
The Journal of Systems and Software 226 (2025) 112442

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Improving distributed learning-based vulnerability detection via

multi-modal prompt tuningI

Zilong Ren a, Xiaolin Ju a ,∗, Xiang Chen a ,∗, Yubin Qu b

a School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
b Jiangsu College of Engineering and Technology, Nantong, China

A R T I C L E I N F O

Keywords:
Vulnerability detection
Multiple modalities
Deep learning
Distributed learning

 A B S T R A C T

Software vulnerabilities pose significant threats to the integrity and reliability of complex systems, making their
detection critical. In recent years, a growing body of research has explored deep learning-based approaches
for identifying vulnerabilities, which have shown promising results. However, many of these methods ignore
privacy and security issues. We utilize distributed learning techniques that enable local models to interact
without data sharing. By aggregating these locally trained models, we can update the global model while
maintaining data privacy and security. Additionally, existing methods rely on a single source of code semantic
information. However, leveraging multiple modalities can capture diverse code representations and features.
Specifically, graph-based representations and source code provide structural and syntactic-semantic information
that complements traditional code analysis. In this study, we propose a novel function-level vulnerability
detection approach MIVDL. It integrates both structured and unstructured features of source code. Then,
it further combines the code token sequence with the Code Property Graph (CPG) for enhanced detection
accuracy. This hybrid representation leverages the strengths of different modalities to provide a comprehensive
understanding of code semantics. Furthermore, our approach employs a pre-trained model applied to distinct
parts of each modality before being integrated into a single hybrid representation. This allows a unified
analysis framework to utilize each modality’s unique features and strengths. Additionally, distributed learning
facilitates collaborative learning and knowledge-sharing among participating entities. We evaluate MIVDL on
three datasets (Devign, Reveal, and Big-Vul), and the results indicate that MIVDL outperformed eight state-of-
the-art baselines by 3.04∼70.73% in terms of F1-score. Therefore, combining multi-modal prompt tuning and
distributed learning can improve performance in vulnerability detection.
1. Introduction

A software vulnerability is a security flaw or weakness within
computer software that attackers can exploit to compromise system
security (Johnson et al., 2011; Anon, 2020; Nord, 2017). For instance,
the CVE-2023-20198 vulnerability can be exploited by unauthenticated
remote attackers to target Cisco software devices. Reports from the
Norwegian National Security Authority indicate that more than 41,000
Cisco devices have been targeted and compromised. This highlights the
importance of software vulnerability detection. Therefore, developing
effective automatic software vulnerability detection methods is crucial
for ensuring the security of software systems.

Currently, the existing methods for detecting vulnerabilities can be
classified into two categories: software vulnerability detection meth-
ods based on machine learning (Le et al., 2022; Dam et al., 2018;

I Editor: Alexander Serebrenik.
∗ Corresponding authors.
E-mail addresses: Zilongren23@gmail.com (Z. Ren), Ju.xl@ntu.edu.cn (X. Ju), Xchencs@ntu.edu.cn (X. Chen), Quyubin@hotmail.com (Y. Qu).

Wang et al., 2018) or deep learning (Li et al., 2018; Russell et al.,
2018; Li et al., 2021b; Wu et al., 2022; Dam et al., 2017). Software
vulnerability detection methods based on traditional machine learning
rely on rules manually designed by experts. However, excessive de-
pendence on expert experience in rule formulation often leads to false
positives (Wen et al., 2023). On the other hand, software vulnerability
detection methods based on deep learning (DL) (Zhou et al., 2019;
Chakraborty et al., 2021; Li et al., 2021a, 2018) are capable of detecting
vulnerabilities by automatically learning the features of vulnerable
code. These methods can achieve higher performance in vulnerability
detection without requiring human inspection.

Various detecting vulnerability methods have recently been pro-
posed, benefiting from the advancements in DL techniques. Compared
to traditional methods, DL-based methods utilize complex Neural Net-
works (NNs) to automatically learn features of vulnerability from
vailable online 27 March 2025
164-1212/© 2025 Elsevier Inc. All rights are reserved, including those for text and

https://doi.org/10.1016/j.jss.2025.112442
Received 15 October 2024; Received in revised form 18 February 2025; Accepted 1
data mining, AI training, and similar technologies.

6 March 2025

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0003-2579-5359
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0001-5222-4020
mailto:Zilongren23@gmail.com
mailto:Ju.xl@ntu.edu.cn
mailto:Xchencs@ntu.edu.cn
mailto:Quyubin@hotmail.com
https://doi.org/10.1016/j.jss.2025.112442
https://doi.org/10.1016/j.jss.2025.112442

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Fig. 1. The prompt tuning processing between MIVDL and existing methods.
known vulnerabilities to detect software vulnerabilities. The DL-based
methods typically process the source code into token sequences (Li
et al., 2021b; Wu et al., 2022; Hin et al., 2022) or graph structure
representations (Zhou et al., 2019; Cao et al., 2022; Wen et al.,
2023). For example, VulDeePecker (Li et al., 2018) was based on
program slicing, which segments source code according to library or
API calls and feeds the segmented code into Recurrent Neural Networks
(RNNs) to detect vulnerabilities. Additionally, ReVeal (Chakraborty
et al., 2021) utilizes code property graph (CPG) and employs Graph
Attention Networks (GAT) to learn graph-based structural properties of
code snippets. LineVul (Fu and Tantithamthavorn, 2022) demonstrates
better performance using the CodeBERT (Feng et al., 2020).

Though these DL-based methods have demonstrated promising per-
formance, we have identified certain limitations in these methods.
The first limitation is existing works have not fully utilized this
modality information. Specifically, graphs provide structural infor-
mation, and code offers semantic information. Most existing work only
used one of the graphs and code. Therefore, we use graphs, code, and
code comments in our approach. Furthermore, previous works have
proposed prompt information for LLMs (Wang et al., 2022; Yu et al.,
2023; Nie et al., 2022), as shown in Fig. 1 (a). These works only input
one type of information and construct context prompts. Our motivation
is inspired by the multi-modal framework of GraphCodeBERT, which
simultaneously integrates graph structures and other forms of infor-
mation during the training process. We propose multi-modal prompt
tuning to better adapt to downstream tasks (Schick and Schütze, 2021;
Wang et al., 2022), as shown in Fig. 1 (b).

The second limitation is that existing vulnerability detection
methods (Li et al., 2021b; Cao et al., 2022) cannot address the
limitation of information security. We simulate a real-world scenario
where a company possesses a vulnerability detection tool that needs to
be updated and retrained but lacks sufficient training data. To address
this limitation, they wish to use source code from other companies to
expand their training datasets. However, the source code is commer-
cial confidentiality and cannot be disclosed. This scenario highlights
existing limitations in current methods. Peters et al. (2015) proposed
LACE2, which reduces the amount of shared data by using multi-party
data sharing, demonstrating the effectiveness of this method. However,
we observe that privacy concerns cannot be fully alleviated because
sharing data among multiple participants is inevitable. Recently, feder-
ated learning (FL) has been proposed as a distributed machine learning
method. Federated learning is an emerging machine learning paradigm
2

that allows multiple parties to collaboratively train models without
sharing the raw data. Unlike centralized machine learning, federated
learning distributes the model training process to the participating
parties, where each party only needs to train its own local model and
then upload the model parameters to a central coordinator. The central
coordinator aggregates the collected model parameters, generates a
global model, and then distributes it back to the participating parties.
This distributed training approach not only protects privacy but also
improves the generalization performance of the model. Distributed
learning has a wide range of application prospects in fields such as
healthcare and finance (Xu et al., 2021), where privacy and security
are highly important.

To this end, we propose MIVDL to improve vulnerability detection
while protecting user privacy and data security. Firstly, we apply
Joern (Yamaguchi et al., 2014) to parse the source code to CPG
(see Section 3.1) and then extract graph structure information. Si-
multaneously, we extract code and comment from the function (see
Section 3.2). Next, we combine three modality information and input
them into GraphCodeBERT (Guo et al., 2020). To efficiently leverage
prompt knowledge in LLMs, we incorporate prompt engineering among
information types to enable the model to recognize the input content
quickly (see Section 3.3). We then input this into GraphCodeBERT
to extract features related to the source code and construct an MLM
head for classification. Finally, we constructed a federated learning
model that combines features from multi-party data to enhance the
performance of the vulnerability detection model (see Section 3.3).
Our method utilizes different datasets from various sources to ensure
a more comprehensive understanding of vulnerabilities and maintains
data privacy by keeping the data decentralized.

To evaluate the effectiveness of MIVDL, we employed three widely
used datasets for vulnerability detection: Devign (Zhou et al., 2019),
Reveal (Chakraborty et al., 2021), and Big-Vul (Fan et al., 2020).
We conducted a comparative experiment between MIVDL and eight
existing software vulnerability detection methods, namely SySeVR (Li
et al., 2021b), VulDeePecker (Li et al., 2018), Devign (Zhou et al.,
2019), Reveal (Chakraborty et al., 2021), CodeBERT (Feng et al., 2020),
CodeT5 (Wang et al., 2021), LineVul (Fu and Tantithamthavorn, 2022),
RoBERTa-M (Do et al., 2024) The experimental results on three datasets
indicate that MIVDL can improve F1 scores by 5.56%, 5.83%, and
3.04%, respectively. In summary, the main contributions of this paper
are as follows.

