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Context: Recently, various methods on test input selection for deep neural network (TIS-DNN) have been
proposed. These methods can effectively reduce the labeling cost by selecting a subset from the original test
inputs, which can still accurately estimate the performance (such as accuracy) of the target DNN models.
Objective: Previous studies on TIS-DNN mainly focused on the performance on all the classes. However, the
selected subset may miss the coverage of some classes or decrease the performance on some classes, which
will reduce the test diversity of the original test inputs.

Methods: Therefore, we conducted a large-scale empirical study to investigate whether previous TIS-DNN
methods can guarantee test diversity in the subset. In our study, we selected five state-of-the-art TIS-
DNN methods: SRS, CSS, CES, DeepReduce and PACE. Then we selected 18 pairs of DNN models and the
corresponding test inputs from seven popular DNN datasets.

Results: Our experimental results can be summarized as follows. (1) Previous TIS-DNN methods can guarantee
the performance on all the classes. However, these methods have a negative impact on the test diversity and
the performance on each class is not satisfactory. (2) Reducing the performance estimation error on each
class can help reduce the estimation error on the test adequacy of the original inputs based on DNN-based
coverage criteria (especially for the criterion NC and the criterion TKNC). (3) There still exists great room for
performance improvement (i.e., 7.637% improvement on all the classes and 12.833% improvement on each
class) after comparing the TIS-DNN method PACE with approximately optimal solutions.

Conclusion: The above experimental findings implicate there is still a long way for the TIS-DNN issue to go.
Given this, we present observations about the road ahead for this issue.

1. Introduction

With the increasing adoption of deep neural networks (DNNs) in
various application domains (such as computer vision [1], natural
language processing [2], software engineering [3-9]), more and more
attention has been paid to the quality assurance of the DNNs [10]. Sim-
ilar to traditional software, DNN-based applications also contain faults.
Specifically, due to the complex internal structure, minor disturbances
in the data will cause the DNN models to make incomprehensible
wrong predictions. Some of the faults can even threaten personal
safety. For example, in 2018, a woman was killed by one of Uber’s

self-driving cars in Arizona.! In the same year, a semi-autonomous
Tesla Model S crashed into a parked firetruck on California freeway.?
Therefore, the security of DNNs has attracted more concerns, and many
software testing methods have been applied to ensure its quality and
reliability [11-13].

Recently, DNN model testing has been very costly due to numerous
test inputs. The test inputs can be different, such as images, voice, text,
and other data. Labeling these inputs is time-consuming and heavily re-
lies on domain knowledge [14-16]. For some domains (such as disease
diagnosis based on pathological images), labeling these inputs even
requires multiple domain experts to guarantee the label’s correctness.
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To reduce the labeling cost, test input selection for deep neural
network (TIS-DNN) aims to select a small subset from the original test
inputs to estimate the performance (such as accuracy) of the target DNN
model. Then experts only need to label the test inputs in this small-
scale subset, which is helpful to reduce the labeling cost. Moreover,
executing the test inputs in this subset can also effectively save model
performance evaluation time. Nowadays, researchers have proposed
different novel TIS-DNN methods. For example, Li et al. [16] proposed a
stratified sampling method CSS which is based on the model prediction
confidence, and a cross-entropy-based sampling method CES. Later,
Zhou et al. [17] proposed a two-phase TIS-DNN method DeepReduce.
Recently, Chen et al. [14] proposed a practical accuracy estimation
method PACE. Most of the prior TIS-DNN methods only examine the
performance difference between the selected subset and the original
test input. However, after our manual analysis, the selected subset may
lose some test properties. For example, when the selection ratio of the
TIS-DNN method PACE [14] is set to 1.5% for the dataset CIFAR-100,
the accuracy estimation error on all the classes is only 3.9%, but 28% of
the classes in the original test inputs are missed, which means that the
selected subset cannot test the performance of the target DNN model
on these missed classes.

Therefore, in our study, we aim at covering the classes of the
original test input as much as possible in the resulting selected subset.
Moreover, the performance estimation of each class should be close to
the original test input as much as possible. We call this test property
the test diversity. To our best knowledge, whether previous TIS-DNN
methods can guarantee the test diversity has not been investigated
in previous studies. Our large-scale empirical study first selected 18
pairs of DNN models and the corresponding test inputs from seven
popular DNN datasets as our experimental subjects. Then we consider
four state-of-the-art methods: CSS [16], CES [16], DeepReduce [17],
and PACE [14]. Moreover, we also consider a simple random sampling
method SRS as a reference method.

In summary, the contributions of our empirical study can be sum-
marized as follows.

» To the best of our knowledge, we are the first to investigate the
test diversity issue in the subsets selected by the state-of-the-art
TIS-DNN methods.

We conducted a large-scale empirical study to investigate this
issue. In our empirical study, we select 18 pairs of DNN models
and corresponding test inputs. Then we consider five state-of-
the-art TIS-DNN methods. Our empirical results verified that the
test diversity is not satisfactory for current TIS-DNN methods.
Moreover, we find that concerning the test diversity can improve
the coverage rate estimation accuracy base on the DNN-based
coverage criterion.

Since there is still much room for performance improvement,
researchers need to design more novel effective TIS-DNN meth-
ods in the future. In this study, we design a multi-objective
optimization-based method to explore one of the feasible direc-
tions and show promising results.

