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 A B S T R A C T

Software vulnerabilities pose significant threats to the integrity and reliability of complex systems, making their 
detection critical. In recent years, a growing body of research has explored deep learning-based approaches 
for identifying vulnerabilities, which have shown promising results. However, many of these methods ignore 
privacy and security issues. We utilize distributed learning techniques that enable local models to interact 
without data sharing. By aggregating these locally trained models, we can update the global model while 
maintaining data privacy and security. Additionally, existing methods rely on a single source of code semantic 
information. However, leveraging multiple modalities can capture diverse code representations and features. 
Specifically, graph-based representations and source code provide structural and syntactic-semantic information 
that complements traditional code analysis. In this study, we propose a novel function-level vulnerability 
detection approach MIVDL. It integrates both structured and unstructured features of source code. Then, 
it further combines the code token sequence with the Code Property Graph (CPG) for enhanced detection 
accuracy. This hybrid representation leverages the strengths of different modalities to provide a comprehensive 
understanding of code semantics. Furthermore, our approach employs a pre-trained model applied to distinct 
parts of each modality before being integrated into a single hybrid representation. This allows a unified 
analysis framework to utilize each modality’s unique features and strengths. Additionally, distributed learning 
facilitates collaborative learning and knowledge-sharing among participating entities. We evaluate MIVDL on 
three datasets (Devign, Reveal, and Big-Vul), and the results indicate that MIVDL outperformed eight state-of-
the-art baselines by 3.04∼70.73% in terms of F1-score. Therefore, combining multi-modal prompt tuning and 
distributed learning can improve performance in vulnerability detection.
1. Introduction

A software vulnerability is a security flaw or weakness within 
computer software that attackers can exploit to compromise system 
security (Johnson et al., 2011; Anon, 2020; Nord, 2017). For instance, 
the CVE-2023-20198 vulnerability can be exploited by unauthenticated 
remote attackers to target Cisco software devices. Reports from the 
Norwegian National Security Authority indicate that more than 41,000 
Cisco devices have been targeted and compromised. This highlights the 
importance of software vulnerability detection. Therefore, developing 
effective automatic software vulnerability detection methods is crucial 
for ensuring the security of software systems.

Currently, the existing methods for detecting vulnerabilities can be 
classified into two categories: software vulnerability detection meth-
ods based on machine learning (Le et al., 2022; Dam et al., 2018; 
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Wang et al., 2018) or deep learning  (Li et al., 2018; Russell et al., 
2018; Li et al., 2021b; Wu et al., 2022; Dam et al., 2017). Software 
vulnerability detection methods based on traditional machine learning 
rely on rules manually designed by experts. However, excessive de-
pendence on expert experience in rule formulation often leads to false 
positives (Wen et al., 2023). On the other hand, software vulnerability 
detection methods based on deep learning (DL)  (Zhou et al., 2019; 
Chakraborty et al., 2021; Li et al., 2021a, 2018) are capable of detecting 
vulnerabilities by automatically learning the features of vulnerable 
code. These methods can achieve higher performance in vulnerability 
detection without requiring human inspection.

Various detecting vulnerability methods have recently been pro-
posed, benefiting from the advancements in DL techniques. Compared 
to traditional methods, DL-based methods utilize complex Neural Net-
works (NNs) to automatically learn features of vulnerability from 
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Fig. 1. The prompt tuning processing between MIVDL and existing methods.
known vulnerabilities to detect software vulnerabilities. The DL-based 
methods typically process the source code into token sequences  (Li 
et al., 2021b; Wu et al., 2022; Hin et al., 2022) or graph structure 
representations (Zhou et al., 2019; Cao et al., 2022; Wen et al., 
2023). For example, VulDeePecker (Li et al., 2018) was based on 
program slicing, which segments source code according to library or 
API calls and feeds the segmented code into Recurrent Neural Networks 
(RNNs) to detect vulnerabilities. Additionally, ReVeal (Chakraborty 
et al., 2021) utilizes code property graph (CPG) and employs Graph 
Attention Networks (GAT) to learn graph-based structural properties of 
code snippets. LineVul (Fu and Tantithamthavorn, 2022) demonstrates 
better performance using the CodeBERT (Feng et al., 2020).

Though these DL-based methods have demonstrated promising per-
formance, we have identified certain limitations in these methods.
The first limitation is existing works have not fully utilized this 
modality information. Specifically, graphs provide structural infor-
mation, and code offers semantic information. Most existing work only 
used one of the graphs and code. Therefore, we use graphs, code, and 
code comments in our approach. Furthermore, previous works have 
proposed prompt information for LLMs (Wang et al., 2022; Yu et al., 
2023; Nie et al., 2022), as shown in  Fig.  1 (a). These works only input 
one type of information and construct context prompts. Our motivation 
is inspired by the multi-modal framework of GraphCodeBERT, which 
simultaneously integrates graph structures and other forms of infor-
mation during the training process. We propose multi-modal prompt 
tuning to better adapt to downstream tasks  (Schick and Schütze, 2021; 
Wang et al., 2022), as shown in  Fig.  1 (b).

The second limitation is that existing vulnerability detection 
methods (Li et al., 2021b; Cao et al., 2022) cannot address the 
limitation of information security. We simulate a real-world scenario 
where a company possesses a vulnerability detection tool that needs to 
be updated and retrained but lacks sufficient training data. To address 
this limitation, they wish to use source code from other companies to 
expand their training datasets. However, the source code is commer-
cial confidentiality and cannot be disclosed. This scenario highlights 
existing limitations in current methods.  Peters et al. (2015) proposed 
LACE2, which reduces the amount of shared data by using multi-party 
data sharing, demonstrating the effectiveness of this method. However, 
we observe that privacy concerns cannot be fully alleviated because 
sharing data among multiple participants is inevitable. Recently, feder-
ated learning (FL) has been proposed as a distributed machine learning 
method. Federated learning is an emerging machine learning paradigm 
2

that allows multiple parties to collaboratively train models without 
sharing the raw data. Unlike centralized machine learning, federated 
learning distributes the model training process to the participating 
parties, where each party only needs to train its own local model and 
then upload the model parameters to a central coordinator. The central 
coordinator aggregates the collected model parameters, generates a 
global model, and then distributes it back to the participating parties. 
This distributed training approach not only protects privacy but also 
improves the generalization performance of the model. Distributed 
learning has a wide range of application prospects in fields such as 
healthcare and finance (Xu et al., 2021), where privacy and security 
are highly important.

To this end, we propose MIVDL to improve vulnerability detection 
while protecting user privacy and data security. Firstly, we apply 
Joern (Yamaguchi et al., 2014) to parse the source code to CPG 
(see Section 3.1) and then extract graph structure information. Si-
multaneously, we extract code and comment from the function (see 
Section 3.2). Next, we combine three modality information and input 
them into GraphCodeBERT (Guo et al., 2020). To efficiently leverage 
prompt knowledge in LLMs, we incorporate prompt engineering among 
information types to enable the model to recognize the input content 
quickly (see Section 3.3). We then input this into GraphCodeBERT 
to extract features related to the source code and construct an MLM 
head for classification. Finally, we constructed a federated learning 
model that combines features from multi-party data to enhance the 
performance of the vulnerability detection model (see Section 3.3). 
Our method utilizes different datasets from various sources to ensure 
a more comprehensive understanding of vulnerabilities and maintains 
data privacy by keeping the data decentralized.

To evaluate the effectiveness of MIVDL, we employed three widely 
used datasets for vulnerability detection: Devign (Zhou et al., 2019), 
Reveal (Chakraborty et al., 2021), and Big-Vul (Fan et al., 2020). 
We conducted a comparative experiment between MIVDL and eight 
existing software vulnerability detection methods, namely SySeVR (Li 
et al., 2021b), VulDeePecker (Li et al., 2018), Devign (Zhou et al., 
2019), Reveal (Chakraborty et al., 2021), CodeBERT (Feng et al., 2020), 
CodeT5 (Wang et al., 2021), LineVul (Fu and Tantithamthavorn, 2022), 
RoBERTa-M (Do et al., 2024) The experimental results on three datasets 
indicate that MIVDL can improve F1 scores by 5.56%, 5.83%, and 
3.04%, respectively. In summary, the main contributions of this paper 
are as follows.
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• We propose MIVDL, which combines multiple information modal-
ities with prompt tuning and uses federated learning to protect 
data privacy and enhance vulnerability detection.

• We implement three information modalities, namely graphic struc-
ture, code semantics, and annotations, along with the method of 
prompt tuning.

• From the perspective of data privacy protection, we propose a 
vulnerability detection method based on horizontal joint learning.