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
• We propose MIVDL, which combines multiple information modal-
ities with prompt tuning and uses federated learning to protect
data privacy and enhance vulnerability detection.

• We implement three information modalities, namely graphic struc-
ture, code semantics, and annotations, along with the method of
prompt tuning.

• From the perspective of data privacy protection, we propose a
vulnerability detection method based on horizontal joint learning.

• For the convenience of reproduction, we publicly share the code.1

2. Background and related work

2.1. Vulnerability detection

Automated software vulnerability detection is crucial for ensuring
software security by identifying vulnerabilities and weaknesses in soft-
ware products. Currently, mainstream vulnerability detection methods
rely not on program analysis methods (Cherem et al., 2007; Fan
et al., 2019; Kroening and Tautschnig, 2014; Heine and Lam, 2006)
but on learning based on source code representations. These methods
can be classified into two types: sequence-based methods (Fu and
Tantithamthavorn, 2022; Li et al., 2021b; Kamiya et al., 2002) and
graph-based methods (Hin et al., 2022; Wen et al., 2023).

Many program analysis methods or traditional vulnerability detec-
tion systems are developed based on machine learning or similarity-
based approaches (Li et al., 2021b, 2018). These methods require
humans to formulate detection rules (e.g., data flow analysis, abstract
interpretation, and taint analysis) (Cheng et al., 2024). Although these
methods have proven effective in discovering vulnerabilities in soft-
ware, they rely on rules formulated by humans. If the individuals
formulating the rules lack sufficient experience, the rules may struggle
to cover various vulnerabilities (Ren et al., 2024).

Addressing the above issues, learning based on source code rep-
resentations offers a practical approach. Sequence-based vulnerability
detection methods convert source code into token sequences. For exam-
ple, SySeVR (Li et al., 2021b) uses a Bi-LSTM network to learn traversed
AST node information. Similarly, VulDeePecker (Li et al., 2018) em-
ploys a bidirectional Bi-LSTM network for fine-grained vulnerability
detection. LineVul (Fu and Tantithamthavorn, 2022) leverages pre-
trained models to evaluate the impact of each input token on detection
results, enabling line-level vulnerability detection.

Graph-based methods for detecting vulnerabilities in source code
represent the code as graphs. For instance, Devign (Zhou et al., 2019)
transforms source code into Code Property Graphs (CPGs) and utilizes
Graph Neural Networks (GNNs) to learn features for classification tasks.
Similarly, Reveal (Chakraborty et al., 2021) also uses CPGs and applies
GGNNs (Groh et al., 2022) to learn features for vulnerability detec-
tion. Another approach, AMPLE (Wen et al., 2023) constructs a code
structure graph, simplifies it, and uses Graph Convolutional Networks
(GCNs) to learn features for vulnerability detection tasks.

In this study, we examined three types of information: graphs that
offer structural details, source code that provides semantic context,
and comments that offer supplementary information. Our experimental
results confirmed the efficacy of our approach.

2.2. Prompt tuning

Prompt tuning was first introduced for adapting large pre-trained
language models in NLP (Jia et al., 2021; Lester et al., 2021). Since
various NLP tasks can be framed as ‘‘text-to-text’’ problems, specialized
prompts guide the language model to answer specific questions (Wang
et al., 2022). However, manually creating prompts is challenging and
often not optimal. Recently, automatic prompt generation (Li et al.,

1 https://github.com/ntu-juking/MIVDL
3

2023; Li and Liang, 2021)has become a promising method for effec-
tively adapting language models.

In software engineering, the pioneering work uses manually de-
signed contexts to enable models to utilize downstream tasks better or
employ prompt tuning to generate appropriate prompts more aligned
with task contexts, thereby improving model performance. For exam-
ple, Li et al. (2023) combined vulnerability code descriptions with
just-in-time adjustments for vulnerability assessment while evaluating
different types of contexts. Yu et al. (2023) proposed a smart contract
slicing method to reduce irrelevant code and combined sliced code
with just-in-time tuning. Ruan et al. (2023)utilized prompt tuning
to modify original English description inputs to generate the required
vulnerability exploits automatically. However, these studies combined
a single information modality with prompt tuning. Our work identified
multiple information modalities relevant to vulnerability detection, so
we integrated them with prompt tuning.

2.3. Distributed learning

Distributed learning aims to train high-performance, centralized
models while preserving the privacy of the distributed training data
(Konecnỳ et al., 2016). Distributed learning can address issues such
as data leakage and data island through coordination among mul-
tiple clients under a global aggregator. The two main concepts of
distributed learning are local computation and transmission model (Yin
et al., 2021). Local computation reduces some of the systemic privacy
risks and costs associated with traditional centralized machine learning
methods. Model transmission addresses data leakage and data silo
issues by training confidential data stored on localized devices locally
and then uploading the model to a global aggregator. The global
aggregator distributes the updated model back to the localized devices,
allowing learning from global data and ultimately achieving learning
objectives without exchanging raw data.

Distributed learning integrates privacy protection mechanisms that
prevent privacy leakage (Zhang et al., 2021). The emergence of dis-
tributed learning has opened up new directions for current research.
For example, CPDP (Yamamoto et al., 2023) uses logistic regression
and distributed learning for software defect prediction, demonstrating
its effectiveness with 25 projects. VFBFL (Zhang et al., 2024) com-
bines vulnerability information with distributed learning for software
vulnerability detection, addressing code island problems.

In our study, we propose a novel distributed learning-based vulner-
ability detection method where we integrate source code, graphs, com-
ments, and prompt information to extract more comprehensive vulner-
ability feature information. Compared to VFBFL, we employed more ad-
vanced techniques and evaluated MIVDL using a more comprehensive
dataset (Fan et al., 2020), resulting in improved performance.

2.4. Large language models

The large language models (LLMs) have succeeded significantly in
the NLP. LLMs are models trained on massive corpora with billions of
parameters. These models exhibit exceptional comprehension abilities,
capture knowledge from diverse domains, and are easily applicable
to downstream tasks. Deployable LLMs are typically based on the
Transformer architecture and come in three main types: encoder-only
models, decoder-only models, and models with both encoder and de-
coder components. Different types of LLMs employ distinct training
methods, influencing their suitability for different downstream tasks.
For example, encoder-only models (CodeBERT Feng et al., 2020, Graph-
CodeBERT Guo et al., 2020) are more suitable for classification tasks,
decoder-only models (GPT Liu et al., 2023) excel in generation tasks,
and models with both encoder and decoder components (CodeT5 Wang
et al., 2021) are often used for generation tasks. After training on
large-scale data to establish a general model, these LLMs are fine-tuned
or prompted to tailor them for downstream tasks, thereby achieving
specific objectives.

https://github.com/ntu-juking/MIVDL

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Fig. 2. The processing framework of MIVDL.
3. Approach

This section introduces the phases of MIVDL, which integrates
distributed learning with vulnerability detection and provides guidance
on implementing multi-modal prompting. Fig. 2 illustrates the overall
workflow of MIVDL, and it contains three main phases: The first
phase is graph structure information extraction, where we slice nodes
and extract paths to remove useless information and obtain effective
paths. Additionally, separate the code and comments for extraction
and combine prompt information for the path, code, and comments.
Input these pieces of information into the model for classification. The
second phase involves continually updating the model through dis-
tributed learning. The third phase uses a trained model for vulnerability
detection. The following subsections detail the specifics of MIVDL.

3.1. Multi-modal prompt tuning

To effectively extract features for the vulnerability detection task,
we explored the potential of multi-modal prompts. Previous methods
focused on inputting only one type of information and corresponding
prompts. Our approach emphasizes the importance of multi-modal
prompt methods. As shown in Fig. 1 (b), we introduce three informa-
tion modalities: (1) source code, (2) paths extracted from the source
code, and (3) comments related to the source code.

3.1.1. Graph structure information extraction
The goal of this phase is to obtain effective paths. First, we use Joern

to parse the source code to a CPG, which is a data structure integrating
AST (Zhang et al., 2019), CFG (Allen, 1970), and PDG (Ferrante et al.,
1987). Each type of graph contributes unique informational content
to the CPG (Yamaguchi et al., 2014). The AST provides property
code representations for each node, reflecting structured information
with assigned attribute orders. The CFG provides the property values
STMT and PRED for each node and adds label information to each
edge to provide control flow information. The PDG establishes control
dependencies, including control and data dependencies. Each control
dependency in the PDG is assigned an attribute condition indicating
the truth value of the original predicate.

During the source code parsing process, we identify variables that
have been defined but remain unused. As shown in Fig. 3, we used
4

Joern to parse the source code, generating node and edge information.
The variables marked in red on the left side of the Figure are not de-
signed but are used within the function. For this variable, we observed
on the right side of the Figure that the generated node information
includes only three relevant nodes: parameter, parameter definition,
and identifier. The edge information contains only two edges: 19 to
20 and 19 to 50, which correspond to keys in the node information.
These three nodes form two essentially meaningless paths. Therefore,
we removed these nodes and paths.