For other researchers to follow our study, we shared our scripts,
our proposed multi-objective optimization-based approach, and
the detailed results in our project homepage.®

The remainder of this paper is organized as follows. Section 2
analyzes the related work and emphasizes the novelty of our study.
Section 3 shows the motivation and problem formalization of TIS-DNN.
Section 4 illustrates our three research questions (RQs) and their design
motivation. Section 5 shows the case study design, including experi-
mental subjects, our chosen five state-of-the-art TIS-DNN methods, per-
formance measures, and the implementation details. Section 6 performs

3 https://github.com/SwilderY/TIS-DNN.
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result analysis for each RQ. Section 7 investigates whether considering
the test diversity can guarantee performance estimation on all the
classes and introduces our proposed multi-objective optimization-based
TIS-DNN method. Section 8 discusses potential threats for our empirical
results. Section 9 concludes our study.

2. Related work

In this section, we first analyze the related work for deep neural
network and quality assurance studies for them. Then we focus on
test optimization for deep neural network testing. After analyzing the
related studies, we emphasize the novelty of our study.

2.1. Deep neural network testing

Different from traditional software [18], the deep neural network is
a special software artifact (i.e., the DNN models automatically learn the
knowledge from the data). Since DNN models consist of multiple layers
and each layer contains multiple neurons, researchers have proposed
different coverage criteria by analyzing the structure of the DNN mod-
els. For example, Pei et al. [19] first proposed a white-box framework
for testing real-world DNN models and then proposed neuron coverage
criteria. Ma et al. [20] proposed a range of finer-grained adequacy
criteria DeepGauge, which includes neuron-level coverage criteria and
layer-level coverage criteria. Kim et al. [21] proposed surprise ade-
quacy for DNN models, which can quantitatively measure the relative
surprise of each input for the training data (i.e., surprise adequacy).
Moreover, they also proposed surprise coverage, which can measure the
coverage of neurons with specific activation traits. Du et al. [22] mainly
focused on RNN models and designed five coverage criteria, which can
perform quantitative analysis on RNN models. Except for the above
DNN-based coverage criteria, researchers also studied test generation
techniques. For example, Sun et al. [12] first applied concolic testing
for DNN models. Xie et al. [11] proposed a coverage-guided fuzz testing
framework DeepHunter. Later, Zhang et al. [23] proposed a simple and
effective fuzzing-based black box attack method DeepSearch. Finally,
researchers also focused on adversarial samples [24]. DNN models are
vulnerable to even a small perturbation of input data (i.e., adversarial
samples). Until now, different attack techniques have been proposed
(such as FGSM [25], JSMA [26], DeepFool [27]). Then researchers
focused on the robustness improvement of the DNN models. For ex-
ample, Papernot et al. [28] introduced defensive distillation to reduce
the effectiveness of adversarial samples.

In our study, we resorted to DNN-based coverage criteria [19,20]
to investigate whether reducing the accuracy estimation error on each
class of the selected test subset can help to decrease the coverage rate
estimation error based on DNN-based coverage criteria.

2.2. Test optimization for deep neural network

There are two kinds of optimization methods, which can reduce
the labeling cost of the gathered test inputs. The first kind of methods
focused on test input selection. The purpose of these TIS-DNN methods
is to select a small-scale subset from the original inputs, which can
still accurately estimate the performance of the DNN models under
test. Then users only need to label the test inputs in the subset, which
can effectively save the labeling cost. Li et al. [16] first proposed
a confidence-based stratified sampling method and a cross-entropy-
based sampling method. Later, Zhou et al. [17] proposed a two-phase
test input reduction method DeepReduce. Recently, Chen et al. [14]
proposed a practical accuracy estimation-based method PACE.

The second kind of methods focused on test input prioritization.
The purpose of these methods is to label the test inputs that are more
valuable to test the DNN model under the guidance of the predefined
prioritization rules, which can finally improve the test efficiency. Com-
pared with the first kind of method, the second kind of method does
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Fig. 1. The overview of our case study design.

not need to discard any test inputs, and the inputs that will cause the
model to produce error predictions can be found as early as possible.
Compared with the first kind of methods, the second kind of methods
paid more attention to finding the test inputs, which could lead to
the wrong prediction of the model or improve its performance after
retraining. Byun et al. [29] first investigated this issue. They conduct
the test input prioritization under the guidance of sentiment metrics.
Feng et al. [30] proposed a test prioritization method DeepGini based
on the statistical perspective. Recently, Wang et al. [15] proposed a test
input prioritization method PRIMA via intelligent mutation analysis.

2.3. Novelty of our study

In this study, we mainly focus on the first kind of methods (i.e., test
input selection methods) for deep neural network. After our in-depth
analysis, we find that the selected subset by the previous TIS-DNN
method [14,16,17] may miss the coverage of some classes in the
original test input (i.e., test diversity on the select subsets) in our
manual analysis. This means that the selected subset cannot test the
performance of the target DNN model on these missed classes. To the
best of our knowledge, this issue has not been studied in previous
studies. Therefore, we conducted a large-scale empirical study based
on popular DNN models and state-of-the-art TIS-DNN methods to inves-
tigate whether previous TIS-DNN methods can guarantee test diversity
on the select subsets. Moreover, we also explored how much room there
is for the improvement of previous TIS-DNN methods, and provided
implications for future studies on the TIS-DNN problem.

