
to 10.89%, recall improved by 3.04% to 6.43%, and F1-score increased 
by 3.04% to 6.43%. These improvements suggest that the enhance-
ments made to the federated learning framework have contributed to 
the model’s overall performance.

Further, Fig.  4 presents the accuracy comparison across different 
loss functions over multiple communication rounds. The results demon-
strate that our proposed loss function consistently outperforms FedAvg, 
FedProx, FedDyn, and MOON, particularly during the initial training 
phases. The faster convergence observed in the early rounds suggests 
that our method effectively mitigates local model drift while maintain-
ing stable and efficient global model updates. Since accuracy directly 
reflects the model’s predictive performance and is widely regarded as a 
primary evaluation metric in federated learning, we focus on its trends 
to compare the effectiveness of different loss functions.

In detail, the weighted variance minimization loss function effec-
tively reduced the alignment gap between local and global models, 
enhancing the global model’s generalization ability and performance 
across diverse data distributions. The momentum-based weight alloca-
tion strategy dynamically adjusted client contributions, ensuring that 
the most important clients were appropriately weighted, which im-
proved the model’s adaptability to heterogeneous data. Finally, the dy-
namic learning rate mechanism optimized the training process by fine-
tuning adjustments based on each client’s specific data distribution. 
This led to improved accuracy and recall in vulnerability assessment 
tasks. These enhancements worked synergistically, collectively boosting 
the performance of the federated learning framework in vulnerability 
evaluation.

Summary for RQ4: The experimental results demonstrate 
that the carefully designed federated adjustments contribute 
to model performance improvement. The enhancements in 
the approach have strengthened the overall generalization 
capability of the model, leading to better adaptability and 
performance across various evaluation metrics.
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Fig. 3. The impact of different federated learning settings for FedMVA.

Fig. 4. Accuracy comparison across different loss functions over communication 
rounds.

5.5. RQ5: How does the proposed multimodal fusion strategy impact the 
performance of FedMVA and the interaction across modalities?

Approach. To address RQ5, we conducted ablation experiments to 
assess the impact of the proposed multimodal fusion strategy on the 
performance of FedMVA and the interaction across modalities. Our 
approach aligns multimodal features through binary hash encoding, 
achieving an initial semantic unification. We further refine the feature 
representations using a self-attention mechanism, enabling deep fusion 
and enhancing the interaction between different modalities. To validate 
the effectiveness of this fusion strategy, we compared it with four 
alternative strategies: feature addition, feature concatenation, weighted 
averaging, and element-wise multiplication.

Result. Fig.  5 presents the experimental results of different mul-
timodal fusion strategies. The results indicate that the proposed mul-
timodal fusion strategy leads to noticeable improvements in model 
performance. Specifically, the Accuracy metric increased by 22.12%–
39.25%, the F1-score improved by 20.42%–30.93%, and MCC showed 
an increase of 18.37%–43.02%. We focused on these three metrics 
as Precision and Recall did not show significant changes across the 
fusion strategies. These improvements highlight the advantages of the 
proposed strategy in addressing the challenges of dimensionality re-
duction when integrating multimodal data within a federated learning 
framework. The differences in performance can be attributed to how 
information is retained during the feature integration process. In the 
Addition, Concatenation, Weighted Averaging, and Element-wise Multi-
plication strategies, particularly for high-dimensional data, information 
loss often occurs during feature merging, which weakens the inter-
action between modalities. In contrast, the proposed fusion strategy 
leverages the self-attention mechanism to effectively minimize infor-
mation loss and enhance the integration of features across modalities. 
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Fig. 5. The impact of different fusion methods for FedMVA.

This leads to better performance in combining cross-modal informa-
tion and significantly improves the overall model capabilities. These 
findings demonstrate the clear advantages of the deep fusion strategy 
in multimodal learning tasks, particularly for complex vulnerability 
assessment scenarios. The proposed strategy effectively captures subtle 
relationships across modalities, resulting in more accurate and reliable 
evaluation outcomes.

Summary for RQ5: The proposed multimodal fusion strategy 
outperforms traditional methods by better integrating cross-
modal information, reducing information loss, and improving 
model performance. Its self-attention mechanism enhances 
modality interaction, making it effective for complex tasks like 
vulnerability assessment.