The CPG is formally represented as 𝐺 = (𝑉 ,𝐸), where 𝑉 represents
node information and 𝐸 represents edge information. We extract mul-
tiple paths based on the captured edge and node information. Fig. 4
illustrates an example of a vulnerable code that was triggered, in which
the vulnerability occurs due to accessing an array address beyond its
designed maximum capacity. Initially, we convert the source code into
a graph by mapping statements to AST nodes. Next, we construct paths
based on the control and dependency information between nodes. The
resulting paths are depicted in the right half of Fig. 4. The obtained
paths are represented by 𝐺′ = (𝑉 ,𝐸′), where 𝑉 is the set of nodes, and
𝐸′ = {𝑒1, 𝑒1,… , 𝑒𝑘} represents the sequence of nodes in the path.

3.1.2. Code semantic and comments extraction
Although path information provides structural details of the source

code, they may lack programming logic (Wang et al., 2023). To address
this limitation, we adopted a multi-modal approach. In addition to
the structural information of the code, the semantic information is
equally important. Therefore, we leveraged positional encoding from
pre-trained models to extract semantic information from the source
code. Furthermore, during our analysis of the dataset, we found that
there were a few comments in the code. We hypothesized that com-
ment information might impact the performance of the vulnerability
detection task, so we included comments as another information modal-
ity and investigated their effectiveness in our research question (see
Section 5.3). Fig. 2 illustrates how code and comments were inte-
grated within the dataset. We used regular expressions to separate
them, obtaining distinct files for the source code and comments. In
the dataset, some source code contains detailed contextual comments
that explain the overall function and provide in-depth explanations of
specific statements or code blocks, aiding the understanding of complex
implementation logic. However, a significant portion of the source code

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Fig. 3. Illustrating the source code parsing process using an example.
Fig. 4. Illustrating the path extraction process using an example.
lacks detailed explanations of the internal statements, with comments
limited to simple descriptions of the functions and missing a deeper
analysis of the implementation process. Due to the substantial amount
of source code lacking detailed comments, handling the source code
and comments separately is necessary.

3.1.3. Prompt template construction
According to the types of prompt tokens, prompt templates can

be classified into three types: hard prompt, soft prompt, and hybrid
prompt.

Hard prompt indicate tasks by constructing task-related prompts.
The expertise of domain specialists informs the design of these prompts.
Consequently, the hard prompts tailored for the vulnerability detection
task are structured as follows.

𝑓 = Does this code snippet [X] contain a vulnerability?[Z] (1)
5

ℎ𝑎𝑟𝑑
where, [X] will be filled with the code snippet, and [Z] is the predicted
answer.

Soft prompt contains prompts that are not human-readable and
are continuously adjusted during the training process of downstream
tasks. Therefore, the soft prompts for the vulnerability detection task
are designed as follows.

𝑓𝑠𝑜𝑓𝑡 = [SOFT] [X] [SOFT] [Z] (2)

where, [SOFT] represent prompts that are not human-readable.
Hybrid prompt combines hard prompts and soft prompts. Specif-

ically, the prompts in hard prompts typically consist of important
keywords directly related to the task and are not allowed to be changed
during training. The prompts in soft prompts, however, are continu-
ously modified during training and are not as critical. Therefore, the
hybrid prompts for the vulnerability detection task are designed as

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
follows.

𝑓ℎ𝑦𝑏𝑟𝑖𝑑 = [SOFT] code snippet [X] contain a vulnerability [SOFT] [Z]
(3)

Existing research has demonstrated that hybrid prompt perform
better than the other two types of prompt (Li et al., 2023; Ren et al.,
2024). Therefore, we directly adopted the construction form of hybrid
templates in our approach. We input the three types of information and
their corresponding prompts into GraphCodeBERT. First, in Section 3.1,
we obtain the processed paths 𝐺′, for which we construct prompt infor-
mation 𝑃 (𝐺) = {𝑝𝑔1, 𝑝𝑔2,…, 𝑝𝑔𝑙}. Next, in Section 3.2, we extract the
code and comments and flatten them to obtain code 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑛}
and comments 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑗}. The corresponding prompt infor-
mation for the code is 𝑃 (𝐶) = {𝑝𝑐1, 𝑝𝑐2,… , 𝑝𝑐𝑚}, and for the comments
𝑃 (𝑀) = {𝑝𝑚1, 𝑝𝑚2,… , 𝑝𝑚𝑧}. To ensure compatibility and consistency
with the model input, we chose to use the tokenizer of PLM. We con-
catenate the prompt information and the three information modalities
into a sequence input 𝐼 = {[𝐶𝐿𝑆], 𝑃 (𝐶), [𝑆𝐸𝑃], 𝐶, [𝑆𝐸𝑃], 𝑃 (𝐺), [𝑆𝐸𝑃],
𝑉 , [𝑆𝐸𝑃], 𝑃 (𝑀), [𝑆𝐸𝑃],𝑀}, where [CLS] is a special symbol indicating
the start of the sequence, and [SEP] is a special symbol used to
separate different data segments. GraphCodeBERT takes the sequence
𝐼 as input and converts it into vectors. For each token, its input vector
is constructed by summing the corresponding token and position em-
beddings. The model applies 𝑛 Transformer layers to the input vectors
to generate contextual representations. Each Transformer layer con-
tains the same architecture with multi-head self-attention operations.
Finally, through the model’s input, we obtain the feature vectors.

3.2. Distributed model training

From Fig. 2, we observe the model setup for distributed learning,
which involves multiple users with their local data. We train a person-
alized model by combining multiple users. In our approach, we utilize
horizontal distributed learning, where the model consists of multiple lo-
cal models and one global model. The network architecture of both the
global and local models is identical. We employ feature vectors to learn,
with the final layer used for classifying and detecting vulnerabilities.
To ensure data privacy protection, we employ data leakage through
differential privacy techniques (El Ouadrhiri and Abdelhadi, 2022).
Specifically, no raw data is shared between participants; instead, only
the model weights are shared with the central server during the model
update phase. Furthermore, differential privacy is applied by adding
noise during the aggregation phase. This approach safeguards against
the inference of individual data from model updates and prevents the
model from memorizing sensitive personal information during train-
ing. Next, we will describe how distributed learning and vulnerability
detection are integrated.
Algorithm 1 A model’s local training procedure at round 𝑡
Require: 𝐷𝑖, 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙, 𝛾, Epoch 𝐸, local learning rate 𝑙𝑟, Batch 𝑏
Ensure: Local model’s weights 𝜃𝑡
Initialize 𝜃𝑡 ← 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙
for each 𝑒 ∈ [1, 𝐸] do
 if 𝑒 == 1 then
 Initialize 𝜃0
 else
 𝜃𝑡 ← 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙
 end if
 for 𝑏 ∈ 𝐷𝑙𝑜𝑐𝑎𝑙 do
 𝜃𝑡 ← 𝜃𝑡 - 𝑙𝑟 ⋅∇ 𝛾 (𝜃𝑡, b)
 end for
end for
return 𝜃𝑡
First, we construct both local models and a global model. Local

models are responsible for training on local data, while the global
6

model interacts with these local models. Second, when a local model
has not received additional data from the global model, it initially
trains its own model locally and updates its weights. Third, local models
interact with the global model by sharing updates to refine the global
model’s weights. During the process of updating model weights, we
employed differential privacy, as outlined in Wei et al. (2020). Specif-
ically, noise was introduced during the gradient updates phase, which
effectively mitigates the risk of privacy leakage during data-sharing
operations. Fourth, after the global model is updated, it distributes its
parameters to each local model, updating their weights. Fifth, after
completing one round of updates through steps two to four, the entire
distributed learning process iterates a specified number of times to
complete learning of the global model. Finally, the trained global model
is used to predict vulnerabilities. Additionally, local models can also
perform predictions locally.

Specifically, we train four local models using the datasets Reveal,
Devign, and two subsets of Big-Vul. The Big-Vul dataset, due to its large
size, is divided into two subsets through a random uniform sampling
method, ensuring that the original distribution of vulnerabilities is
preserved in both subsets. This guarantees an equal proportion of
vulnerable and non-vulnerable samples across the two subsets, main-
taining consistency with the original dataset. In Step 1, the linear layer
weights in all models are initialized to 0. Step 2 involves local models
starting training until each local model’s loss converges, resulting in
weights 𝑊 0

1 , 𝑊 0
2 , 𝑊 0

3 , 𝑊 0
4 , and feature vectors 𝑛1, 𝑛2, 𝑛3, 𝑛4. Step 3

involves the central model receiving the feature vectors 𝑛1, 𝑛2, 𝑛3, 𝑛4,
calculating and aggregating weights 𝑊 0

1 , 𝑊 0
2 , 𝑊 0

3 , 𝑊 0
4 to obtain 𝑊 1.

Step 4 distributes the 𝑊 1 weights to each client, which then accepts
the weights. This process constitutes one communication round, which
repeats steps 2, 3, and 4 until all communication rounds are completed.