3. Motivation and problem formalization of TIS-DNN

Accurate performance (such as accuracy) estimation is important
for quality assurance of the target DNN models. If the performance is
not satisfactory for the current application, the developers can alter
the structure of the DNN models (e.g., adding or deleting a layer) or
further tune the hyper-parameters to improve the model performance.
However, labeling all the test inputs is time-consuming and heavily
relying on expert knowledge. For example, when preparing ImageNet,
the researchers resorted to Amazon Mechanical Turk, which is an online
platform for users to complete the task and get paid [31]. Test input
selection is an effective way to reduce the labeling efforts. Specifically,
TIS-DNN methods aim to accurately estimate the performance of the
target DNN models by selecting a subset from the original test inputs.
The formal definition of TIS-DNN problem can be defined as follows.

Definition 1 (Test Input Selection for DNN). Given original unlabeled

test set T, the DNN model M to be tested, and the evaluation function

f, Suppose the selected test subset is denoted as T’, the test input

selection for DNN aims to make 7’ meet the following conditions:
IT'Il < ITl: £(T, M) = f(T", M)

In Definition 1, the evaluation function can be defined based on test
properties (such as accuracy on all the classes).

4. Research questions

In our empirical study, we aim to answer the following three
research questions (RQs).
RQ1: Can previous TIS-DNN methods guarantee the accurate per-
formance estimation on each class?
Motivation. Previous TIS-DNN methods [14,16,17] mainly used the
performance on all the classes to evaluate the performance difference
between the selected subset and the original test inputs. However,
the selected subset may reduce the test diversity of the original test.
For example, some classes of the original inputs may not be selected
by TIS-DNN methods. Moreover, there will exist a huge performance
difference in predicting some classes. Therefore, in this RQ, we first
want to verify whether the previous TIS-DNN methods can guarantee
accurate performance estimation on all the classes. Then, we want to
further investigate whether the previous TIS-DNN methods can ensure
the accurate performance estimation on each class.
RQ2: Can the accurate performance estimation on each class help
to achieve accurate test adequacy estimation (i.e., coverage esti-
mation based on DNN-based coverage criteria)?
Motivation. In traditional software testing, the coverage criteria (such
as control-flow coverage, data-flow coverage) [18] are used to eval-
uate the adequacy of the test suite. However, these coverage criteria
cannot be directly applied to test deep neural networks, which are
data-driven programming paradigm. Therefore, researchers proposed
different DNN-based coverage criteria (such as DeepXplore [19], Deep-
Gauge [20]) to measure the test adequacy of the test inputs. In this
RQ, we aim to investigate whether accurate performance estimation on
each class can help to achieve accurate coverage estimation for the test
adequacy of the original inputs based on DNN-based coverage criteria.
RQ3: Can current TIS-DNN methods be improved in terms of per-
formance?
Motivation. Since we know the labels of all the test inputs for each
dataset in our controlled empirical study, we can design a method
to obtain the approximate optimal subset for each pair of the model
and the corresponding test inputs respectively. Then, after comparing
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the approximate optimal subsets, we can compute the performance
improvement room of the current TIS-DNN methods in this RQ. If
the room for performance improvement is large, it means that more
advanced effective TIS-DNN methods need to be proposed in the future.
Moreover, since the size of the subset is an important parameter for TIS-
DNN methods, we also want to investigate whether exists the suggest
value range of the subset for previous TIS-DNN methods, which can
help to achieve the minimum performance estimation error on all the
classes and each class.

5. Case study design

In this section, we describe our case study design to address our
research questions. We show the overview of our case study design
in Fig. 1. This figure mainly shows the process of constructing test
subsets by the TIS-DNN method. The inputs are the number of the
selected subset, the target DNN model and its corresponding unlabeled
original inputs, while the output is the selected subset for experts to
label the class. In our empirical study, we consider different DNN model
types and different input types to guarantee the generalization of our
empirical findings. During the process of the TIS-DNN method, we
first measure the accuracy and the coverage rate based on a DNN-
based coverage criterion of the original inputs and the subset. Then
we compare the performance difference between these two sets.

In the rest of this section, we first introduce the experimental
subjects. Then we show the state-of-the-art TIS-DNN methods. Later,
we illustrate the performance measures based on accuracy and the cov-
erage rate used in our case study. Finally, we give the implementation
details and running platform information.

5.1. Experimental subjects

In our empirical studies, we select 18 pairs of DNN models and the
corresponding test inputs as our experimental subjects. The character-
istics of the DNN models and the corresponding datasets can be found
in Table 1. The selected DNN models are trained on seven datasets
(i.e., MNIST,* CIFAR-10,° CIFAR-100,° SVHN,” ImageNET,® Fashion-
MNIST,’ and Speech-Commands!®), which have been widely used in
previous DNN quality assurance studies [14,16,17]. The corresponding
test inputs also have a certain diversity. From the perspective of the test
input types, these test inputs include image data and audio data. Since
adversarial input generation is a popular method to test DNN models,
we also consider adversarial inputs for some datasets. Specifically, for
four datasets (i.e., Autogen-MNIST, Autogen-SVHN, Autogen-Fashion,
and Autogen-CIFAR-10), we use these mixed inputs (i.e., 5000 original
test inputs and 5000 adversarial inputs), which were constructed for the
performance evaluation of the method DeepGini [30] and the method
PACE [14]. The adversarial inputs are created by a basic iterative
method [32].