• For the convenience of reproduction, we publicly share the code.1

2. Background and related work

2.1. Vulnerability detection

Automated software vulnerability detection is crucial for ensuring 
software security by identifying vulnerabilities and weaknesses in soft-
ware products. Currently, mainstream vulnerability detection methods 
rely not on program analysis methods  (Cherem et al., 2007; Fan 
et al., 2019; Kroening and Tautschnig, 2014; Heine and Lam, 2006) 
but on learning based on source code representations. These methods 
can be classified into two types: sequence-based methods (Fu and 
Tantithamthavorn, 2022; Li et al., 2021b; Kamiya et al., 2002) and 
graph-based methods (Hin et al., 2022; Wen et al., 2023).

Many program analysis methods or traditional vulnerability detec-
tion systems are developed based on machine learning or similarity-
based approaches  (Li et al., 2021b, 2018). These methods require 
humans to formulate detection rules (e.g., data flow analysis, abstract 
interpretation, and taint analysis) (Cheng et al., 2024). Although these 
methods have proven effective in discovering vulnerabilities in soft-
ware, they rely on rules formulated by humans. If the individuals 
formulating the rules lack sufficient experience, the rules may struggle 
to cover various vulnerabilities (Ren et al., 2024).

Addressing the above issues, learning based on source code rep-
resentations offers a practical approach. Sequence-based vulnerability 
detection methods convert source code into token sequences. For exam-
ple, SySeVR (Li et al., 2021b) uses a Bi-LSTM network to learn traversed 
AST node information. Similarly, VulDeePecker  (Li et al., 2018) em-
ploys a bidirectional Bi-LSTM network for fine-grained vulnerability 
detection. LineVul (Fu and Tantithamthavorn, 2022) leverages pre-
trained models to evaluate the impact of each input token on detection 
results, enabling line-level vulnerability detection.

Graph-based methods for detecting vulnerabilities in source code 
represent the code as graphs. For instance, Devign (Zhou et al., 2019) 
transforms source code into Code Property Graphs (CPGs) and utilizes 
Graph Neural Networks (GNNs) to learn features for classification tasks. 
Similarly, Reveal (Chakraborty et al., 2021) also uses CPGs and applies 
GGNNs (Groh et al., 2022) to learn features for vulnerability detec-
tion. Another approach, AMPLE (Wen et al., 2023) constructs a code 
structure graph, simplifies it, and uses Graph Convolutional Networks 
(GCNs) to learn features for vulnerability detection tasks.

In this study, we examined three types of information: graphs that 
offer structural details, source code that provides semantic context, 
and comments that offer supplementary information. Our experimental 
results confirmed the efficacy of our approach.

2.2. Prompt tuning

Prompt tuning was first introduced for adapting large pre-trained 
language models in NLP (Jia et al., 2021; Lester et al., 2021). Since 
various NLP tasks can be framed as ‘‘text-to-text’’ problems, specialized 
prompts guide the language model to answer specific questions (Wang 
et al., 2022). However, manually creating prompts is challenging and 
often not optimal. Recently, automatic prompt generation (Li et al., 

1 https://github.com/ntu-juking/MIVDL
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2023; Li and Liang, 2021)has become a promising method for effec-
tively adapting language models.

In software engineering, the pioneering work uses manually de-
signed contexts to enable models to utilize downstream tasks better or 
employ prompt tuning to generate appropriate prompts more aligned 
with task contexts, thereby improving model performance. For exam-
ple,  Li et al. (2023) combined vulnerability code descriptions with 
just-in-time adjustments for vulnerability assessment while evaluating 
different types of contexts.  Yu et al. (2023) proposed a smart contract 
slicing method to reduce irrelevant code and combined sliced code 
with just-in-time tuning.  Ruan et al. (2023)utilized prompt tuning 
to modify original English description inputs to generate the required 
vulnerability exploits automatically. However, these studies combined 
a single information modality with prompt tuning. Our work identified 
multiple information modalities relevant to vulnerability detection, so 
we integrated them with prompt tuning.

2.3. Distributed learning

Distributed learning aims to train high-performance, centralized 
models while preserving the privacy of the distributed training data
(Konecnỳ et al., 2016). Distributed learning can address issues such 
as data leakage and data island through coordination among mul-
tiple clients under a global aggregator. The two main concepts of 
distributed learning are local computation and transmission model (Yin 
et al., 2021). Local computation reduces some of the systemic privacy 
risks and costs associated with traditional centralized machine learning 
methods. Model transmission addresses data leakage and data silo 
issues by training confidential data stored on localized devices locally 
and then uploading the model to a global aggregator. The global 
aggregator distributes the updated model back to the localized devices, 
allowing learning from global data and ultimately achieving learning 
objectives without exchanging raw data.

Distributed learning integrates privacy protection mechanisms that 
prevent privacy leakage (Zhang et al., 2021). The emergence of dis-
tributed learning has opened up new directions for current research. 
For example, CPDP (Yamamoto et al., 2023) uses logistic regression 
and distributed learning for software defect prediction, demonstrating 
its effectiveness with 25 projects. VFBFL (Zhang et al., 2024) com-
bines vulnerability information with distributed learning for software 
vulnerability detection, addressing code island problems.

In our study, we propose a novel distributed learning-based vulner-
ability detection method where we integrate source code, graphs, com-
ments, and prompt information to extract more comprehensive vulner-
ability feature information. Compared to VFBFL, we employed more ad-
vanced techniques and evaluated MIVDL using a more comprehensive 
dataset (Fan et al., 2020), resulting in improved performance.

2.4. Large language models

The large language models (LLMs) have succeeded significantly in 
the NLP. LLMs are models trained on massive corpora with billions of 
parameters. These models exhibit exceptional comprehension abilities, 
capture knowledge from diverse domains, and are easily applicable 
to downstream tasks. Deployable LLMs are typically based on the 
Transformer architecture and come in three main types: encoder-only 
models, decoder-only models, and models with both encoder and de-
coder components. Different types of LLMs employ distinct training 
methods, influencing their suitability for different downstream tasks. 
For example, encoder-only models (CodeBERT Feng et al., 2020, Graph-
CodeBERT Guo et al., 2020) are more suitable for classification tasks, 
decoder-only models (GPT Liu et al., 2023) excel in generation tasks, 
and models with both encoder and decoder components (CodeT5 Wang 
et al., 2021) are often used for generation tasks. After training on 
large-scale data to establish a general model, these LLMs are fine-tuned 
or prompted to tailor them for downstream tasks, thereby achieving 
specific objectives.

https://github.com/ntu-juking/MIVDL
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Fig. 2. The processing framework of MIVDL.
3. Approach

This section introduces the phases of MIVDL, which integrates 
distributed learning with vulnerability detection and provides guidance 
on implementing multi-modal prompting. Fig.  2 illustrates the overall 
workflow of MIVDL, and it contains three main phases: The first 
phase is graph structure information extraction, where we slice nodes 
and extract paths to remove useless information and obtain effective 
paths. Additionally, separate the code and comments for extraction 
and combine prompt information for the path, code, and comments. 
Input these pieces of information into the model for classification. The 
second phase involves continually updating the model through dis-
tributed learning. The third phase uses a trained model for vulnerability 
detection. The following subsections detail the specifics of MIVDL.

3.1. Multi-modal prompt tuning

To effectively extract features for the vulnerability detection task, 
we explored the potential of multi-modal prompts. Previous methods 
focused on inputting only one type of information and corresponding 
prompts. Our approach emphasizes the importance of multi-modal 
prompt methods. As shown in  Fig.  1 (b), we introduce three informa-
tion modalities: (1) source code, (2) paths extracted from the source 
code, and (3) comments related to the source code.

3.1.1. Graph structure information extraction
The goal of this phase is to obtain effective paths. First, we use Joern 

to parse the source code to a CPG, which is a data structure integrating 
AST (Zhang et al., 2019), CFG (Allen, 1970), and PDG  (Ferrante et al., 
1987). Each type of graph contributes unique informational content 
to the CPG  (Yamaguchi et al., 2014). The AST provides property 
code representations for each node, reflecting structured information 
with assigned attribute orders. The CFG provides the property values 
STMT and PRED for each node and adds label information to each 
edge to provide control flow information. The PDG establishes control 
dependencies, including control and data dependencies. Each control 
dependency in the PDG is assigned an attribute condition indicating 
the truth value of the original predicate.

During the source code parsing process, we identify variables that 
have been defined but remain unused.  As shown in Fig.  3, we used 
4

Joern to parse the source code, generating node and edge information. 
The variables marked in red on the left side of the Figure are not de-
signed but are used within the function. For this variable, we observed 
on the right side of the Figure that the generated node information 
includes only three relevant nodes: parameter, parameter definition, 
and identifier. The edge information contains only two edges: 19 to 
20 and 19 to 50, which correspond to keys in the node information. 
These three nodes form two essentially meaningless paths. Therefore, 
we removed these nodes and paths.