6. Discussion

6.1. Parameter analysis

This section discusses three key factors affecting model performance 
in federated learning: hyperparameter settings, computational cost, 
and data heterogeneity. By systematically analyzing these aspects, we 
evaluate the effectiveness and robustness of our proposed approach 
under different experimental conditions.

To investigate the influence of hyperparameters, we varied the 
batch size and the number of epochs. The batch size was set to 8, 16, 
32, 64, 128, and the epoch values were set to 20, 30, 40, 50, 60. The 
experimental results are shown in Fig.  6, which presents the model’s 
performance across different metrics under various configurations.

The results suggest that both batch size and epochs significantly im-
pact model performance. Specifically, the model performed best when 
the batch size was 128. Larger batch sizes typically improve training 
efficiency, particularly with large datasets, by enabling faster pro-
cessing without significantly increasing computational cost. However, 
excessively large batch sizes can lead to higher memory consumption, 
limiting scalability. For the batch size in our experiments, smaller 
values (e.g., 8 and 16) led to slower convergence and more significant 
fluctuations in evaluation metrics, which can be attributed to the 
limited amount of gradient information processed in each iteration, 
resulting in unstable updates during training. A batch size of 128 ap-
peared to offer the best trade-off while avoiding the memory overhead 
associated with excessively large batches. In terms of local epochs, 
the model achieved the best performance when trained for 50 epochs. 
As the number of epochs increased, the model’s accuracy improved 
steadily. However, the performance gains became negligible, and over-
fitting tendencies emerged beyond this point. Training for 50 epochs 
struck a balance between learning capacity and generalization, making 
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Fig. 6. The figures illustrate the impact of batch size and local epochs on model 
performance.

Fig. 7. Runtime comparison of FedMVA and centralized training under different client 
settings.

it the most appropriate configuration for this task. The results indicate 
that our method maintains solid performance across different batch 
sizes and epoch values, showcasing its robustness. In particular, when 
the batch size is set to 128 and the epochs to 50, the model achieves 
optimal performance across all evaluated metrics. This shows that while 
parameter settings influence model performance, our approach remains 
effective and reliable across various configurations.

Beyond hyperparameter optimization, another critical factor in real-
world applications is computational efficiency. In federated learning, 
computational cost is influenced not only by local training but also 
by communication overhead, distinguishing it from centralized training 
approaches. To better understand the practical feasibility of FedMVA, 
we analyze its total runtime under different communication rounds and 
compare it with a traditional centralized method.

As shown in Fig.  7, FedMVA’s total runtime increases with the 
number of communication rounds due to iterative model synchroniza-
tion. However, compared to a centralized approach, FedMVA remains 
computationally competitive when using a moderate number of rounds 
(e.g., 4–6 rounds). And we examine how the number of clients impacts 
computational efficiency by comparing FedMVA with 3 clients and 
10 clients. With fewer clients (3 clients), each client is assigned a 
larger portion of data, leading to longer local training time per round. 
However, this also results in lower communication overhead, making 
the overall runtime increase less pronounced compared to the 10-client 
setting, where communication is more frequent but each client pro-
cesses less data per iteration. This trade-off underscores the scalability 
of FedMVA, demonstrating that client allocation can be adjusted to 
optimize computational efficiency.

Another key challenge in federated learning is the heterogeneity of 
data distribution across clients, which affects both global model conver-
gence and final model performance. To assess this, we conducted a sen-
sitivity analysis by comparing balanced and highly imbalanced client 
data distributions. As shown in Fig.  8, when client data distributions are 
highly imbalanced, the model demonstrates slower convergence, main-
taining a higher loss over multiple communication rounds, indicating 
that local training instability impacts global aggregation. Furthermore, 
the data heterogeneity negatively affects key evaluation metrics, par-
ticularly recall, indicating that the model struggles to generalize when 
learning from minority class samples. These findings highlight the 
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Fig. 8. Impact of Data Heterogeneity on Model Convergence and Performance.

importance of accounting for data heterogeneity in federated learning 
frameworks. In scenarios where client data is highly skewed, strate-
gies such as adaptive weighting mechanisms or personalized learning 
approaches may be required to mitigate imbalance-induced biases and 
ensure stable model convergence.