The characteristics of these datasets, the corresponding trained DNN
models and test inputs are illustrated as follows.

MNIST. MNIST is a handwritten digit dataset, which contains a
total of 70,000 input data, of which 60,000 data are training
data and 10,000 data are test data. This data is divided into
10 classes (i.e., categories). On the dataset MINIST, we first
consider three classical models proposed by LeCun et al. [33]

http://yann.lecun.com/exdb/mnist.
http://www.cs.toronto.edu/~kriz/CIFAR.html.
https://www.cs.toronto.edu/~kriz/cifar.html.
http://ufldl.stanford.edu/housenumbers.
http://www.image-net.org.
https://github.com/zalandoresearch/fashion-mnist.
https://github.com/bjtommychen/Keras_DeepSpeech2_
SpeechRecognition.
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for MNIST (i.e., LeNet-1, LeNet-4, LeNet-5). Moreover, we also
consider the mutated models to simulate low-accuracy models,
whose performance is less than 0.8 by following the previous
study [16]. In our study, we directly adopted their three mutated
models (i.e., LeNet-5-M1, LeNet-5-M2, and LeNet-5-M3).
CIFAR-10. The dataset CIFAR-10 contains a total of 60,000
32 x 32 color images in 10 different classes (i.e., airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
Each class contains 6000 images. Since the images in CIFAR-10
are low-resolution (32 x 32), this dataset can allow researchers
to quickly try different DNN models. For this dataset, 50,000
images are used for the training set, and the remaining 10,000
images are used for the test set. On the dataset CIFAR-10, we
consider two models (i.e., the high-accuracy model ResNet-20
and the low-accuracy model VGG-16) by following the previous
studies [14,30].

CIFAR-100. The dataset CIFAR-100 is similar to the dataset
CIFAR-10, except that it contains 100 classes. Each class contains
600 images. Therefore, this dataset contains 60,000 images. For
each class, 500 images are used as the training set and the
remaining 100 images are used as the test set. The 100 classes
in CIFAR-100 are grouped into 20 superclasses. Each image has a
“fine” label (i.e., the class to which it belongs) and a “coarse”
label (i.e., the superclass to which it belongs). On the dataset
CIFAR-100, we only consider the model ResNet-20 by following
the previous study [14].

SVHN. The dataset SVHN was gathered from the house number
in the Google street view images. Its style is similar to MNIST
(i.e., the images are of small cropped digits), but it contains
an order of magnitude more labeled data, which contains more
than 600,000 digital images. These images are divided into 10
categories. This dataset is used to solve a more challenging prob-
lem (i.e., identifying characters and numbers in natural scene
images) [34]. On the dataset SVHN, we only consider the model
LeNet-5 by following the previous studies [14,30].
Fashion-MNIST. The dataset Fashion-MNIST is a dataset of Za-
lando’s article images and serves as a drop-in replacement for the
original MNIST dataset. Fashion-MNIST, which was provided by a
fashion company from Germany, covers 70,000 different product
images from 10 classes. It keeps the same image size and structure
of training and testing splits with the dataset MNIST. On the
dataset Fashion-MNIST, we only consider the model LeNet-5 by
following the previous study [14].

ImageNET. The dataset ImageNET is a large-scale image dataset,
which was established to promote the development of computer
image recognition. ImageNET collected more than 1.4 million
images as the training data, 50,000 images as the validation data,
and 50,000 images as the test data. These images are divided into
1000 classes. In our study, we consider two models (i.e., ResNet-
50 and VGG-19) by following the previous study [14].
Speech-Commands. The dataset Speech-Commands is used for
speech recognition. Each set of data contains a single English
word. These words are spoken by different speakers. These au-
dio files are organized into different folders according to the
words they contain. This dataset contains a total of 64,727 audio
files and these audio files are divided into 30 classes. On the
dataset Speech-Commands, we consider the model DeepSpeech by
following the previous study [14].

In summary, to build a comprehensive test benchmark to alleviate
the external threat of our empirical study, we guarantee the diversity of
the selected experimental subjects from the following four perspectives.

» From the perspective of model accuracy, these models can be
divided into high-precision models (i.e., the accuracy is over 0.8)
and low-precision models (i.e., the accuracy is not over 0.8).
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Table 1
The characteristics of the DNN models and corresponding original test inputs.
D Dataset Model Model size (KB) Input size Accuracy (%) # Class Input type
1 LeNet-1 113 10,000 94.86 10 Original
2 LeNet-4 947 10,000 96.79 10 Original
3 LeNet-5 1093 10,000 98.68 10 Original
MNIST
4 LeNet-5-M1 1093 10,000 79.53 10 Original
5 LeNet-5-M2 1093 10,000 77.27 10 Original
6 LeNet-5-M3 1093 10,000 79.14 10 Original
7 VGG-16 21,814 10,000 78.71 10 Original
CIFAR-10
ResNet-20 3507 10,000 91.45 10 Original
9 CIFAR-100 ResNet-20 10,615 10,000 71.42 100 Original
10 SVHN LeNet-5 522 26,032 87.90 10 Original
11 Speech-Commands DeepSpeech 6734 6471 94.53 30 Original
12 Fashion-MNIST LeNet-5 385 10,000 89.88 10 Original
13 VGG-19 562,176 50,000 64.73 1000 Original
ImageNet
14 ResNet-50 100,352 50,000 68.27 1000 Original
15 Autogen-MNIST LeNet-5 1093 10,000 49.35 10 Generated
16 Autogen-SVHN LeNet-5 522 10,000 43.69 10 Generated
17 Autogen-Fashion LeNet-5 385 10,000 45.31 10 Generated
18 Autogen-CIFAR-10 ResNet-20 3507 10,000 42.92 10 Generated

» From the perspective of model structure, these models can be
divided into convolution neural networks (CNNs) and recurrent
neural networks (RNNs).