The CPG is formally represented as 𝐺 = (𝑉 ,𝐸), where 𝑉  represents 
node information and 𝐸 represents edge information. We extract mul-
tiple paths based on the captured edge and node information. Fig.  4 
illustrates an example of a vulnerable code that was triggered, in which 
the vulnerability occurs due to accessing an array address beyond its 
designed maximum capacity. Initially, we convert the source code into 
a graph by mapping statements to AST nodes. Next, we construct paths 
based on the control and dependency information between nodes. The 
resulting paths are depicted in the right half of Fig.  4. The obtained 
paths are represented by 𝐺′ = (𝑉 ,𝐸′), where 𝑉  is the set of nodes, and 
𝐸′ = {𝑒1, 𝑒1,… , 𝑒𝑘} represents the sequence of nodes in the path.

3.1.2. Code semantic and comments extraction
Although path information provides structural details of the source 

code, they may lack programming logic (Wang et al., 2023). To address 
this limitation, we adopted a multi-modal approach. In addition to 
the structural information of the code, the semantic information is 
equally important. Therefore, we leveraged positional encoding from 
pre-trained models to extract semantic information from the source 
code. Furthermore, during our analysis of the dataset, we found that 
there were a few comments in the code. We hypothesized that com-
ment information might impact the performance of the vulnerability 
detection task, so we included comments as another information modal-
ity and investigated their effectiveness in our research question (see 
Section 5.3). Fig.  2 illustrates how code and comments were inte-
grated within the dataset. We used regular expressions to separate 
them, obtaining distinct files for the source code and comments.  In 
the dataset, some source code contains detailed contextual comments 
that explain the overall function and provide in-depth explanations of 
specific statements or code blocks, aiding the understanding of complex 
implementation logic. However, a significant portion of the source code 
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Fig. 3. Illustrating the source code parsing process using an example.
Fig. 4. Illustrating the path extraction process using an example.
lacks detailed explanations of the internal statements, with comments 
limited to simple descriptions of the functions and missing a deeper 
analysis of the implementation process. Due to the substantial amount 
of source code lacking detailed comments, handling the source code 
and comments separately is necessary. 

3.1.3. Prompt template construction
According to the types of prompt tokens, prompt templates can 

be classified into three types: hard prompt, soft prompt, and hybrid 
prompt.

Hard prompt indicate tasks by constructing task-related prompts. 
The expertise of domain specialists informs the design of these prompts. 
Consequently, the hard prompts tailored for the vulnerability detection 
task are structured as follows. 

𝑓 = Does this code snippet [X] contain a vulnerability?[Z] (1)
5

ℎ𝑎𝑟𝑑
where, [X] will be filled with the code snippet, and [Z] is the predicted 
answer.

Soft prompt contains prompts that are not human-readable and 
are continuously adjusted during the training process of downstream 
tasks. Therefore, the soft prompts for the vulnerability detection task 
are designed as follows. 

𝑓𝑠𝑜𝑓𝑡 = [SOFT] [X] [SOFT] [Z] (2)

where, [SOFT] represent prompts that are not human-readable.
Hybrid prompt combines hard prompts and soft prompts. Specif-

ically, the prompts in hard prompts typically consist of important 
keywords directly related to the task and are not allowed to be changed 
during training. The prompts in soft prompts, however, are continu-
ously modified during training and are not as critical. Therefore, the 
hybrid prompts for the vulnerability detection task are designed as 
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follows. 

𝑓ℎ𝑦𝑏𝑟𝑖𝑑 = [SOFT] code snippet [X] contain a vulnerability [SOFT] [Z]
(3)

Existing research has demonstrated that hybrid prompt perform 
better than the other two types of prompt (Li et al., 2023; Ren et al., 
2024). Therefore, we directly adopted the construction form of hybrid 
templates in our approach. We input the three types of information and 
their corresponding prompts into GraphCodeBERT. First, in Section 3.1, 
we obtain the processed paths 𝐺′, for which we construct prompt infor-
mation 𝑃 (𝐺) = {𝑝𝑔1, 𝑝𝑔2,…, 𝑝𝑔𝑙}. Next, in Section 3.2, we extract the 
code and comments and flatten them to obtain code 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑛}
and comments 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑗}. The corresponding prompt infor-
mation for the code is 𝑃 (𝐶) = {𝑝𝑐1, 𝑝𝑐2,… , 𝑝𝑐𝑚}, and for the comments 
𝑃 (𝑀) = {𝑝𝑚1, 𝑝𝑚2,… , 𝑝𝑚𝑧}. To ensure compatibility and consistency 
with the model input, we chose to use the tokenizer of PLM. We con-
catenate the prompt information and the three information modalities 
into a sequence input 𝐼 = {[𝐶𝐿𝑆], 𝑃 (𝐶), [𝑆𝐸𝑃 ], 𝐶, [𝑆𝐸𝑃 ], 𝑃 (𝐺), [𝑆𝐸𝑃 ],
𝑉 , [𝑆𝐸𝑃 ], 𝑃 (𝑀), [𝑆𝐸𝑃 ],𝑀}, where [CLS] is a special symbol indicating 
the start of the sequence, and [SEP] is a special symbol used to 
separate different data segments. GraphCodeBERT takes the sequence 
𝐼 as input and converts it into vectors. For each token, its input vector 
is constructed by summing the corresponding token and position em-
beddings. The model applies 𝑛 Transformer layers to the input vectors 
to generate contextual representations. Each Transformer layer con-
tains the same architecture with multi-head self-attention operations. 
Finally, through the model’s input, we obtain the feature vectors.

3.2. Distributed model training

From Fig.  2, we observe the model setup for distributed learning, 
which involves multiple users with their local data. We train a person-
alized model by combining multiple users. In our approach, we utilize 
horizontal distributed learning, where the model consists of multiple lo-
cal models and one global model. The network architecture of both the 
global and local models is identical. We employ feature vectors to learn, 
with the final layer used for classifying and detecting vulnerabilities. 
To ensure data privacy protection, we employ data leakage through 
differential privacy techniques (El Ouadrhiri and Abdelhadi, 2022). 
Specifically, no raw data is shared between participants; instead, only 
the model weights are shared with the central server during the model 
update phase. Furthermore, differential privacy is applied by adding 
noise during the aggregation phase. This approach safeguards against 
the inference of individual data from model updates and prevents the 
model from memorizing sensitive personal information during train-
ing.  Next, we will describe how distributed learning and vulnerability 
detection are integrated.
Algorithm 1 A model’s local training procedure at round 𝑡
Require: 𝐷𝑖, 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙, 𝛾, Epoch 𝐸, local learning rate 𝑙𝑟, Batch 𝑏
Ensure: Local model’s weights 𝜃𝑡
Initialize 𝜃𝑡 ← 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙
for each 𝑒 ∈ [1, 𝐸] do
 if 𝑒 == 1 then
 Initialize 𝜃0
 else
 𝜃𝑡 ← 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙
 end if
 for 𝑏 ∈ 𝐷𝑙𝑜𝑐𝑎𝑙 do
 𝜃𝑡 ← 𝜃𝑡 - 𝑙𝑟 ⋅∇ 𝛾 (𝜃𝑡, b)
 end for
end for
return 𝜃𝑡
First, we construct both local models and a global model. Local 

models are responsible for training on local data, while the global 
6

model interacts with these local models. Second, when a local model 
has not received additional data from the global model, it initially 
trains its own model locally and updates its weights. Third, local models 
interact with the global model by sharing updates to refine the global 
model’s weights. During the process of updating model weights, we 
employed differential privacy, as outlined in Wei et al. (2020). Specif-
ically, noise was introduced during the gradient updates phase, which 
effectively mitigates the risk of privacy leakage during data-sharing 
operations. Fourth, after the global model is updated, it distributes its 
parameters to each local model, updating their weights. Fifth, after 
completing one round of updates through steps two to four, the entire 
distributed learning process iterates a specified number of times to 
complete learning of the global model. Finally, the trained global model 
is used to predict vulnerabilities. Additionally, local models can also 
perform predictions locally.

Specifically, we train four local models using the datasets Reveal, 
Devign, and two subsets of Big-Vul. The Big-Vul dataset, due to its large 
size, is divided into two subsets through a random uniform sampling 
method, ensuring that the original distribution of vulnerabilities is 
preserved in both subsets. This guarantees an equal proportion of 
vulnerable and non-vulnerable samples across the two subsets, main-
taining consistency with the original dataset.  In Step 1, the linear layer 
weights in all models are initialized to 0. Step 2 involves local models 
starting training until each local model’s loss converges, resulting in 
weights 𝑊 0

1 , 𝑊 0
2 , 𝑊 0

3 , 𝑊 0
4 , and feature vectors 𝑛1, 𝑛2, 𝑛3, 𝑛4. Step 3 

involves the central model receiving the feature vectors 𝑛1, 𝑛2, 𝑛3, 𝑛4, 
calculating and aggregating weights 𝑊 0

1 , 𝑊 0
2 , 𝑊 0

3 , 𝑊 0
4  to obtain 𝑊 1. 