Formally, 𝑛 local databases correspond to 𝑛 local models, under-
going 𝑚 communication rounds to contribute to the training. Each
local model 𝑖 has a corresponding local dataset 𝐷𝑖. Each model is
assigned initial parameters 𝜃 in the initial phase. After that, at the
start of each communication round, the global model distributes the
previous round’s parameters 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 to the local models. Upon receiv-
ing these parameters, the local models update their parameters with
𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 and continue training on 𝐷𝑖, producing local model parame-
ters 𝜃𝑡𝑖 , as described in Algorithm 1. Subsequently, each local model
sends the difference (𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) back to the global model. The server
aggregates these differences from all local models using the FedAvg al-
gorithm (McMahan et al., 2017) to update the global model parameters
to 𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 as follows:

𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 +
𝑚
∑

𝑖=1

𝑛𝑖
𝑛𝑡
(𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) (4)

where 𝑛𝑖 is the number of samples from the local model 𝑖, and 𝑛𝑡 is
the total number of samples from the selected clients in round 𝑡. In
our approach, all models participate in the parameter updates, and all
models are selected each time, so the formula is as follows:

𝜃𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙 +
𝑚
∑

𝑖=1
(𝜃𝑡𝑖 − 𝜃𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙) (5)

3.3. Vulnerability detection

During the detection phase, we apply the model trained during
the distributed learning phase to detect potential vulnerabilities in the
code. Specifically, in the initial phase, the graphical representation
of the source code, the semantic representation of the source code
itself, and accompanying comments are combined to capture latent
information through LLM. To enhance the model’s ability to compre-
hend input content effectively, we designed distinct prompt structures
tailored to the characteristics of various input types. Next, the LLM
encoder embeds all information into low-dimensional vectors, and the
MLM head learns and predicts information. Subsequently, we create a

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
local model for each dataset and simultaneously create a global one.
The global model and local models update each other, resulting in a
trained model. Finally, all information is fed into the trained detection
model for vulnerability detection.

4. Experimental setup

4.1. Research questions

To evaluate MIVDL, we aim to answer the following three research
questions:

RQ1: How does MIVDL compare to state-of-the-art function-
level vulnerability detection methods?

To answer this question, we want to compare MIVDL with state-
of-the-art function-level vulnerability detection methods (such as Sy-
SeVR Li et al., 2021b, VulDeePecker Li et al., 2018, Devign Zhou
et al., 2019, Reveal Chakraborty et al., 2021, CodeBERT Feng et al.,
2020, CodeT5 Wang et al., 2021, LineVul Fu and Tantithamthavorn,
2022), to evaluate its performance in terms of accuracy, efficiency, and
applicability across various types of vulnerabilities.

RQ2: How does the impact of different information modalities
for MIVDL?

To answer this question, we want to investigate how various infor-
mation modalities, such as code semantics, graph, and code comment,
influence the performance of MIVFL in detecting vulnerabilities. By
analyzing the impact of each modality, we aim to understand which
aspects of the information contribute most to the accuracy and effec-
tiveness of MIVFL, ultimately guiding the optimization of the model for
better vulnerability detection.

RQ3: How does the impact of distributed learning for MIVDL?
To answer this question, we want to explore the impact of dis-

tributed learning on MIVDL by evaluating how decentralized training
across multiple data sources affects its ability to detect vulnerabilities.

4.2. Datasets

Our study evaluates MIVDL on three widely used datasets: De-
vign (Zhou et al., 2019), ReVeal (Chakraborty et al., 2021), and Big-
Vul (Fan et al., 2020). We show the details of these three datasets as
follows.

• Devign (Zhou et al., 2019). The Devign dataset consists of func-
tions collected by FFMPeg+Qemu, comprising approximately 10k
vulnerable functions and about 12k non-vulnerable functions.
Devign is a balanced dataset.

• ReVeal (Fan et al., 2020). ReVeal collected from Linux Debian
Kernel and Chromium, contains 1.6k vulnerable functions and
approximately 16k non-vulnerable functions. ReVeal is an imbal-
anced dataset.

• Big-Vul (Chakraborty et al., 2022). Big-Vul, collected by Fan
et al. comprises 10k vulnerable functions and about 168k non-
vulnerable functions. Big-Vul is also an imbalanced dataset.

Table 1 presents the details of these three datasets, including the
total number of samples, the number of vulnerable samples (#Vul),
the number of non-vulnerable samples (#Non-vul), and the ratio of
vulnerabilities (Vul Ratio).

4.3. Performance metrics

To evaluate the effectiveness of our method, we employed the
following four widely used evaluation metrics to evaluate MIVDL:

TP: True Positive (TP) denotes the count of instances where the
model accurately predicts samples of the positive class. In the context
of vulnerability detection, TP represents the cases where the model
successfully identifies code with vulnerabilities.
7

Table 1
Statistics of the datasets.
 Dataset #Samples #Vul #Non-vul Vul ratio(%)
 Devign 22,361 10,067 12,294 45.02
 ReVeal 18,169 1,664 16,505 9.16
 Big-Vul 179,299 10,547 168,752 5.88

TN: True Negative (TN) represents the count of instances where
the model correctly identifies samples as belonging to the negative
class. In vulnerability detection, TN refers to the cases where the model
accurately assesses that the code is free from vulnerabilities.

FN: False Negative (FN) represents when the model mistakenly
classifies positive samples as negative. In the context of vulnerability
detection, FN represents instances where the model fails to identify
genuine vulnerabilities.

FP: False Positive (FP) represents when the model erroneously clas-
sifies negative samples as positive. In vulnerability detection, FP rep-
resents situations where the model incorrectly identifies code without
vulnerabilities as having vulnerabilities.

Accuracy: Accuracy refers to the proportion of correctly predicted
or identified vulnerabilities relative to the total number of vulnerabili-
ties present. It is calculated as 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 .
Precision: Precision assesses the proportion of relevant vulnerabil-

ities among those retrieved. It is calculated as 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

Recall: Recall evaluates the proportion of retrieved relevant vulner-
abilities. It is calculated as 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
F1 Score: The F1 score, representing a balance between precision

and recall, is the harmonic mean of precision and recall. It is calculated
as 2 × Precision×Recall

Precision+Recall .

4.4. Baseline methods

We compared eight baseline methods, including token-based, graph-
based, and LLM-based vulnerability detection methods, as shown be-
low:

• SySeVR (Li et al., 2021b): SySeVR employs a bidirectional recur-
sive neural network within its vulnerability framework. It extracts
both syntax and semantic features from the code to enhance
vulnerability detection.

• VulDeePecker (Li et al., 2018): VulDeePecker converts code into
an intermediary form containing semantic information like data
and control dependencies. This intermediate representation is
converted into vectors for input into a bidirectional LSTM-based
neural network for detecting vulnerabilities.

• Devign (Zhou et al., 2019): Devign is a graph-based method
that encodes function source code into a unified graph structure
with comprehensive program semantics using graph embedding
layers. It then utilizes Gated Recurrent Unit (GRU) layers to learn
features of nodes within the graph, followed by a Convolutional
(Conv) module to extract node representations for graph-level
predictions.

• Reveal (Chakraborty et al., 2021): ReVeal employs Graph Atten-
tion Networks (GAT) to learn the structural properties of code
snippets. GAT utilizes gated graph neural networks, resampling
techniques, and triplet loss to learn the structural properties of
code snippets.

• CodeBERT (Feng et al., 2020): CodeBERT is an LLM based on
BERT and was developed for six programming languages: Java,
Python, JavaScript, PHP, Ruby, and Go. This model utilized a
masked language approach and incorporated token replacement
detection objectives.

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Table 2
Comparison results between MIVDL and baselines on the three datasets in vulnerability detection. The best results for each metric are highlighted in bold.

Metrics(%)

Dataset
Devign Reveal Big-Vul

Baseline Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

SySeVR 48.59 47.08 60.02 52.77 73.21 43.56 27.84 33.97 90.10 30.91 14.08 19.34

VulDeePecker 50.12 47.89 33.34 39.31 78.51 20.63 14.59 17.09 81.19 38.44 12.75 19.15

Devign 57.19 52.41 58.11 55.11 86.38 28.98 34.73 31.60 56.25 50.84 70.79 59.24

Reveal 62.73 53.94 71.22 61.39 85.25 29.73 64.96 40.79 53.45 48.01 70.07 56.98

CodeBERT 59.77 57.98 56.59 57.28 91.09 59.38 31.67 41.30 64.25 56.74 54.58 55.64

CodeT5 46.59 58.83 54.96 56.83 90.49 45.57 35.14 39.68 62.14 60.15 59.39 59.77

LineVul 62.75 63.98 50.51 56.45 92.43 48.86 41.35 44.79 95.82 90.68 83.31 86.84

RoBERTa-M 54.43 43.81 77.93 56.09 91.78 43.43 39.74 41.50 88.14 55.45 70.24 61.97

MIVDL 64.21 55.70 83.55 66.84 92.91 57.86 45.00 50.62 98.78 91.34 88.47 89.88
• CodeT5 (Wang et al., 2021): CodeT5 is a pre-trained language
model designed for code generation and understanding, aiming
to improve code-related tasks such as code generation, code
completion, code translation, etc.

• LineVul (Fu and Tantithamthavorn, 2022): LineVul utilizes a
transformer architecture to address three limitations in the IVDe-
tect method and performs vulnerability detection at both the line
and function levels.