» From the perspective of the test input types, these inputs include
image and audio data.

» From the perspective of the test input generation methods, these
inputs include original inputs and adversarial inputs.

5.2. TIS-DNN methods

In our study, we mainly consider five state-of-the-art TIS-DNN
methods [14,16,17]. All of these methods have been proposed in the
past three years, and the related studies were published in high-quality
journals and conferences. Therefore, we can ensure that our chosen TIS-
DNN methods are representative and stand for the state of the art in this
research topic.

A brief introduction of these TIS-DNN methods can be found as
follows.

+ SRS (Simple Random Sampling). SRS is the simplest method
to select the subset from the original test inputs. Specifically,
this method randomly selects a required number of test inputs
without replacement from the original test inputs with the same
probability.

CSS (Confidence-based Stratified Sampling). CSS [16] first di-
vides the confidence value, which is provided by the classification
model when predicting the label for the input, into different
intervals. Then it selects test inputs based on their confidence
values in different intervals, which can guarantee the distribution
similarity between the selected subset and the original inputs.
CES (Cross-Entropy based Sampling). CES [16] extracts its last
hidden-layer features as the feature vector for each test input,
which can be viewed as the learned representation of the test
input. Then CES selects a required number of test inputs by
minimizing the cross entropy between the selected subset and the
original inputs to guarantee the distribution similarity.
DeepReduce. DeepReduce [17] adopts a two-phase strategy. In
the first phase, it uses a greedy method HGS [35] to select the
minimized subset with the same testing adequacy of the original

inputs based on neuron coverage criteria. In the second phase, it
uses a heuristic-based method to add more testing data based on
relative-entropy minimization, which can approximate the output
distribution between the original inputs and the select subset. To
represent output distribution, they use the outputs of the neurons
in the last layer of a DNN model, which is more related to the
behavior of a DNN model.

PACE (Practical ACcuracy Estimation). To guarantee the se-
lected subset can cover different testing capabilities (i.e., different
functionalities of a DNN model) and maintain the original distri-
bution of these testing capabilities, PACE [14] first clusters the
original test inputs into different groups, which can discriminate
the test inputs with different testing capabilities. Since the sizes of
groups can reflect the distribution of different testing capabilities,
PACE then selects the most representative test inputs from each
group according to the proportion of different group sizes by
utilizing an example-based explanation algorithm (i.e., the MMD-
critic algorithm [36]). Finally, there may exist some test inputs,
which do not belong to any group. However, each of them is likely
to have a unique testing capability and the space of these test
inputs can be called the minority space. PACE utilizes adaptive
random testing [37] to select the representative test inputs from
the minority space.

5.3. Performance measures

Hereafter, we present the different performance measures that we
used in our study. They are divided into two categories: accuracy based
measures and coverage-rate based measures.

5.3.1. Accuracy-based performance measures

Accuracy performance measure computes the proportion of cor-
rectly predicted test inputs to all the test inputs, which has been
commonly used to evaluate the performance of the DNN models under
test. For previous TIS-DNN studies, researchers mainly focused on
accuracy estimation error on all the classes AccEE,,. Supposing the
accuracy on the subset is Acc,,, and the accuracy on the original set
is Acc,, AccEE,, for the DNN model under test can be computed as
follows.

AccEE,; = |Accy,, — Accy,l @

sub
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Then, we further investigate the test diversity in the subset by the
performance measure AccEE,,,, which focuses on the average value
of the accuracy over all the classes. Supposing the original test inputs
include m classes. For the ith class, the accuracy on the subset is
Accg,li] and the accuracy on the original test inputs is Acc,,,[i]. Then
AccEE,,, for the DNN model under test can be computed as follows.

Yo | Acegplil = Acc,, lil]
m

AccEE 2

avg =

5.3.2. Coverage rate-based performance measure

Finally, we consider the coverage rate difference CovDif f be-
tween the subset and the original test inputs when given a DNN-based
coverage criterion [19,20].

The brief introduction of our considered five coverage criteria is
shown as follows.

* NC (Neuron Coverage). NC criterion was first proposed by Pei
et al. [19]. This is the first criterion to measure the adequacy
of the deep learning test inputs. This criterion measures the
proportion of activated neurons in total neurons. The neuron is
activated when its output value is greater than the pre-established
threshold.

Later, Ma et al. [20] proposed DeepGauge, which includes the fol-
lowing four coverage criteria with different granularities. Specifically,
KMNC, NBC, and SNAC are designed in the neuron-level granularity.
TKNC is designed in the layer-level granularity.

+ KMNC (K-multisection Neuron Coverage). KMNC first divides
the output range of each neuron into K sections from the training
data. If the output value of a neuron (suppose that the output
value interval of neuron n as [a,b]) falls into a section after
executing the next test input, it is regarded as the coverage
interval, so it calculates the proportion of all neuron coverage
intervals.