Step 4 distributes the 𝑊 1 weights to each client, which then accepts 
the weights. This process constitutes one communication round, which 
repeats steps 2, 3, and 4 until all communication rounds are completed.

Formally, 𝑛 local databases correspond to 𝑛 local models, under-
going 𝑚 communication rounds to contribute to the training. Each 
local model 𝑖 has a corresponding local dataset 𝐷𝑖. Each model is 
assigned initial parameters 𝜃 in the initial phase. After that, at the 
start of each communication round, the global model distributes the 
previous round’s parameters 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 to the local models. Upon receiv-
ing these parameters, the local models update their parameters with 
𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 and continue training on 𝐷𝑖, producing local model parame-
ters 𝜃𝑡𝑖 , as described in Algorithm 1. Subsequently, each local model 
sends the difference (𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) back to the global model. The server 
aggregates these differences from all local models using the FedAvg al-
gorithm (McMahan et al., 2017) to update the global model parameters 
to 𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 as follows: 

𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 +
𝑚
∑

𝑖=1

𝑛𝑖
𝑛𝑡
(𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) (4)

where 𝑛𝑖 is the number of samples from the local model 𝑖, and 𝑛𝑡 is 
the total number of samples from the selected clients in round 𝑡. In 
our approach, all models participate in the parameter updates, and all 
models are selected each time, so the formula is as follows: 

𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 +
𝑚
∑

𝑖=1
(𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) (5)

3.3. Vulnerability detection

During the detection phase, we apply the model trained during 
the distributed learning phase to detect potential vulnerabilities in the 
code. Specifically, in the initial phase, the graphical representation 
of the source code, the semantic representation of the source code 
itself, and accompanying comments are combined to capture latent 
information through LLM. To enhance the model’s ability to compre-
hend input content effectively, we designed distinct prompt structures 
tailored to the characteristics of various input types. Next, the LLM 
encoder embeds all information into low-dimensional vectors, and the 
MLM head learns and predicts information. Subsequently, we create a 
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local model for each dataset and simultaneously create a global one. 
The global model and local models update each other, resulting in a 
trained model. Finally, all information is fed into the trained detection 
model for vulnerability detection.

4. Experimental setup

4.1. Research questions

To evaluate MIVDL, we aim to answer the following three research 
questions:

RQ1: How does MIVDL compare to state-of-the-art function-
level vulnerability detection methods?

To answer this question, we want to compare MIVDL with state-
of-the-art function-level vulnerability detection methods (such as Sy-
SeVR Li et al., 2021b, VulDeePecker Li et al., 2018, Devign Zhou 
et al., 2019, Reveal Chakraborty et al., 2021, CodeBERT Feng et al., 
2020, CodeT5  Wang et al., 2021, LineVul Fu and Tantithamthavorn, 
2022), to evaluate its performance in terms of accuracy, efficiency, and 
applicability across various types of vulnerabilities.

RQ2: How does the impact of different information modalities 
for MIVDL?

To answer this question, we want to investigate how various infor-
mation modalities, such as code semantics, graph, and code comment, 
influence the performance of MIVFL in detecting vulnerabilities. By 
analyzing the impact of each modality, we aim to understand which 
aspects of the information contribute most to the accuracy and effec-
tiveness of MIVFL, ultimately guiding the optimization of the model for 
better vulnerability detection.

RQ3: How does the impact of distributed learning for MIVDL?
To answer this question, we want to explore the impact of dis-

tributed learning on MIVDL by evaluating how decentralized training 
across multiple data sources affects its ability to detect vulnerabilities.

4.2. Datasets

Our study evaluates MIVDL on three widely used datasets: De-
vign (Zhou et al., 2019), ReVeal (Chakraborty et al., 2021), and Big-
Vul (Fan et al., 2020). We show the details of these three datasets as 
follows.

• Devign (Zhou et al., 2019). The Devign dataset consists of func-
tions collected by FFMPeg+Qemu, comprising approximately 10k 
vulnerable functions and about 12k non-vulnerable functions. 
Devign is a balanced dataset.

• ReVeal (Fan et al., 2020). ReVeal collected from Linux Debian 
Kernel and Chromium, contains 1.6k vulnerable functions and 
approximately 16k non-vulnerable functions. ReVeal is an imbal-
anced dataset.

• Big-Vul (Chakraborty et al., 2022). Big-Vul, collected by Fan 
et al. comprises 10k vulnerable functions and about 168k non-
vulnerable functions. Big-Vul is also an imbalanced dataset.

Table  1 presents the details of these three datasets, including the 
total number of samples, the number of vulnerable samples (#Vul), 
the number of non-vulnerable samples (#Non-vul), and the ratio of 
vulnerabilities (Vul Ratio).

4.3. Performance metrics

To evaluate the effectiveness of our method, we employed the 
following four widely used evaluation metrics to evaluate MIVDL:

TP: True Positive (TP) denotes the count of instances where the 
model accurately predicts samples of the positive class. In the context 
of vulnerability detection, TP represents the cases where the model 
successfully identifies code with vulnerabilities.
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Table 1
Statistics of the datasets.
 Dataset #Samples #Vul #Non-vul Vul ratio(%) 
 Devign 22,361 10,067 12,294 45.02  
 ReVeal 18,169 1,664 16,505 9.16  
 Big-Vul 179,299 10,547 168,752 5.88  

TN: True Negative (TN) represents the count of instances where 
the model correctly identifies samples as belonging to the negative 
class. In vulnerability detection, TN refers to the cases where the model 
accurately assesses that the code is free from vulnerabilities.

FN: False Negative (FN) represents when the model mistakenly 
classifies positive samples as negative. In the context of vulnerability 
detection, FN represents instances where the model fails to identify 
genuine vulnerabilities.

FP: False Positive (FP) represents when the model erroneously clas-
sifies negative samples as positive. In vulnerability detection, FP rep-
resents situations where the model incorrectly identifies code without 
vulnerabilities as having vulnerabilities.

Accuracy: Accuracy refers to the proportion of correctly predicted 
or identified vulnerabilities relative to the total number of vulnerabili-
ties present. It is calculated as 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 .
Precision: Precision assesses the proportion of relevant vulnerabil-

ities among those retrieved. It is calculated as 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

Recall: Recall evaluates the proportion of retrieved relevant vulner-
abilities. It is calculated as 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
F1 Score: The F1 score, representing a balance between precision 

and recall, is the harmonic mean of precision and recall. It is calculated 
as 2 × Precision×Recall

Precision+Recall .

4.4. Baseline methods

We compared eight baseline methods, including token-based, graph-
based, and LLM-based vulnerability detection methods, as shown be-
low:

• SySeVR (Li et al., 2021b): SySeVR employs a bidirectional recur-
sive neural network within its vulnerability framework. It extracts 
both syntax and semantic features from the code to enhance 
vulnerability detection.

• VulDeePecker (Li et al., 2018): VulDeePecker converts code into 
an intermediary form containing semantic information like data 
and control dependencies. This intermediate representation is 
converted into vectors for input into a bidirectional LSTM-based 
neural network for detecting vulnerabilities.

• Devign (Zhou et al., 2019): Devign is a graph-based method 
that encodes function source code into a unified graph structure 
with comprehensive program semantics using graph embedding 
layers. It then utilizes Gated Recurrent Unit (GRU) layers to learn 
features of nodes within the graph, followed by a Convolutional 
(Conv) module to extract node representations for graph-level 
predictions.

• Reveal (Chakraborty et al., 2021): ReVeal employs Graph Atten-
tion Networks (GAT) to learn the structural properties of code 
snippets. GAT utilizes gated graph neural networks, resampling 
techniques, and triplet loss to learn the structural properties of 
code snippets.

• CodeBERT (Feng et al., 2020): CodeBERT is an LLM based on 
BERT and was developed for six programming languages: Java, 
Python, JavaScript, PHP, Ruby, and Go. This model utilized a 
masked language approach and incorporated token replacement 
detection objectives.
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Table 2
Comparison results between MIVDL and baselines on the three datasets in vulnerability detection. The best results for each metric are highlighted in bold.