• RoBERTa-M (Do et al., 2024): RoBERTa-M uses the RoBERTa
model to extract features from source code. These features are
then processed using supervised machine learning algorithms for
classification tasks.

To ensure accuracy and fairness in our experiments, we adhered to
the hyperparameters and dataset split specified in the original baseline
papers. For Devign, since the code was unavailable, we replicated the
experiments by following the methodology considered by ReVeal.

4.5. Experiment settings

To ensure a fair comparison, we follow the experimental settings of
the baselines, such as Devign, Reveal, and Big-Vul. We used the same
hyperparameters as detailed in the referenced work. Consistent with
prior research (Wen et al., 2023; Ren et al., 2024; Wu et al., 2022),
we employed stratified sampling to partition the dataset into disjoint
training, validation, and test sets, adhering to a split ratio of 8:1:1. All
baselines and our model used the same dataset partition. For Devign,
where code was not provided, we replicated the experiments based on
the methods described in ReVeal.

Our experimental setup employed GraphCodeBERT as our pre-
trained model with a maximum input length of 514, a learning rate
of 2e-5, and a batch size of 16. For graph extraction, we used the
parsing tool Joern. During the distributed learning phase, we used
seven communication rounds. We trained the model using an NVIDIA
GeForce RTX 4090, with a maximum of 100 iterations and early
stopping patience set to 50 epochs.

5. Experimental results

5.1. RQ1. Effectiveness of MIVDL

To address this research problem, we compared eight methods:
graph-based, sequence-based, and LLM-based. As illustrated in Table
2, MIVDL demonstrates superior performance in terms of F1 scores
and accuracy across three datasets when compared to the other mod-
els. Specifically, MIVDL improves the F1 scores by 5.45%,5.83%, and
3.04% compared to the current best baseline models, respectively. The
accuracy scores increased by 1.46%, 0.48%, and 2.96%, respectively.
8

In imbalanced datasets, the internal class distribution imbalance
renders accuracy an insufficient evaluation metric. As a more compre-
hensive measure, F1 score provides a more meaningful evaluation. For
Devign, all metrics appear consistent, whereas for Reveal, metrics other
than accuracy also remain stable. However, the remarkable perfor-
mance observed on the Big-Vul dataset suggests a potential explanation:
Big-Vul originates from real-world vulnerabilities, which may overlap
with the corpus used for pre-training the model. This overlap could
contribute to the observed performance improvements.

Previous methods leveraging LLM-based approaches typically treat
source code as natural language sequences, enabling the model to learn
only semantic and syntactic information. In contrast, our approach
captures semantic and syntactic information and integrates graph at-
tributes and annotation data, thereby providing a more comprehensive
representation. The results demonstrate that our approach outperforms
methods solely on semantic and syntactic information, such as LineVul.

Furthermore, even the use of foundational LLMs (e.g., CodeBERT,
CodeT5) has achieved high F1 scores, and the performance of LLM-
based detection methods (e.g., RoBERTa-M, LineVul) indicates that
superior results can be obtained. Notably, LineVul and RoBERTa-M
have already outperformed all existing program analysis-based deep
learning methods without employing program analysis. This highlights
the potential of LLM-based vulnerability detection methods to achieve
state-of-the-art performance. Overall, by integrating multiple types of
information, our approach achieves better performance compared to
purely LLM-based models. In other words, the MIVDL framework sur-
passes existing graph-based, token-based, and LLM-based methods in
vulnerability detection.

Integrating multiple modalities with rapid fine-tuning introduces
certain complexities. To mitigate these challenges, we minimized task-
irrelevant factors as much as possible, as outlined in Sections 3.1.1
and 3.1.2. Furthermore, given the extensive number of parameters in
the pre-trained model, we froze a subset of them to reduce overall
complexity. Therefore, the multi-modal information prompting method
can further enhance the performance of LLMs. Additionally, we discuss
the impact of information modalities on MIVDL in Section 5.3.

Summary for RQ1: The F1 score of MIVFL outperformed all
baselines on three datasets. Specifically, the MIVDL achieves
improvements of 5.45%, 5.83%, and 3.04% in F1 score. The
results demonstrate the effectiveness of our method.

5.2. RQ2: Effectiveness of prompt information

To address this research question, we are dedicated to exploring
the contribution of information modalities to the MIVDL approach and
examining the effectiveness of different information modalities.

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Table 3
The impact of different information modalities on the performance of MIVDL.
 Method Devign Reveal Big-Vul

 Recall F1 Recall F1 Recall F1
 MIVDL +C 74.33 62.63 41.63 43.79 85.12 86.55
 MIVDL +P 81.14 59.76 38.24 40.39 83.75 84.53
 MIVDL +C+M 82.66 62.94 41.81 45.54 85.23 86.72
 MIVDL +P+M 81.37 61.42 37.27 42.27 82.37 85.14
 MIVDL +C+P 83.45 65.93 43.72 49.98 86.74 88.92
 MIVDL +C+P+M 83.55 66.84 45.00 50.62 88.47 89.88

Our study uses three information modalities: (1) source code, (2)
paths, and (3) comments. We investigate the impact of these three types
of information on MIVDL. We denote source code as C, paths as P, and
comments as M. For example, MIVDL +C indicates that we only use the
source code as the information modality in the model.

According to Table 3, we observe that different information modal-
ities affect the performance of MIVDL differently. Firstly, comparing
MIVDL +P and MIVDL +C, we see that MIVDL +C performs the best.
Additionally, comparing MIVDL +P+M and MIVDL +C+M, MIVDL
+C+M shows better performance. This indicates that the source code
has the most significant impact on the performance of MIVDL. This also
explains why previous studies (Fu and Tantithamthavorn, 2022) used
source code as the information modality. Comparing MIVDL +C+P+M
and MIVDL +C+P, we find that comments have a slight impact on the
performance of MIVDL. This is because not every function contains
comment information, and not all comments are relevant to vulnera-
bilities. Note Table 3 does not include the case of MIVDL +M because
we observed that not all code contains comments. Therefore, comments
were not evaluated as a standalone information modality but rather
as an adjunct to other modalities. Next, we compared three methods:
MIVFL+C, MIVFL+C+P, and MIVFL+C+P+M. The results indicate that
as the number of information modalities increases, the model per-
formance improves. This is because different information modalities
provide distinct content: source code offers syntax information, path
provides structural information, and comments further explain the
source code.

Summary for RQ2: The source code has the most signifi-
cant impact on MIVDL, followed by path, while the influence
of comments is relatively minimal. MIVDL, which utilizes
three types of information, improved the F1 score by 4.21%,
6.83%, and 3.33% across the three datasets compared to the
method that only used source code. Furthermore, recall can be
increased by 9.22%, 3.37%, and 3.35%.

5.3. RQ3: Effectiveness of distributed model training

To address this research question, we are dedicated to exploring the
contribution of distributed learning to the MIVDL approach. Fig. 5 il-
lustrates the performance of MIVDL with and without using distributed
learning. The red bars represent the performance with distributed
learning, while the orange bars represent the performance without
distributed learning. For methods that do not use distributed learning,
we use all data not included in the test setting or validation set as
the training set to ensure fairness in data utilization. We evaluated
the method on three datasets using four evaluation metrics, and the
results show that MIVDL with distributed learning outperforms the
method without distributed learning. Specifically, MIVDL with dis-
tributed learning achieved similar performance by four metrics (see
9

Fig. 5. The impact of distributed learning for MIVDL.

Fig. 6. The impact of different communication rounds on MIVDL performance.

Section 4.3). Additionally, the use of distributed learning ensures data
security.

Distributed learning is influenced by various factors, among which
uneven data distribution can result in minimal performance improve-
ment. Table 1 shows the three datasets exhibit an uneven distribution of
vulnerabilities. Model updates on devices may conflict with each other,
leading to unstable convergence of the global model. However, using
distributed learning allows each local model to be trained according to
its own data, producing a model that better meets its specific needs.
When these local models are aggregated, they generate a robust and
adaptable global model. Consequently, such a model is well-suited to
handle data heterogeneity across different devices and can show better
performance. The results indicate that vulnerability detection can be
performed with a slight performance improvement.

Summary for RQ3: The performance of using distributed
learning is better than that of non-distributed approaches,
while also ensuring data privacy.

6. Discussion

6.1. Performance impact of different communication rounds

Our empirical study finds that the number of communications in
federated learning might affect the performance of MIVDL. Therefore,
we investigated the impact of different communication rounds on
model performance. Fig. 6 shows the results of different communica-
tion rounds on the validation set. We explored communication rounds
1, 3, 5, 7, 9, and 11. Using 7 communication rounds, all metrics except
for the precision score were higher than in other rounds. The precision
score did not show a consistent trend across different communication
rounds. We speculate that this may be related to the class imbalance
issue. The results indicate that F1, Accuracy, and Recall performed best
in the seventh communication round. Thus, we selected 7 rounds for
MIVDL.