NBC (Neuron Boundary Coverage). Unlike KMNC, NBC con-
siders whether the external areas of neuron output values (i.e.,
(—o0,a) and (b, +0)) are covered after executing the test input.
SNAC (Strong Neuron Activation Coverage). SNAC only consid-
ers whether the external area of the upper bound (i.e., (b, +)) is
covered after the test input is executed.

TKNC (Top-k Neuron Coverage). Researchers conjecture that
the characteristics of neurons in the same layer are similar, while
the active neurons in different layers are the main components
that determine the characteristic of DNN model [20]. Therefore,
the TKNC metric measures the proportion of the top k most active
neurons in each layer to the total number of neurons.

Notice some of our considered criteria are controversial and their
practicality was challenged by researchers. For example, Fabrice et al.
[38] proved that NC and its variants were useless under some condi-
tions. Later Chen et al. [39] also found that the above neuron coverage
criteria were useless for finding the data, which can make the model
generate wrong predictions. However, in this study, we only take these
criteria to measure the test adequacy difference between the selected
subsets and the original test inputs. Therefore, we do not consider the
practicability in DNN testing.

Supposing the coverage rate on the subset is Cov,,, and the coverage
rate on the original test inputs is Cov,,,, CovDif f for the DNN model
under test can be computed as follows.

CovDif f = |Covgy, — Cov,gl 3)
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Table 2

The subset size setting method used in result analysis for RQ1.
# Class Minimum size Maximum size Step size
10 5 205 10
30 22 1590 64
100 50 2050 100
1000 500 20,500 1,000

5.4. Implementation details and running platform

All the TIS-DNN methods and experimental scripts were imple-
mented on two deep learning frameworks (i.e., Tensorflow-1.15.0 and
Keras-2.3.1) by using Python programming language (i.e., Python 3.6).
All the deep learning models and the original test inputs shown in
Table 1 are gathered from Github. We conducted our empirical study
on the server (CPU: Xeon E5-2640 v4, hard disk: 4T, memory: 125 GB).

6. Result analysis
6.1. Result analysis for RQ1

Method. To answer this RQ, we first analyze the overall accuracy on
all the classes AccEE,, and the accuracy on each class AccEE,,, by
controlling the size of the selected subset. During our empirical study,
we find the test diversity problem for TIS-DNN will be obvious when
the subset size is within a specific value range. Moreover, we find
the value range of different datasets has a certain correlation with the
class number of the dataset, but not the instances in the dataset. The
subset size setting method used in RQ1 can be found in Table 2. For
example, for the datasets with 10 classes, the subset size is increased
from 5 to 205, and the step size is 10. For the datasets with 30 classes,
the subset size is increased from 22 to 1590, and the step size is 64.
Given the subset size, we can run each TIS-DNN method to collect
AccEE,; and AccEE,,,. Since SRS is a random method, we run SRS
10 times independently with different random seeds and obtain the
average value. For the remaining TIS-DNN methods, we only run them
once.

Result. In this RQ, we first show the results on four DNN models From
Figs. 2 to 5. For each subfigure, the x-axis denotes the size of the
selected subset. the y-axis denotes the accuracy estimation error on all
the classes and each class. In terms of accuracy estimation error, all the
TIS-DNN methods can keep the low value of AccEE,,. For example,
in Fig. 2, the value of AccEE,, is almost no larger than 0.1. These
results of our replication study can verify the effectiveness of previous
TIS-DNN methods. However, after considering the test diversity in the
subset, we find the accuracy estimation error on each class cannot be
guaranteed (accuracy estimation error can be even up to 0.5 in some
cases) especially when the size of the subset is small. For example, in
Fig. 2, when the size of the subset is larger than 400 (i.e., 4% of the
original test inputs), the value of AccEE,,, will decrease significantly.
In Fig. 3, when the size of the subset is larger than 3500 (i.e., 7% of the
original test inputs), the value of AccEE,,, will decrease significantly.
We can achieve similar findings for other DNN models and the detailed
results can be found in our project homepage.

Finally, we aim to comprehensively compare different TIS-DNN
methods. For the ith pair of DNN model and corresponding test inputs,
we compute the average AccEE,, value (AccEE,,li]) and AccEE,,,
value (AccEE,,,[i]) when considering different subset sizes for each
TIS-DNN method. Notice we cannot gather the result of the method
CSS on the Speech-Commands dataset, since the confidence between
each alphabet and a word is impractical to confirm. Therefore, we show
the value distribution of AccEE,; and AccEE,,,for 17 pairs in Fig. 6
via boxplot. When considering the value AccEE,; and AccEE,,,, we
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Fig. 2. Accuracy estimation error on ResNet-20 model for the CIFAR-100 dataset when considering different subset size.
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Fig. 3. Accuracy estimation error on VGG-19 model for the ImageNet dataset when considering different subset size.
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Fig. 4. Accuracy estimation error on LeNet-5 model for the SVHN dataset when considering different subset size.

can find that except for the method CSS, the other TIS-DNN methods
can achieve similar performance. Similar to the findings in previous
studies [14,16], the method CSS performs even worse than the sim-
ple random method SRS, since the method CSS is not robust to the
divergence between the original inputs and the selected subset.

Summary for RQ1: The previous TIS-DNN methods can
achieve low accuracy estimation error on all the classes. How-
ever, the estimation error on each class is still high especially
when the subset size is small, which can influence the test
diversity of the subset.