Metrics(%)

Dataset 
Devign Reveal Big-Vul

Baseline Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

SySeVR 48.59 47.08 60.02 52.77 73.21 43.56 27.84 33.97 90.10 30.91 14.08 19.34

VulDeePecker 50.12 47.89 33.34 39.31 78.51 20.63 14.59 17.09 81.19 38.44 12.75 19.15

Devign 57.19 52.41 58.11 55.11 86.38 28.98 34.73 31.60 56.25 50.84 70.79 59.24

Reveal 62.73 53.94 71.22 61.39 85.25 29.73 64.96 40.79 53.45 48.01 70.07 56.98

CodeBERT 59.77 57.98 56.59 57.28 91.09 59.38 31.67 41.30 64.25 56.74 54.58 55.64

CodeT5 46.59 58.83 54.96 56.83 90.49 45.57 35.14 39.68 62.14 60.15 59.39 59.77

LineVul 62.75 63.98 50.51 56.45 92.43 48.86 41.35 44.79 95.82 90.68 83.31 86.84

RoBERTa-M 54.43 43.81 77.93 56.09 91.78 43.43 39.74 41.50 88.14 55.45 70.24 61.97

MIVDL 64.21 55.70 83.55 66.84 92.91 57.86 45.00 50.62 98.78 91.34 88.47 89.88
• CodeT5 (Wang et al., 2021): CodeT5 is a pre-trained language 
model designed for code generation and understanding, aiming 
to improve code-related tasks such as code generation, code 
completion, code translation, etc.

• LineVul (Fu and Tantithamthavorn, 2022): LineVul utilizes a 
transformer architecture to address three limitations in the IVDe-
tect method and performs vulnerability detection at both the line 
and function levels.

• RoBERTa-M (Do et al., 2024): RoBERTa-M uses the RoBERTa 
model to extract features from source code. These features are 
then processed using supervised machine learning algorithms for 
classification tasks. 

To ensure accuracy and fairness in our experiments, we adhered to 
the hyperparameters and dataset split specified in the original baseline 
papers. For Devign, since the code was unavailable, we replicated the 
experiments by following the methodology considered by ReVeal.

4.5. Experiment settings

To ensure a fair comparison, we follow the experimental settings of 
the baselines, such as Devign, Reveal, and Big-Vul. We used the same 
hyperparameters as detailed in the referenced work.  Consistent with 
prior research (Wen et al., 2023; Ren et al., 2024; Wu et al., 2022), 
we employed stratified sampling to partition the dataset into disjoint 
training, validation, and test sets, adhering to a split ratio of 8:1:1.  All 
baselines and our model used the same dataset partition. For Devign, 
where code was not provided, we replicated the experiments based on 
the methods described in ReVeal.

Our experimental setup employed GraphCodeBERT as our pre-
trained model with a maximum input length of 514, a learning rate 
of 2e-5, and a batch size of 16. For graph extraction, we used the 
parsing tool Joern. During the distributed learning phase, we used 
seven communication rounds. We trained the model using an NVIDIA 
GeForce RTX 4090, with a maximum of 100 iterations and early 
stopping patience set to 50 epochs.

5. Experimental results

5.1. RQ1. Effectiveness of MIVDL

To address this research problem, we compared eight methods: 
graph-based, sequence-based, and LLM-based. As illustrated in Table 
2, MIVDL demonstrates superior performance in terms of F1 scores 
and accuracy across three datasets when compared to the other mod-
els. Specifically, MIVDL improves the F1 scores by 5.45%,5.83%, and 
3.04% compared to the current best baseline models, respectively. The 
accuracy scores increased by 1.46%, 0.48%, and 2.96%, respectively.
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In imbalanced datasets, the internal class distribution imbalance 
renders accuracy an insufficient evaluation metric. As a more compre-
hensive measure, F1 score provides a more meaningful evaluation. For 
Devign, all metrics appear consistent, whereas for Reveal, metrics other 
than accuracy also remain stable. However, the remarkable perfor-
mance observed on the Big-Vul dataset suggests a potential explanation: 
Big-Vul originates from real-world vulnerabilities, which may overlap 
with the corpus used for pre-training the model. This overlap could 
contribute to the observed performance improvements. 

Previous methods leveraging LLM-based approaches typically treat 
source code as natural language sequences, enabling the model to learn 
only semantic and syntactic information. In contrast, our approach 
captures semantic and syntactic information and integrates graph at-
tributes and annotation data, thereby providing a more comprehensive 
representation. The results demonstrate that our approach outperforms 
methods solely on semantic and syntactic information, such as LineVul. 

Furthermore, even the use of foundational LLMs (e.g., CodeBERT, 
CodeT5) has achieved high F1 scores, and the performance of LLM-
based detection methods (e.g., RoBERTa-M, LineVul) indicates that 
superior results can be obtained. Notably, LineVul and RoBERTa-M 
have already outperformed all existing program analysis-based deep 
learning methods without employing program analysis. This highlights 
the potential of LLM-based vulnerability detection methods to achieve 
state-of-the-art performance. Overall, by integrating multiple types of 
information, our approach achieves better performance compared to 
purely LLM-based models. In other words, the MIVDL framework sur-
passes existing graph-based, token-based, and LLM-based methods in 
vulnerability detection. 

Integrating multiple modalities with rapid fine-tuning introduces 
certain complexities. To mitigate these challenges, we minimized task-
irrelevant factors as much as possible, as outlined in Sections 3.1.1
and 3.1.2. Furthermore, given the extensive number of parameters in 
the pre-trained model, we froze a subset of them to reduce overall 
complexity.  Therefore, the multi-modal information prompting method 
can further enhance the performance of LLMs. Additionally, we discuss 
the impact of information modalities on MIVDL in Section 5.3.

Summary for RQ1: The F1 score of MIVFL outperformed all 
baselines on three datasets. Specifically, the MIVDL achieves 
improvements of 5.45%, 5.83%, and 3.04% in F1 score. The 
results demonstrate the effectiveness of our method.

5.2. RQ2: Effectiveness of prompt information

To address this research question, we are dedicated to exploring 
the contribution of information modalities to the MIVDL approach and 
examining the effectiveness of different information modalities.
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Table 3
The impact of different information modalities on the performance of MIVDL.
 Method Devign Reveal Big-Vul

 Recall F1 Recall F1 Recall F1  
 MIVDL +C 74.33 62.63 41.63 43.79 85.12 86.55 
 MIVDL +P 81.14 59.76 38.24 40.39 83.75 84.53 
 MIVDL +C+M 82.66 62.94 41.81 45.54 85.23 86.72 
 MIVDL +P+M 81.37 61.42 37.27 42.27 82.37 85.14 
 MIVDL +C+P 83.45 65.93 43.72 49.98 86.74 88.92 
 MIVDL +C+P+M 83.55 66.84 45.00 50.62 88.47 89.88 

Our study uses three information modalities: (1) source code, (2) 
paths, and (3) comments. We investigate the impact of these three types 
of information on MIVDL. We denote source code as C, paths as P, and 
comments as M. For example, MIVDL +C indicates that we only use the 
source code as the information modality in the model.

According to Table  3, we observe that different information modal-
ities affect the performance of MIVDL differently. Firstly, comparing 
MIVDL +P and MIVDL +C, we see that MIVDL +C performs the best. 
Additionally, comparing MIVDL +P+M and MIVDL +C+M, MIVDL 
+C+M shows better performance. This indicates that the source code 
has the most significant impact on the performance of MIVDL. This also 
explains why previous studies (Fu and Tantithamthavorn, 2022) used 
source code as the information modality. Comparing MIVDL +C+P+M 
and MIVDL +C+P, we find that comments have a slight impact on the 
performance of MIVDL. This is because not every function contains 
comment information, and not all comments are relevant to vulnera-
bilities. Note Table  3 does not include the case of MIVDL +M because 
we observed that not all code contains comments. Therefore, comments 
were not evaluated as a standalone information modality but rather 
as an adjunct to other modalities. Next, we compared three methods: 
MIVFL+C, MIVFL+C+P, and MIVFL+C+P+M. The results indicate that 
as the number of information modalities increases, the model per-
formance improves. This is because different information modalities 
provide distinct content: source code offers syntax information, path 
provides structural information, and comments further explain the 
source code.

Summary for RQ2: The source code has the most signifi-
cant impact on MIVDL, followed by path, while the influence 
of comments is relatively minimal. MIVDL, which utilizes 
three types of information, improved the F1 score by 4.21%, 
6.83%, and 3.33% across the three datasets compared to the 
method that only used source code. Furthermore, recall can be 
increased by 9.22%, 3.37%, and 3.35%.

5.3. RQ3: Effectiveness of distributed model training

To address this research question, we are dedicated to exploring the 
contribution of distributed learning to the MIVDL approach.  Fig.  5 il-
lustrates the performance of MIVDL with and without using distributed 
learning. The red bars represent the performance with distributed 
learning, while the orange bars represent the performance without 
distributed learning.  For methods that do not use distributed learning, 
we use all data not included in the test setting or validation set as 
the training set to ensure fairness in data utilization.  We evaluated 
the method on three datasets using four evaluation metrics, and the 
results show that MIVDL with distributed learning outperforms the 
method without distributed learning. Specifically, MIVDL with dis-
tributed learning achieved similar performance by four metrics (see 
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Fig. 5. The impact of distributed learning for MIVDL.