Unlike conventional classification tasks, SVA involves highly im-
balanced data, complex code structures, and ambiguous vulnerability 
patterns, making it difficult for models to achieve near-perfect per-
formance. Despite these challenges, FedMVA consistently outperforms 
baseline methods across most evaluation metrics, demonstrating its 
effectiveness in leveraging multimodal representations. Furthermore, 
its federated learning framework enables privacy-preserving collabo-
ration across distributed clients, an essential feature for real-world 
deployment scenarios where centralized data collection is infeasible. 
These results highlight the practical feasibility of FedMVA for SVA, as 
it balances privacy preservation, computational efficiency, and model 
performance in federated environments.

6.2. Threats to validity

In this subsection, we primarily outline the potential threats to the 
validity of our research.

Internal threat. One internal threat to the validity of our findings 
could be related to the quality of the data used in our experiments. 
While we have applied rigorous preprocessing steps, there may still 
be latent biases or noise in the dataset that could affect model perfor-
mance. Factors such as parameter tuning and initialization could also 
influence the model’s optimization process, which might lead to subop-
timal training or overfitting in specific configurations. To mitigate this, 
we ensured our experiments’ reproducibility and validated our model’s 
robustness using different settings.

External threat. An external threat to the validity of our study 
could stem from the generalizability of our results. The dataset used in 
our experiments is specific to the context of vulnerability assessment, 
and our findings may not be directly applicable to other domains 
or datasets without further validation. Moreover, the experimental 
setup may not represent all real-world use cases, including the specific 
choice of models, features, and evaluation metrics. Therefore, while our 
results demonstrate strong performance in the context of our research, 
additional studies are necessary to evaluate the applicability of our 
approach in diverse scenarios and to broader populations of software 
systems.

Construct threat. A key construct-related threat in our study is 
whether the selected evaluation metrics and experimental design fully 
capture the complexity of vulnerability assessment. While accuracy, 
precision, recall, F1-score, and MCC provide a solid assessment of 
model performance, they primarily reflect classification effectiveness 
rather than deeper characteristics such as a model’s ability to generalize 
across diverse vulnerability types or handle rare cases.

Another potential limitation lies in the contribution of different 
input modalities within our multimodal framework. Our ablation study 
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Fig. 9. Importance of Different Modalities.

confirmed that integrating multiple modalities improves performance, 
but it does not explicitly quantify how much each modality contributes 
to the final prediction. To further investigate this, we conducted an at-
tention weight analysis, which offers an interpretability perspective by 
revealing how the model allocates importance across different modal-
ities. As illustrated in Fig.  9, the analysis shows that code structure 
information is the dominant modality, while lexical features play a 
secondary role, and developer comments contribute the least. These 
findings reinforce our previous experimental results: structural and 
lexical information are the primary drivers of vulnerability prediction, 
whereas comments provide limited independent value.

Despite the insights provided by attention-based attribution, it is 
important to acknowledge its limitations. Attention weights indicate 
how the model distributes focus across features but do not necessar-
ily imply causal importance. Furthermore, they do not fully capture 
potential interactions between modalities, meaning that features with 
lower individual weights, such as developer comments—might still 
have indirect influence through their interplay with structural and 
lexical elements.

Adversarial Threats. While FedMVA enhances data privacy by pre-
venting direct data sharing, federated learning frameworks remain sus-
ceptible to adversarial threats, including data poisoning attacks (Stein-
hardt et al., 2017), model inversion attacks (Song and Namiot, 2022), 
and membership inference attacks (Shokri et al., 2017). Addressing 
these risks is critical to ensuring the security and practical adoption 
of FedMVA.

One critical threat is data poisoning, where malicious clients in-
troduce adversarial updates to degrade model performance. FedMVA 
mitigates this risk at the design level by employing robust aggregation 
mechanisms that limit the influence of individual client updates on 
the global model. While we do not empirically evaluate this aspect in 
the current work, prior studies (Blanchard et al., 2017) have shown 
that robust aggregation strategies such as Krum and Multi-Krum can 
effectively defend against Byzantine or poisoned updates. FedMVA’s 
architecture is compatible with such mechanisms, and future work will 
incorporate and benchmark these defenses under simulated poisoning 
scenarios. Another potential risk is model inversion attacks (Fredrik-
son et al., 2015), where adversaries attempt to reconstruct private 
data from model updates. FedMVA inherently reduces this risk by 
limiting the granularity of shared updates and ensuring that no raw 
data is ever transmitted. Additional protection could be achieved by 
integrating gradient clipping (Chen et al., 2020) and differential pri-
vacy techniques (Hassan et al., 2019), which have been demonstrated 
to obscure sensitive patterns in model updates. Membership infer-
ence attacks (Hu et al., 2022), which aim to determine whether a 
specific data sample was part of the training set, may also compro-
mise client privacy. Although federated learning already provides a 
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degree of resistance by decentralizing training, this can be further 
enhanced through adversarial regularization (Nasr et al., 2018) or 
gradient masking techniques.