6.2. Result analysis for RQ2

Method. To investigate RQ2, we first aim to construct subsets, which
can cover different classes and the scale is fixed. We extract the same
number of test inputs each time according to the specified number of
classes to build a test subset. The subset construction method used in
result analysis for RQ2 can be found in Table 3. For example, for the
datasets with 10 classes, the size of the subset is fixed to 100. Then
the number of the covered classes is increased from 1 to 10 and the
step size is 1. For the dataset with 30 classes, the size of the subset
is fixed to 300. Then the number of the covered classes is increased
from 3 to 30 and the step size is 3. Since the existing results show that
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Fig. 5. Accuracy estimation error on LeNet-5 model for the Autogen-MNIST dataset when considering different subset size.
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Fig. 6. AccEE,, and AccEE,, value distribution on all the pairs via boxplot for

different TIS-DNN methods.

the more classes are covered, the smaller value of AccEE,,, is under
the same test subset size. In this RQ, we want to analyze the correlation
between CovDif f and AccEE,,,, which means whether decreasing the
value of AccEE,,, can help to improve the coverage rate difference
between the subset and the original test inputs when given a coverage
criterion. Here we consider the five popular deep neuron network-based
coverage criteria (i.e., NC, NBC, SNAC, TKNC, and KMNC) to calculate
the test adequacy of deep learning testing. A brief introduction of these
coverage criteria can be found in Section 5.3. Notice we do not consider
the experimental protocol for subset construction in RQ1, since the
motivations of RQ1 and RQ2 are different. In RQ1, we want to explore
the performance differences between the existing TIS-DNN methods
under different test subset sizes. While in RQ2, we want to explore
the relationship between AccEE,,, and five DNN-coverage estimation
errors, which has little relationship with the test subset size. Moreover,
the time cost of calculating KMNC metric on experiment subject 13 is

Table 3
The subset construction method used in result analysis for RQ2.

Original class nums Smallest class nums Step Fixed subset size
10 1 1 100

30 3 3 300

100 10 10 1000

1000 100 100 10000

very expensive. Therefore, we choose to conduct the experiment in RQ2
with a smaller and fixed test subset size.

Finally, we compute the correlation coefficient via the Pearson
correlation coefficient between the accuracy estimation error on each
class AccEE,,, (denoted by the one-dimensional vector X) and the cov-
erage difference CovDif f when given a DNN-based coverage criterion
(denoted by the one-dimensional vector Y). The Pearson correlation
coefficient can be computed as follows.

Cov(X,Y)

VVar[X] - VarlY]

where Couv(X,Y) means the covariance of X and Y, and Var[Y] denotes
the variance of the vector Y.

Result. Due to the extra high complexity of the neuron network model
(i.e., ResNet-50 trained by ImageNet), the cost of gathering the cover-
age rate of all these DNN models is unacceptable. Therefore, we only
list the results of 17 pairs of the DNN models and corresponding test
inputs in Table 4. In this table, ID corresponds to the specific pair of
the DNN model and corresponding test inputs shown in Table 1. Then
the correlation coefficients for different DNN-based coverage criteria
between the accuracy estimation error on each class AccEE,,, and
the coverage difference between the subset and the original test inputs
CouvDif f are shown in the remaining five columns respectively. The
closer the absolute value of the correlation coefficient is to 1, the
higher the correlation degree is. Here a positive value means a positive
correlation, and a negative value means a negative correlation. In the
last row, we gather the number of pairs, whose absolute value of
the correlation coefficient is larger than 0.8 (i.e., strong correlation
suggested by Mukaka et al. [40]). In this table, we can find among these
five criteria, the criterion NC and the criterion TKNC shows the strong
correlation with the estimation error on each class. These two criteria
can achieve the strong correlation on 13 experimental subjects. That
means for the subset, reducing accuracy estimation error on each class
can help to accurate coverage rate estimation of the original inputs for
these two criteria.

rX,Y)= G
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Table 4
The correlation coefficient between the accuracy estimation error on each class
AccEE,, and the coverage difference between the subset and the original test set.

D NC NBC SNAC TKNC KMNC
1 0.965 N/A 0.838 0.745 0.770
2 0.867 —-0.054 0.807 0.732 -0.258
3 0.935 -0.202 0.876 0.865 0.032
4 0.845 0.411 0.838 0.786 0.005
5 0.919 0.050 0.906 0.947 -0.147
6 0.922 0.032 0.925 0.949 -0.347
7 0.990 0.765 0.778 0.904 0.237
8 0.754 -0.412 -0.093 0.917 0.883
9 0.961 -0.043 0.378 0.885 0.049
10 0.945 0.929 0.934 0.969 0.542
11 0.724 0.202 0.219 0.796 0.676
12 0.932 0.759 0.762 0.909 0.588
13 0.535 -0.669 -0.489 -0.852 0.099
15 0.574 0.478 0.024 0.883 0.372
16 0.861 0.345 0.313 0.828 —-0.901
17 0.941 —-0.393 0.894 0.983 0.753
18 0.956 0.949 0.956 0.948 0.757
Sum 13/17 2/17 9/17 13/17 2/17

*Notice we do not show the result of the 14th experimental subject due to the high
computational cost in gathering coverage information.