Fig. 6. The impact of different communication rounds on MIVDL performance.

Section 4.3). Additionally, the use of distributed learning ensures data 
security.

Distributed learning is influenced by various factors, among which 
uneven data distribution can result in minimal performance improve-
ment. Table  1 shows the three datasets exhibit an uneven distribution of 
vulnerabilities. Model updates on devices may conflict with each other, 
leading to unstable convergence of the global model. However, using 
distributed learning allows each local model to be trained according to 
its own data, producing a model that better meets its specific needs. 
When these local models are aggregated, they generate a robust and 
adaptable global model. Consequently, such a model is well-suited to 
handle data heterogeneity across different devices and can show better 
performance. The results indicate that vulnerability detection can be 
performed with a slight performance improvement.

Summary for RQ3: The performance of using distributed 
learning is better than that of non-distributed approaches, 
while also ensuring data privacy.

6. Discussion

6.1. Performance impact of different communication rounds

Our empirical study finds that the number of communications in 
federated learning might affect the performance of MIVDL. Therefore, 
we investigated the impact of different communication rounds on 
model performance.  Fig.  6 shows the results of different communica-
tion rounds on the validation set.  We explored communication rounds 
1, 3, 5, 7, 9, and 11. Using 7 communication rounds, all metrics except 
for the precision score were higher than in other rounds. The precision 
score did not show a consistent trend across different communication 
rounds. We speculate that this may be related to the class imbalance 
issue. The results indicate that F1, Accuracy, and Recall performed best 
in the seventh communication round. Thus, we selected 7 rounds for 
MIVDL.
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Table 4
The impact of different prompt templates on the performance of MIVDL.
 Template Devign Reveal Big-Vul

 Recall F1 Recall F1 Recall F1  
 H1 [SOFT] code snippet [X], graph [G], comment [C] contain a vulnerability [SOFT] [Z] 83.55 66.84 45.00 50.62 88.47 89.88 
 H2 [SOFT] code snippet [X], path [G], comment [C] contain a vulnerability [SOFT] [Z] 82.73 65.20 42.27 49.27 83.75 87.53 
 H3 [SOFT] code gadget [X], graph [G], comment [C] contain a vulnerability [SOFT] [Z] 83.16 66.58 43.72 48.98 85.23 87.72 
 H4 [SOFT] code snippet [X], graph [G], annotate [C] contain a vulnerability [SOFT] [Z] 83.21 65.41 43.65 49.56 87.16 88.64 
 H5 [SOFT] code snippet [X], graph [G], comment [C] contain a bug [SOFT] [Z] 82.28 65.44 43.72 47.12 86.43 87.92 
 N1 [SOFT] code snippet [X], graph [G], comment [C] is classified into two categories [SOFT] [Z] 71.37 61.42 46.63 44.16 82.37 82.14 
 N2 [SOFT] text [X], image [G], picture [C] contain a vulnerability [SOFT] [Z] 76.34 62.93 38.62 45.79 83.74 83.59 
 N3 [SOFT] text [X], image [G] picture [C] is classified into two categories [SOFT] [Z] 64.63 35.38 35.89 43.16 82.95 71.02 
Fig. 7. The comparison results between MIVDL and seven baselines in MCC.
6.2. Performance comparison in terms of MCC

In our evaluation datasets, we discovered an issue of class imbal-
ance (see Section 4.2). Therefore, we used the Matthews Correlation 
Coefficient (MCC) as a metric further to evaluate the performance of 
our model (Tanha et al., 2020). MCC is a metric for evaluating the 
performance of binary classifiers. It accounts for true positives, true 
negatives, and false positives. MCC ranges from −1 to 1, where 1 
indicates perfect prediction, 0 indicates random prediction, and −1 
indicates complete mismatch. The specific formula is as follows: 

MCC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(6)

 Fig.  7 shows the performance of different methods on two imbalanced 
datasets. MIVDL achieved the highest MCC scores on two datasets. 
Specifically, the score on the Big-Vul dataset is close to 1, indicating 
excellent model predictions. Additionally, the score on the Reveal 
dataset is 5.49% higher than the best previous score, demonstrating 
that MIVDL outperforms the baseline.

6.3. Performance impact of different prompt templates

In this subsection, we mainly discuss the impact of keyword seman-
tics in prompt templates. Section 3.1.3 introduces hybrid prompts in the 
MIVDL, where the templates combine keywords from hard prompts. We 
explore the influence of different keywords on MIVDL. We did not study 
the soft prompts in the hybrid templates because this part is learned and 
explored by the model during downstream tasks.
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To investigate the impact of keyword semantics on MIVDL and the 
specific manifestation of this impact, we designed a set of keywords, 
as shown in Table  4. First, we set up task-related keywords and input-
related prompt words, designing five template s (H1, H2, H3, H4, H5). 
Next, we designed two more sets of templates: one with keywords 
unrelated to the task but related to the input, and the other with 
keywords related to the task but irrelevant to the input (N1, N2). 
Finally, we designed a set of templates with keywords unrelated to the 
task and the input (N3).

By comparing task-related keywords and input-related prompt wo-
rds, we find that setting irrelevant prompts significantly affects the 
method’s performance. Specifically, the performance was the worst 
in N3, where all keywords were irrelevant. Additionally, comparing 
N1 and N2 reveals that templates unrelated to the task have a more 
significant impact. This may be due to the restriction on the model’s un-
derstanding and reasoning capabilities. Furthermore, we explored the 
impact of synonymous keywords on the templates. H1 demonstrated 
the best performance.

We used the GraphCodeBERT model as the base for our training. 
The common separators are as follows: [SEP], [CLS], [MASK], [PAD], 
and [UNK]. The specific embedding vectors for these separators do 
not significantly affect the model’s performance. Furthermore, in the 
[SOFT] section, the inference phase may encounter delimiters that 
are unknown to us. To mitigate potential performance degradation 
due to these unknown separators, we conducted multiple repeated 
experiments. 
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Table 5
Wilcoxon test between MIVDL and seven baselines on F1 metrics.
 Baselines Devign Cliff’s Delta Reveal Cliff’s Delta Big-Vul Cliff’s Delta 
 SySeVR ** large ** large ** large  
 VulDeePecker ** large ** large ** large  
 Devign ** large ** large ** large  
 Reveal ** large ** large ** large  
 AMPLE ** large ** large ** large  
 LineVul ** large ** large ** large  
 RoBERTa-M ** large ** large ** large  
Notes: *** means 𝑝-value <0.001, ** means 𝑝-value <0.01, * means 𝑝-value <0.05.
Table 6
Wilcoxon test across different modalities based on their F1 metrics.
Wilcoxon

Dataset Devign Reveal Big-Vul

Method MIVDL +C MIVDL +P MIVDL +C+P MIVDL +C MIVDL +P MIVDL +C+P MIVDL +C MIVDL +P MIVDL +C+P
MIVDL +C+M * – – ** – – * – –
MIVDL +C+P ** ** – ** ** – ** ** –
MIVDL +P+M – ** – – ** – – * –
MIVDL +C+P+M – – ** – – ** – – *

Notes: *** means 𝑝-value <0.001, ** means 𝑝-value <0.01, * means 𝑝-value <0.05, (-) indicates no comparison.
6.4. Statistical analysis on the performance of MIVDL

The Wilcoxon test is often used to determine whether the dif-
ference between two means is statistically significant (i.e. when the 
computed 𝑝-value is less than 0.05).  We employ the Wilcoxon rank-
sum test (Wilcoxon, 1992) to assess whether the superior performance 
of MIVDL is attributable to chance. The Cliff’s Delta value spans from 
[−1, 1]. A value of 0 indicates no difference between the two datasets. 
The metric reaches a value of 1 when all elements in one dataset 
exceed those in the other, and −1 when the opposite is true, with 
all elements in the second dataset exceeding those in the first. When 
0.148 ≤ ||d|| < 0.33, the effect size is deemed small; when 0.33 ≤
||d|| < 0.474, it is considered medium; and when ||d|| ≥ 0.474, it is 
classified as large.  Specifically, we compare the F1 scores of MIVDL 
with those of the baseline methods to assess the presence of signifi-
cant differences. Additionally, we investigated whether the integration 
of different modalities, as presented in Table  3, exhibits statistically 
significant differences. The comparison results with the baseline are 
presented in Table  5.

We evaluated and compared the performance of MIVDL against the 
baseline methods using the same test set.  The results indicate that 
the p-values between MIVDL and all baseline methods are less than 
0.01, and the effect size of Cliff’s Delta was greater than 0.474 in all 
instances. This signifies a large effect size, highlighting a statistically 
significant difference in performance.  Furthermore, a similar compari-
son was conducted to assess the integration of different modalities, with 
the results presented in Table  6.