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Table 4
The impact of different prompt templates on the performance of MIVDL.
 Template Devign Reveal Big-Vul

 Recall F1 Recall F1 Recall F1
 H1 [SOFT] code snippet [X], graph [G], comment [C] contain a vulnerability [SOFT] [Z] 83.55 66.84 45.00 50.62 88.47 89.88
 H2 [SOFT] code snippet [X], path [G], comment [C] contain a vulnerability [SOFT] [Z] 82.73 65.20 42.27 49.27 83.75 87.53
 H3 [SOFT] code gadget [X], graph [G], comment [C] contain a vulnerability [SOFT] [Z] 83.16 66.58 43.72 48.98 85.23 87.72
 H4 [SOFT] code snippet [X], graph [G], annotate [C] contain a vulnerability [SOFT] [Z] 83.21 65.41 43.65 49.56 87.16 88.64
 H5 [SOFT] code snippet [X], graph [G], comment [C] contain a bug [SOFT] [Z] 82.28 65.44 43.72 47.12 86.43 87.92
 N1 [SOFT] code snippet [X], graph [G], comment [C] is classified into two categories [SOFT] [Z] 71.37 61.42 46.63 44.16 82.37 82.14
 N2 [SOFT] text [X], image [G], picture [C] contain a vulnerability [SOFT] [Z] 76.34 62.93 38.62 45.79 83.74 83.59
 N3 [SOFT] text [X], image [G] picture [C] is classified into two categories [SOFT] [Z] 64.63 35.38 35.89 43.16 82.95 71.02
Fig. 7. The comparison results between MIVDL and seven baselines in MCC.
6.2. Performance comparison in terms of MCC

In our evaluation datasets, we discovered an issue of class imbal-
ance (see Section 4.2). Therefore, we used the Matthews Correlation
Coefficient (MCC) as a metric further to evaluate the performance of
our model (Tanha et al., 2020). MCC is a metric for evaluating the
performance of binary classifiers. It accounts for true positives, true
negatives, and false positives. MCC ranges from −1 to 1, where 1
indicates perfect prediction, 0 indicates random prediction, and −1
indicates complete mismatch. The specific formula is as follows:

MCC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(6)

 Fig. 7 shows the performance of different methods on two imbalanced
datasets. MIVDL achieved the highest MCC scores on two datasets.
Specifically, the score on the Big-Vul dataset is close to 1, indicating
excellent model predictions. Additionally, the score on the Reveal
dataset is 5.49% higher than the best previous score, demonstrating
that MIVDL outperforms the baseline.

6.3. Performance impact of different prompt templates

In this subsection, we mainly discuss the impact of keyword seman-
tics in prompt templates. Section 3.1.3 introduces hybrid prompts in the
MIVDL, where the templates combine keywords from hard prompts. We
explore the influence of different keywords on MIVDL. We did not study
the soft prompts in the hybrid templates because this part is learned and
explored by the model during downstream tasks.
10
To investigate the impact of keyword semantics on MIVDL and the
specific manifestation of this impact, we designed a set of keywords,
as shown in Table 4. First, we set up task-related keywords and input-
related prompt words, designing five template s (H1, H2, H3, H4, H5).
Next, we designed two more sets of templates: one with keywords
unrelated to the task but related to the input, and the other with
keywords related to the task but irrelevant to the input (N1, N2).
Finally, we designed a set of templates with keywords unrelated to the
task and the input (N3).

By comparing task-related keywords and input-related prompt wo-
rds, we find that setting irrelevant prompts significantly affects the
method’s performance. Specifically, the performance was the worst
in N3, where all keywords were irrelevant. Additionally, comparing
N1 and N2 reveals that templates unrelated to the task have a more
significant impact. This may be due to the restriction on the model’s un-
derstanding and reasoning capabilities. Furthermore, we explored the
impact of synonymous keywords on the templates. H1 demonstrated
the best performance.

We used the GraphCodeBERT model as the base for our training.
The common separators are as follows: [SEP], [CLS], [MASK], [PAD],
and [UNK]. The specific embedding vectors for these separators do
not significantly affect the model’s performance. Furthermore, in the
[SOFT] section, the inference phase may encounter delimiters that
are unknown to us. To mitigate potential performance degradation
due to these unknown separators, we conducted multiple repeated
experiments.

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Table 5
Wilcoxon test between MIVDL and seven baselines on F1 metrics.
 Baselines Devign Cliff’s Delta Reveal Cliff’s Delta Big-Vul Cliff’s Delta
 SySeVR ** large ** large ** large
 VulDeePecker ** large ** large ** large
 Devign ** large ** large ** large
 Reveal ** large ** large ** large
 AMPLE ** large ** large ** large
 LineVul ** large ** large ** large
 RoBERTa-M ** large ** large ** large
Notes: *** means 𝑝-value <0.001, ** means 𝑝-value <0.01, * means 𝑝-value <0.05.
Table 6
Wilcoxon test across different modalities based on their F1 metrics.
Wilcoxon

Dataset Devign Reveal Big-Vul

Method MIVDL +C MIVDL +P MIVDL +C+P MIVDL +C MIVDL +P MIVDL +C+P MIVDL +C MIVDL +P MIVDL +C+P
MIVDL +C+M * – – ** – – * – –
MIVDL +C+P ** ** – ** ** – ** ** –
MIVDL +P+M – ** – – ** – – * –
MIVDL +C+P+M – – ** – – ** – – *

Notes: *** means 𝑝-value <0.001, ** means 𝑝-value <0.01, * means 𝑝-value <0.05, (-) indicates no comparison.
6.4. Statistical analysis on the performance of MIVDL

The Wilcoxon test is often used to determine whether the dif-
ference between two means is statistically significant (i.e. when the
computed 𝑝-value is less than 0.05). We employ the Wilcoxon rank-
sum test (Wilcoxon, 1992) to assess whether the superior performance
of MIVDL is attributable to chance. The Cliff’s Delta value spans from
[−1, 1]. A value of 0 indicates no difference between the two datasets.
The metric reaches a value of 1 when all elements in one dataset
exceed those in the other, and −1 when the opposite is true, with
all elements in the second dataset exceeding those in the first. When
0.148 ≤ ||d|| < 0.33, the effect size is deemed small; when 0.33 ≤
||d|| < 0.474, it is considered medium; and when ||d|| ≥ 0.474, it is
classified as large. Specifically, we compare the F1 scores of MIVDL
with those of the baseline methods to assess the presence of signifi-
cant differences. Additionally, we investigated whether the integration
of different modalities, as presented in Table 3, exhibits statistically
significant differences. The comparison results with the baseline are
presented in Table 5.

We evaluated and compared the performance of MIVDL against the
baseline methods using the same test set. The results indicate that
the p-values between MIVDL and all baseline methods are less than
0.01, and the effect size of Cliff’s Delta was greater than 0.474 in all
instances. This signifies a large effect size, highlighting a statistically
significant difference in performance. Furthermore, a similar compari-
son was conducted to assess the integration of different modalities, with
the results presented in Table 6.

Overall, the integration of different modalities also shows significant
differences, further validating the effectiveness of our method. How-
ever, when performing multiple significance tests on MIVDL with added
comments on the Big-Vul dataset, not all tests yielded significant re-
sults, suggesting a certain degree of randomness. Upon further analysis,
we found that the Big-Vul dataset contains very few comments, which
do not substantially enhance performance. In contrast, incorporating
comments into MIVDL proved to be effective for the other two datasets.

6.5. Qualitative analysis

We extend our analysis by evaluating MIVDL on real-world datasets.
Furthermore, we perform a comparative analysis with LineVul, which
leverages large language models (LLMs) but relies solely on the se-
mantic information extracted from source code. For this evaluation,
we selected the PreciseBug dataset (He et al., 2023). Rather than em-
ploying the entire dataset, we specifically focused on C/C++ samples.
We curated 1000 vulnerability-containing samples from this subset
11
Table 7
Statistics of the datasets.
 Type Description LineVul MIVDL
 CWE-787 Out-of-bounds Write 39 45
 CWE-20 Improper Input Validation 35 34
 CWE-416 Use After Free 32 50
 CWE-22 Improper Limitation of a Pathname

to a Restricted Directory
22 34

 CWE-190 Integer Overflow or Wraparound 42 49
 CWE-287 Improper Authentication 45 39
 CWE-119 Buffer Overflow 40 45
 CWE-200 Exposure of Sensitive 55 51
 CWE-476 NULL Pointer Dereference 19 35
 CWE-125 Out-of-bounds Read 40 43

based on the 2024 CWE high-risk vulnerability list (MITRE, 2024). The
selected types are shown in Table 7.

For statistical analysis, we selected 10 distinct types of vulnera-
bilities and assigned 100 vulnerability-containing functions in each
kind. This selection enabled a systematic comparison of the perfor-
mance of MIVDL and LineVul. The final two columns indicate the
number of vulnerabilities identified by each method across 100 distinct
vulnerable functions. The comparison results are shown in Table 7.
The results indicate that MIVDL outperforms LineVul in detection
accuracy for multiple vulnerability types. Notably, many of the most
critical vulnerabilities, as outlined in the list of the most dangerous
software weaknesses (MITRE, 2024), rely on complex conditional state-
ments, loop structures, and other intricate control flow behaviors. Ex-
amples of such vulnerabilities include Use-After-Free, Integer Overflow
or Wraparound, and Buffer Overflow. Our approach leverages graph
structures to analyze complex control flow patterns effectively, achiev-
ing superior performance. However, the performance improvement
was less pronounced for vulnerabilities such as Improper Authentica-
tion and Exposure of Sensitive Information. This may be attributed
to the model’s inability to fully capture relevant features during the
communication process, resulting in some loss of critical information.
Nevertheless, the performance of our method on these two vulnerability
types is only marginally lower than that of LineVul.