In summary, while the current version of FedMVA focuses on 
architectural-level mitigation strategies, we acknowledge the impor-
tance of empirical validation and plan to explore it in future work. 
Specifically, we aim to integrate poisoning simulations and privacy-
preserving defenses into the FedMVA framework to enable systematic 
robustness evaluation.

7. Related work

Software vulnerability assessment (Elder et al., 2024; Le et al., 
2022) involves identifying, analyzing, and prioritizing vulnerabilities 
within software systems to maintain their security and reliability. Ef-
fective SVA methods can assist developers in prioritizing high-risk 
vulnerabilities and allocating remediation resources more efficiently. 
With advances in network and software technologies, the number 
of vulnerabilities in software systems has surged, making traditional 
manual methods of vulnerability detection and patching inefficient 
and increasingly impractical. Relying solely on expert knowledge for 
individual assessments is time-consuming and insufficient in addressing 
complex and evolving attack scenarios, thus emphasizing the need 
for automated vulnerability assessment methods and models. Previous 
SVA studies have introduced effective methods based on vulnerability 
descriptions, source code, or code commits.

Vulnerability description-based SVA. A vulnerability description 
provides a detailed account of software flaws, including their nature, 
potential impact, and the conditions under which they can be exploited. 
Prior research indicates that vulnerability descriptions hold valuable 
information and are practical tools for predicting vulnerability traits 
in SVA tasks. For example, Han et al. (2017) transformed the SVA 
task into a text classification task by capturing word-level features 
through word embeddings, then designed a shallow CNN to capture 
sentence-level features for severity classification. Sun et al. (2023b) 
argued that some elements in vulnerability descriptions are extrane-
ous, proposing instead using essential vulnerability elements rather 
than full descriptions for severity assessment.  Babalau et al. (2021) 
introduced a deep learning approach that predicts severity scores and 
metrics solely based on textual vulnerability descriptions. Their method 
employs a multi-task learning framework and a pre-trained BERT model 
to generate word vector representations, enhancing the prediction of 
vulnerability severity. Le et al. (2019) proposed a systematic method 
that combines character and word features, using time-based k-fold 
cross-validation for model selection and vulnerability description-based 
severity classification.  Gong et al. (2019) suggested a multi-task ma-
chine learning approach that jointly predicts multiple vulnerability 
features from descriptions, eliminating the need for balanced data.

Source code-based SVA. In addition to using vulnerability descrip-
tions, recent studies have also explored approaches to analyzing source 
code related to vulnerabilities. For example, Le and Babar (2022) 
investigated machine learning (ML) models for automating function-
level SVA tasks. Their approach used fine-grained vulnerable code 
statements in the assessment model, combining vulnerable and non-
vulnerable statements to capture context around vulnerable code and 
gather additional information about vulnerabilities from surrounding 
code. Hao et al. (2023) focused on constructing function call graphs 
centered on vulnerable functions. By leveraging a graph attention 
neural network algorithm, they extracted key vulnerability features 
from function call graphs and vulnerability attribute graphs, utilizing 
information from both graphs to classify vulnerability severity.

Commit-based SVA. In recent years, commit-based vulnerability 
assessment has gained attention. Le et al. (2021) proposed the DeepCVA 
model, a deep multi-task learning approach that directly predicts CVSS 
metrics from changes in vulnerability-contributing commits. DeepCVA 
extracts features from code changes and their surrounding context by 
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integrating attention mechanisms and convolutional gated recurrent 
units, eliminating reliance on often-delayed vulnerability reports. This 
approach enhances assessment efficiency and enables developers to 
prioritize vulnerability remediation tasks more effectively at earlier 
stages of the development lifecycle.