Overall, the integration of different modalities also shows significant 
differences, further validating the effectiveness of our method. How-
ever, when performing multiple significance tests on MIVDL with added 
comments on the Big-Vul dataset, not all tests yielded significant re-
sults, suggesting a certain degree of randomness. Upon further analysis, 
we found that the Big-Vul dataset contains very few comments, which 
do not substantially enhance performance. In contrast, incorporating 
comments into MIVDL proved to be effective for the other two datasets. 

6.5. Qualitative analysis

We extend our analysis by evaluating MIVDL on real-world datasets. 
Furthermore, we perform a comparative analysis with LineVul, which 
leverages large language models (LLMs) but relies solely on the se-
mantic information extracted from source code. For this evaluation, 
we selected the PreciseBug dataset (He et al., 2023). Rather than em-
ploying the entire dataset, we specifically focused on C/C++ samples. 
We curated 1000 vulnerability-containing samples from this subset 
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Table 7
Statistics of the datasets.
 Type Description LineVul MIVDL 
 CWE-787 Out-of-bounds Write 39 45  
 CWE-20 Improper Input Validation 35 34  
 CWE-416 Use After Free 32 50  
 CWE-22 Improper Limitation of a Pathname 

to a Restricted Directory
22 34  

 CWE-190 Integer Overflow or Wraparound 42 49  
 CWE-287 Improper Authentication 45 39  
 CWE-119 Buffer Overflow 40 45  
 CWE-200 Exposure of Sensitive 55 51  
 CWE-476 NULL Pointer Dereference 19 35  
 CWE-125 Out-of-bounds Read 40 43  

based on the 2024 CWE high-risk vulnerability list (MITRE, 2024). The 
selected types are shown in Table  7. 

For statistical analysis, we selected 10 distinct types of vulnera-
bilities and assigned 100 vulnerability-containing functions in each 
kind. This selection enabled a systematic comparison of the perfor-
mance of MIVDL and LineVul. The final two columns indicate the 
number of vulnerabilities identified by each method across 100 distinct 
vulnerable functions. The comparison results are shown in Table  7. 
The results indicate that MIVDL outperforms LineVul in detection 
accuracy for multiple vulnerability types. Notably, many of the most 
critical vulnerabilities, as outlined in the list of the most dangerous 
software weaknesses (MITRE, 2024), rely on complex conditional state-
ments, loop structures, and other intricate control flow behaviors. Ex-
amples of such vulnerabilities include Use-After-Free, Integer Overflow 
or Wraparound, and Buffer Overflow. Our approach leverages graph 
structures to analyze complex control flow patterns effectively, achiev-
ing superior performance. However, the performance improvement 
was less pronounced for vulnerabilities such as Improper Authentica-
tion and Exposure of Sensitive Information. This may be attributed 
to the model’s inability to fully capture relevant features during the 
communication process, resulting in some loss of critical information. 
Nevertheless, the performance of our method on these two vulnerability 
types is only marginally lower than that of LineVul. 

6.6. Training time

We evaluate the time efficiency of various methods, explicitly ex-
amining the time required for model convergence during training. To 
ensure a fair comparison, we standardized key factors, including the 
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Table 8
The cost of training time in different methods.
Method

Dataset Devign Reveal

Train time Round Train time Round
fine-tuning 17358 (s) 100 16485 (s) 100

prompt tuning 3400 (s) 11 3807 (s) 15

training data size, learning rate, batch size, and loss-stopping threshold. 
The comparison results, which encompass both prompt tuning and 
regular fine-tuning, are presented in Table  8. 

The results presented in Table  8 indicate that prompt tuning re-
quires significantly less time, achieving convergence by the 11th round. 
In contrast, with fine-tuning, the model fails to reach the convergence 
threshold even after completing the maximum number of training 
rounds (i.e., 100 rounds). A comparison of training times highlights 
that prompt tuning substantially reduces the overall training duration. 
In summary, prompt learning saves considerable time and underscores 
our proposed method’s efficiency and effectiveness. 

6.7. Threats to validity

External threats. The external threats we studied mainly originate 
from the datasets. The three datasets evaluated by MIVDL are widely 
used in previous research  (Wen et al., 2023; Fu and Tantithamthavorn, 
2022). However, these datasets only include C/C++, excluding other 
programming languages such as Java, PHP, or Python. In the future, 
we will expand the programming languages in the datasets to evaluate 
MIVDL.

Internal threats. The internal threats we studied mainly:  1. Mod-
ular Design: Rather than fully integrating modalities at all levels, 
we propose a modular approach wherein each modality is managed 
independently within specialized modules, thereby preserving distinct 
boundaries among them. This strategy may uphold interpretability 
while benefiting from the complementary information each modality 
provides. 2. Model Simplification: To reduce the complexity intro-
duced by multiple modalities, we employ techniques such as prun-
ing, which can simplify the model without significantly compromising 
performance, thus improving both scalability and interpretability. 3. 
Visualization Tools: We may utilize existing visualization tools that 
facilitate the tracking of information flow across the modalities, thereby 
empowering users to better understand how the model processes and 
integrates various types of data.  Additionally, MIVDL is controlled 
by multiple parameters, such as learning rate and optimizer, which 
may affect the effectiveness of our approach. As the scale of the 
dataset increases, finding the optimal parameter settings becomes more 
challenging. However, our research is not aimed at finding the optimal 
parameter settings. By comparing the performance of MIVDL with 
the baseline, MIVDL already outperforms the baseline without seeking 
optimal parameters. Therefore, the performance presented in this paper 
can be considered a lower bound of the method, with the potential for 
further improvement through parameter tuning.

Construct threats. The construct threats we studied mainly stem 
from the selected performance metrics. We used four commonly used 
performance metrics to evaluate the performance of MIVDL. However, 
due to the class imbalance in the dataset, we also considered using MCC 
to ensure the study’s rigor.

7. Conclusion

In this work, we proposed a novel vulnerability detector capable 
of detecting various vulnerabilities. MIVDL first identifies the source 
code, separating comments from the source code, and then extracts the 
paths of the code segments. These three types of information are then 
augmented with prompt information and input into the LLM, leveraging 
the pre-trained knowledge of the LLM to generate features. Finally, 
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we use federated learning to interact with the features, enhancing the 
data and ensuring data security. Evaluation results indicate that MIVDL 
outperforms state-of-the-art detectors across three datasets.

In the future, we first want to consider vulnerabilities in other 
programming languages (such as Java and Python). We second want 
to consider better modal fusion methods. We third want to consider 
other new distributed learning methods.
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Konecnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D., 2016. 
Federated learning: Strategies for improving communication efficiency. 8, arXiv 
preprint arXiv:1610.05492.

Kroening, D., Tautschnig, M., 2014. CBMC–C bounded model checker: (competition con-
tribution). In: Tools and Algorithms for the Construction and Analysis of Systems: 
20th International Conference, TACAS 2014, Held As Part of the European Joint 
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, 
April 5–13, 2014. Proceedings 20. Springer, Berlin, Heidelberg, pp. 389–391.

Le, T.H., Chen, H., Babar, M.A., 2022. A survey on data-driven software vulnerability 
assessment and prioritization. ACM Comput. Surv. 55 (5), 1–39.

Lester, B., Al-Rfou, R., Constant, N., 2021. The power of scale for parameter-efficient 
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in 
Natural Language Processing. Association for Computational Linguistics, Online and 
Punta Cana, Dominican Republic, pp. 3045–3059.

Li, X.L., Liang, P., 2021. Prefix-tuning: Optimizing continuous prompts for generation. 
In: Proceedings of the 59th Annual Meeting of the Association for Computational 
Linguistics and the 11th International Joint Conference on Natural Language 
Processing (Volume 1: Long Papers). Association for Computational Linguistics, pp. 
4582–4597, (Online).

Li, X., Ren, X., Xue, Y., Xing, Z., Sun, J., 2023. Prediction of vulnerability characteristics 
based on vulnerability description and prompt learning. In: 2023 IEEE International 
Conference on Software Analysis, Evolution and Reengineering. SANER, IEEE, 
Taipa, Macao, pp. 604–615.

Li, Y., Wang, S., Nguyen, T.N., 2021a. Vulnerability detection with fine-grained 
interpretations. In: Proceedings of the 29th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations of Software 
Engineering. Association for Computing Machinery, New York, NY, USA, pp. 
292–303.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2021b. Sysevr: A framework for using 
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secur. 
Comput. 19 (4), 2244–2258.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018. Vuldeepecker: 
A deep learning-based system for vulnerability detection. arXiv preprint arXiv:
1801.01681.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J., 2023. GPT understands, 
too. AI Open.