6.6. Training time

We evaluate the time efficiency of various methods, explicitly ex-
amining the time required for model convergence during training. To
ensure a fair comparison, we standardized key factors, including the

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Table 8
The cost of training time in different methods.
Method

Dataset Devign Reveal

Train time Round Train time Round
fine-tuning 17358 (s) 100 16485 (s) 100

prompt tuning 3400 (s) 11 3807 (s) 15

training data size, learning rate, batch size, and loss-stopping threshold.
The comparison results, which encompass both prompt tuning and
regular fine-tuning, are presented in Table 8.

The results presented in Table 8 indicate that prompt tuning re-
quires significantly less time, achieving convergence by the 11th round.
In contrast, with fine-tuning, the model fails to reach the convergence
threshold even after completing the maximum number of training
rounds (i.e., 100 rounds). A comparison of training times highlights
that prompt tuning substantially reduces the overall training duration.
In summary, prompt learning saves considerable time and underscores
our proposed method’s efficiency and effectiveness.

6.7. Threats to validity

External threats. The external threats we studied mainly originate
from the datasets. The three datasets evaluated by MIVDL are widely
used in previous research (Wen et al., 2023; Fu and Tantithamthavorn,
2022). However, these datasets only include C/C++, excluding other
programming languages such as Java, PHP, or Python. In the future,
we will expand the programming languages in the datasets to evaluate
MIVDL.

Internal threats. The internal threats we studied mainly: 1. Mod-
ular Design: Rather than fully integrating modalities at all levels,
we propose a modular approach wherein each modality is managed
independently within specialized modules, thereby preserving distinct
boundaries among them. This strategy may uphold interpretability
while benefiting from the complementary information each modality
provides. 2. Model Simplification: To reduce the complexity intro-
duced by multiple modalities, we employ techniques such as prun-
ing, which can simplify the model without significantly compromising
performance, thus improving both scalability and interpretability. 3.
Visualization Tools: We may utilize existing visualization tools that
facilitate the tracking of information flow across the modalities, thereby
empowering users to better understand how the model processes and
integrates various types of data. Additionally, MIVDL is controlled
by multiple parameters, such as learning rate and optimizer, which
may affect the effectiveness of our approach. As the scale of the
dataset increases, finding the optimal parameter settings becomes more
challenging. However, our research is not aimed at finding the optimal
parameter settings. By comparing the performance of MIVDL with
the baseline, MIVDL already outperforms the baseline without seeking
optimal parameters. Therefore, the performance presented in this paper
can be considered a lower bound of the method, with the potential for
further improvement through parameter tuning.

Construct threats. The construct threats we studied mainly stem
from the selected performance metrics. We used four commonly used
performance metrics to evaluate the performance of MIVDL. However,
due to the class imbalance in the dataset, we also considered using MCC
to ensure the study’s rigor.

7. Conclusion

In this work, we proposed a novel vulnerability detector capable
of detecting various vulnerabilities. MIVDL first identifies the source
code, separating comments from the source code, and then extracts the
paths of the code segments. These three types of information are then
augmented with prompt information and input into the LLM, leveraging
the pre-trained knowledge of the LLM to generate features. Finally,
12
we use federated learning to interact with the features, enhancing the
data and ensuring data security. Evaluation results indicate that MIVDL
outperforms state-of-the-art detectors across three datasets.

In the future, we first want to consider vulnerabilities in other
programming languages (such as Java and Python). We second want
to consider better modal fusion methods. We third want to consider
other new distributed learning methods.

CRediT authorship contribution statement

Zilong Ren: Writing – review & editing, Writing – original draft,
Software, Methodology, Data curation. Xiaolin Ju: Writing – review
& editing, Supervision, Methodology, Conceptualization. Xiang Chen:
Writing – review & editing, Supervision, Methodology, Conceptualiza-
tion. Yubin Qu: Writing – review & editing, Supervision, Software,
Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

References

Allen, F.E., 1970. Control flow analysis. ACM Sigplan Not. 5 (7), 1–19.
Anon, 2020. The exactis breach: 5 things you need to know. https://blog.infoarmor.

com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know.
Cao, S., Sun, X., Bo, L., Wu, R., Li, B., Tao, C., 2022. MVD: memory-related vulnerability

detection based on flow-sensitive graph neural networks. In: Proceedings of the
44th International Conference on Software Engineering. Association for Computing
Machinery, New York, NY, USA, pp. 1456–1468.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2021. Deep learning based vulnerability
detection: Are we there yet. IEEE Trans. Softw. Eng. 48 (9), 3280–3296.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2022. Deep learning based vulnerability
detection: Are we there yet? IEEE Trans. Softw. Eng. 48 (09), 3280–3296.

Cheng, B., Zhao, M., Wang, K., Wang, M., Bai, G., Feng, R., Guo, Y., Ma, L., Wang, H.,
2024. Beyond fidelity: Explaining vulnerability localization of learning-based
detectors. ACM Trans. Softw. Eng. Methodol.

Cherem, S., Princehouse, L., Rugina, R., 2007. Practical memory leak detection using
guarded value-flow analysis. In: Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation. Association for Computing
Machinery, New York, NY, USA, pp. 480–491.

Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A., 2017. Automatic feature
learning for vulnerability prediction. arXiv preprint arXiv:1708.02368.

Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A., 2018. Automatic feature
learning for predicting vulnerable software components. IEEE Trans. Softw. Eng.
47 (1), 67–85.

Do, C.X., Luu, N.T., Nguyen, P.T.L., 2024. Optimizing software vulnerability detection
using RoBERTa and machine learning. Autom. Softw. Eng. 31 (2), 40.

El Ouadrhiri, A., Abdelhadi, A., 2022. Differential privacy for deep and federated
learning: A survey. IEEE Access 10, 22359–22380.

Fan, J., Li, Y., Wang, S., Nguyen, T.N., 2020. AC/C++ code vulnerability dataset
with code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. pp. 508–512.

Fan, G., Wu, R., Shi, Q., Xiao, X., Zhou, J., Zhang, C., 2019. Smoke: scalable path-
sensitive memory leak detection for millions of lines of code. In: 2019 IEEE/ACM
41st International Conference on Software Engineering. ICSE, IEEE, Montreal, QC,
Canada, pp. 72–82.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al., 2020. CodeBERT: A pre-trained model for programming and
natural languages. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, pp. 1536–1547.

Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9 (3), 319–349.

Fu, M., Tantithamthavorn, C., 2022. Linevul: A transformer-based line-level vulnera-
bility prediction. In: Proceedings of the 19th International Conference on Mining
Software Repositories. IEEE, pp. 608–620.

Groh, F., Ruppert, L., Wieschollek, P., Lensch, H.P., 2022. Ggnn: Graph-based gpu
nearest neighbor search. IEEE Trans. Big Data 9 (1), 267–279.

http://refhub.elsevier.com/S0164-1212(25)00110-4/sb1
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb7
http://arxiv.org/abs/1708.02368
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb17

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A.,
Fu, S., et al., 2020. Graphcodebert: Pre-training code representations with data
flow. In: International Conference on Learning Representations.

He, Y., Chen, Z., Goues, C.L., 2023. PreciseBugCollector: Extensible, executable and
precise bug-fix collection: Solution for challenge 8: Automating precise data
collection for code snippets with bugs, fixes, locations, and types. In: 2023 38th
IEEE/ACM International Conference on Automated Software Engineering. ASE, IEEE
Computer Society, Los Alamitos, CA, USA, pp. 1899–1910.

Heine, D.L., Lam, M.S., 2006. Static detection of leaks in polymorphic containers.
In: Proceedings of the 28th International Conference on Software Engineering.
Association for Computing Machinery, New York, NY, USA, pp. 252–261.

Hin, D., Kan, A., Chen, H., Babar, M.A., 2022. LineVD: Statement-level vulnerability
detection using graph neural networks. In: 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories. MSR, IEEE, pp. 596–607.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z.,
Duerig, T., 2021. Scaling up visual and vision-language representation learning with
noisy text supervision. In: International Conference on Machine Learning. PMLR,
pp. 4904–4916.

Johnson, A., Dempsey, K., Ross, R., Gupta, S., Bailey, D., et al., 2011. Guide for security-
focused configuration management of information systems. NIST Spec. Publ. 800
(128), 16.

Kamiya, T., Kusumoto, S., Inoue, K., 2002. CCFinder: A multilinguistic token-based code
clone detection system for large scale source code. IEEE Trans. Softw. Eng. 28 (7),
654–670.

Konecnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D., 2016.
Federated learning: Strategies for improving communication efficiency. 8, arXiv
preprint arXiv:1610.05492.

Kroening, D., Tautschnig, M., 2014. CBMC–C bounded model checker: (competition con-
tribution). In: Tools and Algorithms for the Construction and Analysis of Systems:
20th International Conference, TACAS 2014, Held As Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5–13, 2014. Proceedings 20. Springer, Berlin, Heidelberg, pp. 389–391.