Traditional approaches to software vulnerability assessment often 
rely on centralized models that require aggregating sensitive code or 
vulnerability descriptions in a single location for analysis. This practice 
increases the risk of data breaches and violates stringent data privacy 
regulations, particularly in industrial settings where source code and 
vulnerability data are highly confidential. To address these privacy 
concerns, federated learning paradigms have emerged as a promis-
ing solution. By enabling collaborative training across organizations 
without sharing raw data, federated learning ensures data privacy 
while facilitating cross-organizational collaboration for vulnerability 
assessment.

Recent advancements in privacy-preserving federated learning have 
further enhanced its applicability in SVA tasks. Yazdinejad et al. 
(2024a) proposed a privacy-preserving FL framework that integrates 
Additive Homomorphic Encryption and a Gaussian Mixture Model to 
detect malicious gradients with low computational overhead, enhanc-
ing robustness against adversarial attacks. Beyond cryptographic ap-
proaches,  Yazdinejad et al. (2024b) introduced a hybrid FL framework 
designed to handle irregular user participation and varying data quality 
in next-generation IoT environments. By combining synchronous and 
asynchronous update mechanisms, their approach improves FL perfor-
mance in highly dynamic network settings. Meanwhile, Namakshenas 
et al. (2024) focused on enhancing FL explainability in industrial cyber–
physical systems. Their interpretation-based FL model employs Shapley 
values alongside Additive Homomorphic Encryption, enabling both 
privacy preservation and fairness in federated model training. These 
studies highlight the importance of integrating security, adaptabil-
ity, and explainability in privacy-preserving FL frameworks for SVA. 
However, existing methods primarily address communication efficiency 
and data privacy, leaving optimization challenges in heterogeneous FL 
environments underexplored.

In addition to privacy challenges, existing SVA methods often fo-
cus on single modalities, such as vulnerability descriptions or source 
code, neglecting the structural and contextual information embedded 
within code. These limitations hinder the model’s ability to capture 
the complex characteristics of software vulnerabilities fully. Recent ad-
vancements in multimodal learning have shown promise in addressing 
these limitations. For instance, as highlighted by  Shiri Harzevili et al. 
(2024), hybrid data sources and graph-based input representations are 
increasingly used in software vulnerability detection, with 39.1% of 
studies utilizing hybrid sources and 57.2% employing graph-based tech-
niques. These approaches demonstrate the importance of combining 
multiple modalities, such as source code, graph structures, and textual 
features, to improve vulnerability assessment accuracy.

To address these challenges, we propose a multimodal approach 
that integrates structural, lexical, and comment-based features. Specif-
ically, we use a graph attention network (GAT) to capture local struc-
tural relationships, a convolutional neural network (CNN) to extract 
global structural patterns, and the pre-trained language model CodeT5 
to provide lexical insights by treating code as plain text. Developer 
comments are also incorporated to enrich contextual understanding. 
To combine these modalities effectively, we employ a self-attention 
weighted fusion mechanism that dynamically adjusts the contribution 
of each modality based on its relevance. This comprehensive integra-
tion enables a deeper understanding of vulnerabilities, improving the 
accuracy and efficiency of vulnerability assessment while addressing 
the dual challenges of privacy protection and feature representation.
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8. Conclusion

This study proposes a multimodal vulnerability assessment method 
based on a federated learning framework (FedMVA), effectively im-
proving performance by integrating graph structure information, lexical 
features of code, and code comments. In the design of the method, we 
introduce a weighted variance minimization loss function to optimize 
the alignment between local and global models and incorporate a 
momentum-based weight allocation strategy along with a dynamic 
learning rate mechanism to further enhance the model’s robustness 
and adaptability in heterogeneous data environments. Through ab-
lation experiments, we have validated that our multimodal fusion 
strategy significantly improves model performance within the federated 
learning framework, demonstrating its advantages in handling complex 
vulnerability assessment tasks.

In the future, we aim to improve our proposed method by integrat-
ing advanced federated learning techniques, including incorporating 
large language models (Achiam et al., 2023; Su et al., 2021) to enhance 
the model’s ability to process and understand complex textual data. 
Furthermore, we will focus on further validating FedMVA in more chal-
lenging distributed environments to assess its scalability and robustness 
in real-world applications.
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