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017. 
Communication-efficient learning of deep networks from decentralized data. In: 
Artificial Intelligence and Statistics. PMLR, pp. 1273–1282.

MITRE, 2024. 2024 CWE top 25 most dangerous software weaknesses. https://cwe.
mitre.org/top25/archive/2024/2024_cwe_top25.html/, (Online; accessed 2024).

Nie, E., Liang, S., Schmid, H., Schütze, H., 2022. Cross-lingual retrieval augmented 
prompt for low-resource languages. arXiv e-prints arXiv–2212.

Nord, R.L., 2017. Software vulnerabilities, defects, and design flaws: A technical debt 
perspective. In: Fourteenth Annual Acquisition Research Symposium. Acquisition 
Research Program, Boston, USA, p. 451.

Peters, F., Menzies, T., Layman, L., 2015. LACE2: Better privacy-preserving data sharing 
for cross project defect prediction. In: 2015 IEEE/ACM 37th IEEE International 
Conference on Software Engineering. vol. 1, IEEE, pp. 801–811.

Ren, Z., Ju, X., Chen, X., Shen, H., 2024. ProRLearn: boosting prompt tuning-based 
vulnerability detection by reinforcement learning. Autom. Softw. Eng. 31 (2), 38.

Ruan, X., Yu, Y., Ma, W., Cai, B., 2023. Prompt learning for developing software 
exploits. In: Proceedings of the 14th Asia-Pacific Symposium on Internetware. pp. 
154–164.
13
Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P., 
McConley, M., 2018. Automated vulnerability detection in source code using deep 
representation learning. In: 2018 17th IEEE International Conference on Machine 
Learning and Applications. ICMLA, IEEE, Orlando, FL, USA, pp. 757–762.

Schick, T., Schütze, H., 2021. Exploiting cloze-questions for few-shot text classification 
and natural language inference. In: Proceedings of the 16th Conference of the 
European Chapter of the Association for Computational Linguistics: Main Volume. 
Association for Computational Linguistics, Online, pp. 255–269.

Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., Asadpour, M., 2020. Boosting methods 
for multi-class imbalanced data classification: an experimental review. J. Big Data 
7 (1), 1–47.

Wang, S., Liu, T., Nam, J., Tan, L., 2018. Deep semantic feature learning for software 
defect prediction. IEEE Trans. Softw. Eng. 46 (12), 1267–1293.

Wang, M., Tao, C., Guo, H., 2023. LCVD: Loop-oriented code vulnerability detection 
via graph neural network. J. Syst. Softw. 202, 111706.

Wang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv 
preprint arXiv:2109.00859.

Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., Lyu, M.R., 2022. No more fine-tuning? 
an experimental evaluation of prompt tuning in code intelligence. In: Proceedings 
of the 30th ACM Joint European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering. Association for Computing Machinery, 
New York, NY, USA, pp. 382–394.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek, T.Q., Poor, H.V., 
2020. Federated learning with differential privacy: Algorithms and performance 
analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469.

Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q., 2023. Vulnerability 
detection with graph simplification and enhanced graph representation learning. 
arXiv preprint arXiv:2302.04675.

Wilcoxon, F., 1992. Individual comparisons by ranking methods. In: Breakthroughs in 
Statistics: Methodology and Distribution. Springer, pp. 196–202.

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H., 2022. VulCNN: An image-
inspired scalable vulnerability detection system. In: Proceedings of the 44th 
International Conference on Software Engineering. Association for Computing 
Machinery, Pittsburgh, Pennsylvania, pp. 2365–2376.

Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F., 2021. Federated learning 
for healthcare informatics. J. Heal. Informatics Res. 5, 1–19.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and 
Privacy. IEEE, pp. 590–604.

Yamamoto, H., Wang, D., Rajbahadur, G.K., Kondo, M., Kamei, Y., Ubayashi, N., 
2023. Towards privacy preserving cross project defect prediction with federated 
learning. In: 2023 IEEE International Conference on Software Analysis, Evolution 
and Reengineering. SANER, IEEE, pp. 485–496.

Yin, L., Feng, J., Xun, H., Sun, Z., Cheng, X., 2021. A privacy-preserving federated 
learning for multiparty data sharing in social IoTs. IEEE Trans. Netw. Sci. Eng. 8 
(3), 2706–2718.

Yu, L., Lu, J., Liu, X., Yang, L., Zhang, F., Ma, J., 2023. PSCVFinder: A prompt-tuning 
based framework for smart contract vulnerability detection. In: 2023 IEEE 34th 
International Symposium on Software Reliability Engineering. ISSRE, IEEE, pp. 
556–567.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019. A novel neural 
source code representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st 
International Conference on Software Engineering. ICSE, IEEE, pp. 783–794.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y., 2021. A survey on federated learning. 
Knowl.-Based Syst. 216, 106775.

Zhang, C., Yu, T., Liu, B., Xin, Y., 2024. Vulnerability detection based on federated 
learning. Inf. Softw. Technol. 167, 107371.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability 
identification by learning comprehensive program semantics via graph neural 
networks. Adv. Neural Inf. Process. Syst. 32.

Zilong Ren is pursuing a Master’s degree at the School of Artificial Intelligence and 
Computer Science, Nantong University. His research interests include vulnerability 
detection.

Xiaolin Ju (Member, IEEE) was born in April 1976. He received a B.S. in information 
science from Wuhan University in 1998, an M.Sc. degree in computer science from 
Southeast University in 2004, and a Ph.D. in computer science from the Chinese 
University of Mining Technology in 2014. He is currently an Associate Professor at the 
School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 
China. His research interests include software testing, such as collective intelligence, 
deep learning testing and optimization, and software defects analysis.

Xiang Chen received a B.Sc. in the school of management from Xi’an Jiaotong 
University, China, in 2002. Then, he received his M.Sc. and Ph.D. in computer software 

http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://arxiv.org/abs/1610.05492
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://arxiv.org/abs/2109.00859
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://arxiv.org/abs/2302.04675
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61


The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
and theory from Nanjing University, China, in 2008 and 2011, respectively. He is 
currently an Associate Professor at the School of Artificial Intelligence and Computer 
Science, Nantong University, Nantong, China. He has authored or co-authored more 
than 120 papers in refereed journals or conferences, such as IEEE Transactions on 
Software Engineering, ACM Transactions on Software Engineering and Methodology, 
Empirical Software Engineering, Information and Software Technology, Journal of 
Systems and Software, IEEE Transactions on Reliability, Journal of Software: Evolution 
and Process, Software - Practice and Experience, Automated Software Engineering, 
Journal of Computer Science and Technology, IET Software, Software Quality Journal, 
Knowledge-based Systems, International Conference on Software Engineering (ICSE), 
The ACM Joint European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering (ESEC/FSE), International Conference Automated 
Software Engineering (ASE), International Conference on Software Maintenance and 
Evolution (ICSME), International Conference on Program Comprehension (ICPC), and 
International Conference on Software Analysis, Evolution and Reengineering (SANER). 
14
His research interests include software engineering, particularly software testing and 
maintenance, software repository mining, and empirical software engineering. He 
received two ACM SIGSOFT distinguished paper awards in ICSE 2021 and ICPC 2023. 
He is the editorial board member of Information and Software Technology. More 
information about him can be found at: https://xchencs.github.io

Yubin Qu was born in Nanyang, China in 1981. He received the B.S. and M.S. degrees 
in Computer Science and Technology from Henan Polytechnic University in China 
in 2004 and 2008. He is currently pursuing a doctoral degree at Army Engineering 
University of PLA. Since 2022, he has been an associate professor with Information 
Engineering Institute, Jiangsu College of Engineering and Technology. He is the author 
of more than 10 articles. His research interests include software maintenance, software 
testing, and machine learning.

https://xchencs.github.io

	Improving distributed learning-based vulnerability detection via multi-modal prompt tuning
	Introduction
	Background and Related Work
	Vulnerability Detection
	Prompt Tuning
	Distributed Learning
	Large Language Models

	Approach
	Multi-modal Prompt Tuning
	Graph Structure Information Extraction
	Code Semantic and Comments Extraction
	Prompt Template Construction

	Distributed Model Training
	Vulnerability Detection

	Experimental Setup
	Research Questions
	Datasets
	Performance Metrics
	Baseline Methods
	Experiment Settings

	Experimental Results
	RQ1. Effectiveness of MIVDL
	RQ2: Effectiveness of Prompt Information
	RQ3: Effectiveness of Distributed Model Training

	Discussion
	Performance impact of Different Communication Rounds
	Performance comparison in terms of MCC
	Performance impact of Different Prompt Templates
	Statistical Analysis on the performance of MIVDL
	Qualitative Analysis
	Training Time
	Threats to Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