Le, T.H., Chen, H., Babar, M.A., 2022. A survey on data-driven software vulnerability
assessment and prioritization. ACM Comput. Surv. 55 (5), 1–39.

Lester, B., Al-Rfou, R., Constant, N., 2021. The power of scale for parameter-efficient
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Online and
Punta Cana, Dominican Republic, pp. 3045–3059.

Li, X.L., Liang, P., 2021. Prefix-tuning: Optimizing continuous prompts for generation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguistics, pp.
4582–4597, (Online).

Li, X., Ren, X., Xue, Y., Xing, Z., Sun, J., 2023. Prediction of vulnerability characteristics
based on vulnerability description and prompt learning. In: 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering. SANER, IEEE,
Taipa, Macao, pp. 604–615.

Li, Y., Wang, S., Nguyen, T.N., 2021a. Vulnerability detection with fine-grained
interpretations. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. Association for Computing Machinery, New York, NY, USA, pp.
292–303.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2021b. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secur.
Comput. 19 (4), 2244–2258.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018. Vuldeepecker:
A deep learning-based system for vulnerability detection. arXiv preprint arXiv:
1801.01681.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J., 2023. GPT understands,
too. AI Open.

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017.
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics. PMLR, pp. 1273–1282.

MITRE, 2024. 2024 CWE top 25 most dangerous software weaknesses. https://cwe.
mitre.org/top25/archive/2024/2024_cwe_top25.html/, (Online; accessed 2024).

Nie, E., Liang, S., Schmid, H., Schütze, H., 2022. Cross-lingual retrieval augmented
prompt for low-resource languages. arXiv e-prints arXiv–2212.

Nord, R.L., 2017. Software vulnerabilities, defects, and design flaws: A technical debt
perspective. In: Fourteenth Annual Acquisition Research Symposium. Acquisition
Research Program, Boston, USA, p. 451.

Peters, F., Menzies, T., Layman, L., 2015. LACE2: Better privacy-preserving data sharing
for cross project defect prediction. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. vol. 1, IEEE, pp. 801–811.

Ren, Z., Ju, X., Chen, X., Shen, H., 2024. ProRLearn: boosting prompt tuning-based
vulnerability detection by reinforcement learning. Autom. Softw. Eng. 31 (2), 38.

Ruan, X., Yu, Y., Ma, W., Cai, B., 2023. Prompt learning for developing software
exploits. In: Proceedings of the 14th Asia-Pacific Symposium on Internetware. pp.
154–164.
13
Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P.,
McConley, M., 2018. Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications. ICMLA, IEEE, Orlando, FL, USA, pp. 757–762.

Schick, T., Schütze, H., 2021. Exploiting cloze-questions for few-shot text classification
and natural language inference. In: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume.
Association for Computational Linguistics, Online, pp. 255–269.

Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., Asadpour, M., 2020. Boosting methods
for multi-class imbalanced data classification: an experimental review. J. Big Data
7 (1), 1–47.

Wang, S., Liu, T., Nam, J., Tan, L., 2018. Deep semantic feature learning for software
defect prediction. IEEE Trans. Softw. Eng. 46 (12), 1267–1293.

Wang, M., Tao, C., Guo, H., 2023. LCVD: Loop-oriented code vulnerability detection
via graph neural network. J. Syst. Softw. 202, 111706.

Wang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859.

Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., Lyu, M.R., 2022. No more fine-tuning?
an experimental evaluation of prompt tuning in code intelligence. In: Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Association for Computing Machinery,
New York, NY, USA, pp. 382–394.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek, T.Q., Poor, H.V.,
2020. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469.

Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q., 2023. Vulnerability
detection with graph simplification and enhanced graph representation learning.
arXiv preprint arXiv:2302.04675.

Wilcoxon, F., 1992. Individual comparisons by ranking methods. In: Breakthroughs in
Statistics: Methodology and Distribution. Springer, pp. 196–202.

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H., 2022. VulCNN: An image-
inspired scalable vulnerability detection system. In: Proceedings of the 44th
International Conference on Software Engineering. Association for Computing
Machinery, Pittsburgh, Pennsylvania, pp. 2365–2376.

Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F., 2021. Federated learning
for healthcare informatics. J. Heal. Informatics Res. 5, 1–19.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy. IEEE, pp. 590–604.

Yamamoto, H., Wang, D., Rajbahadur, G.K., Kondo, M., Kamei, Y., Ubayashi, N.,
2023. Towards privacy preserving cross project defect prediction with federated
learning. In: 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering. SANER, IEEE, pp. 485–496.

Yin, L., Feng, J., Xun, H., Sun, Z., Cheng, X., 2021. A privacy-preserving federated
learning for multiparty data sharing in social IoTs. IEEE Trans. Netw. Sci. Eng. 8
(3), 2706–2718.

Yu, L., Lu, J., Liu, X., Yang, L., Zhang, F., Ma, J., 2023. PSCVFinder: A prompt-tuning
based framework for smart contract vulnerability detection. In: 2023 IEEE 34th
International Symposium on Software Reliability Engineering. ISSRE, IEEE, pp.
556–567.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019. A novel neural
source code representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering. ICSE, IEEE, pp. 783–794.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y., 2021. A survey on federated learning.
Knowl.-Based Syst. 216, 106775.

Zhang, C., Yu, T., Liu, B., Xin, Y., 2024. Vulnerability detection based on federated
learning. Inf. Softw. Technol. 167, 107371.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Adv. Neural Inf. Process. Syst. 32.

Zilong Ren is pursuing a Master’s degree at the School of Artificial Intelligence and
Computer Science, Nantong University. His research interests include vulnerability
detection.

Xiaolin Ju (Member, IEEE) was born in April 1976. He received a B.S. in information
science from Wuhan University in 1998, an M.Sc. degree in computer science from
Southeast University in 2004, and a Ph.D. in computer science from the Chinese
University of Mining Technology in 2014. He is currently an Associate Professor at the
School of Artificial Intelligence and Computer Science, Nantong University, Nantong,
China. His research interests include software testing, such as collective intelligence,
deep learning testing and optimization, and software defects analysis.

Xiang Chen received a B.Sc. in the school of management from Xi’an Jiaotong
University, China, in 2002. Then, he received his M.Sc. and Ph.D. in computer software

http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb24
http://arxiv.org/abs/1610.05492
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb32
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb35
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html/
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb46
http://arxiv.org/abs/2109.00859
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb49
http://arxiv.org/abs/2302.04675
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00110-4/sb61

The Journal of Systems & Software 226 (2025) 112442Z. Ren et al.
and theory from Nanjing University, China, in 2008 and 2011, respectively. He is
currently an Associate Professor at the School of Artificial Intelligence and Computer
Science, Nantong University, Nantong, China. He has authored or co-authored more
than 120 papers in refereed journals or conferences, such as IEEE Transactions on
Software Engineering, ACM Transactions on Software Engineering and Methodology,
Empirical Software Engineering, Information and Software Technology, Journal of
Systems and Software, IEEE Transactions on Reliability, Journal of Software: Evolution
and Process, Software - Practice and Experience, Automated Software Engineering,
Journal of Computer Science and Technology, IET Software, Software Quality Journal,
Knowledge-based Systems, International Conference on Software Engineering (ICSE),
The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), International Conference Automated
Software Engineering (ASE), International Conference on Software Maintenance and
Evolution (ICSME), International Conference on Program Comprehension (ICPC), and
International Conference on Software Analysis, Evolution and Reengineering (SANER).
14
His research interests include software engineering, particularly software testing and
maintenance, software repository mining, and empirical software engineering. He
received two ACM SIGSOFT distinguished paper awards in ICSE 2021 and ICPC 2023.
He is the editorial board member of Information and Software Technology. More
information about him can be found at: https://xchencs.github.io

Yubin Qu was born in Nanyang, China in 1981. He received the B.S. and M.S. degrees
in Computer Science and Technology from Henan Polytechnic University in China
in 2004 and 2008. He is currently pursuing a doctoral degree at Army Engineering
University of PLA. Since 2022, he has been an associate professor with Information
Engineering Institute, Jiangsu College of Engineering and Technology. He is the author
of more than 10 articles. His research interests include software maintenance, software
testing, and machine learning.

https://xchencs.github.io

	Improving distributed learning-based vulnerability detection via multi-modal prompt tuning
	Introduction
	Background and Related Work
	Vulnerability Detection
	Prompt Tuning
	Distributed Learning
	Large Language Models

	Approach
	Multi-modal Prompt Tuning
	Graph Structure Information Extraction
	Code Semantic and Comments Extraction
	Prompt Template Construction

	Distributed Model Training
	Vulnerability Detection

	Experimental Setup
	Research Questions
	Datasets
	Performance Metrics
	Baseline Methods
	Experiment Settings

	Experimental Results
	RQ1. Effectiveness of MIVDL
	RQ2: Effectiveness of Prompt Information
	RQ3: Effectiveness of Distributed Model Training

	Discussion
	Performance impact of Different Communication Rounds
	Performance comparison in terms of MCC
	Performance impact of Different Prompt Templates
	Statistical Analysis on the performance of MIVDL
	Qualitative Analysis
	Training Time
	Threats to Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