Summary RQ2: Reducing the accuracy estimation error on
each class on the subset can help to achieve accurate coverage
rate estimation of the original inputs based on DNN-based cov-
erage criteria (especially for the criterion NC and the criterion
TKNCQC).

6.3. Result analysis for RQ3

Method. In this RQ, we want to compute the performance improve-
ment room for previous TIS-DNN methods in terms of accuracy-based
performance measures. To answer this RQ, we first need to know the
theoretically approximate optimal solution for different experimental
subjects. In practice, during the usage of the TIS-DNN methods, the
practitioners do not know the labels of the original test inputs and
cannot find this optimal solution. However, in our controlled experi-
mental study, we know the ground-truth labels of all the test inputs.
Therefore, we can construct this optimal solution by a simple method
Best. Specifically, given the size of the subset, this method first deter-
mines the sampling number sampNum[i] for the ith class according to
the proportion of each class in the original test inputs. Then for the
ith class, it computes the sampling number of test inputs sampNum,[i]
which are predicted correctly, and the sampling number of test inputs
sampNum,,[i] which are predicted wrongly based on the accuracy of the
ith class of the original test inputs. Later, for the ith class, it samples
sampNum,[i] test inputs with the correct predictions, and sampNum,,[i]
test inputs with the wrong predictions from the original inputs in the
ith class. Finally, after iterating all the classes, it can determine the
approximate optimal subset.

Based on the previous analysis on RQ1, we can find that except for
the method CSS, the other TIS-DNN methods can achieve similar per-
formance. Moreover, the method PACE can achieve better performance
than other TIS-DNN methods in their original study [14]. Therefore, we
mainly investigate the performance improvement room by comparing
the method Best and the method PACE in this RQ.
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Result. Final results (i.e., average value and standard deviation) can
be found in Table 5. Taking the performance measure AccEE,, as an
example, the performance improvement room is obtained by subtract-
ing the AccEE,; value of the method PACE from the AccEE,, value
of the method Best. In this table, in terms of AccEE,,, the method
PACE has 0.103% to 7.673% performance improvement room. In terms
of AccEE,,,, the method PACE has 1.190% to 12.833% performance
improvement.

Then, we analyze the effect of the class number on the performance
improvement room. Different from the DNN models for image data
type, the output of the DeepSpeech model is the probability distribution
of the basic letters that may be included in the test instance. This
makes the feature structure of the audio data is quite different from the
image data. Therefore, We compute the average value and the standard
deviation grouped by the class number when considering different data
types and the results can be found in Table 6. Specifically, for the
image data type, we can find with the number of the classes increases,
the performance improvement room for AccEE,; decreases, while the
performance improvement room for AccEE,,, generally increases.

Finally, we analyze the performance turning point (i.e., the perfor-
mance will significantly decrease) of the method PACE on AccEE,,,
and its corresponding subset size for each pair. Specifically, when
considering the image data type, for the datasets with 10 classes, the
size of the corresponding subset is about 25 to 35. For the datasets
with 100 classes, the size of the corresponding subset is about 250.
For the datasets with 1000 classes, the size of the corresponding subset
is about 2500. When considering the audio data type, for the datasets
with 30 classes, the size of the corresponding subset is about 250. These
findings can provide subset size recommendation for the practitioners,
which can help to achieve the optimal AccEE,,, when using PACE.

av,

Summary for RQ3: The previous TIS-DNN methods have a
large performance improvement room on all the classes and
each class. For example, the method PACE has at most 7.673%
and 12.833% performance improvement room in terms of
AccEE,, and AccEE,,, respectively. Moreover, the perfor-
mance improvement room and the performance turning point
of the method PACE are related to the class number for the
image data type.

7. Discussion & implications

In this section, we first want to investigate whether considering the
test diversity can guarantee performance estimation on all the classes.
We second introduce our proposed multi-objective optimization-based
TIS-DNN method and show the preliminary results to verify the feasi-
bility of this exploration direction.

7.1. Considering test diversity can guarantee performance estimation on all
the classes

Based on our large-scale experimental study on 18 pairs of DNN
models and the corresponding test inputs, we find although the pre-
vious state-of-the-art TIS-DNN methods can guarantee the accurate
accuracy estimation of the target DNN models on all the classes, while
the accuracy estimation on each class (i.e., test diversity) is still not
satisfactory. Moreover, we find that accurately estimating the accuracy
on each class will not significantly decrease the coverage rate of the
original inputs based on recently proposed DNN-based coverage crite-
ria, since the relevant performance measure AccEE,,, can evaluate the
similarity of test diversity between the selected subset and the original
test inputs in a fine-grained way. As shown in Figs. 2-5, with the size
of the subset increases, the changing trend of AccEE,, is basically
consistent with the trend of AccEE,,, no matter how the test subset
is constructed by the selection method.
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Table 5
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The performance improvement room after comparing the method Best and the method PACE on each experimental subject.

Measure Subject ID Improvement room (Average, Standard Deviation)
1-6 (2.121%, 1.910%) (0.870%, 0.693%) (0.103%, 0.311%) (1.139%, 4.024%) (3.117%, 7.125%) (0.126%, 0.514%)
Room for AccEE,, 7-12 (2.780%, 4.142%) (1.124%, 1.664%) (1.349%, 0.608%) (3.997%, 4.527%) (0.514%, 1.029%) (0.282%, 0.978%)
13-18 (0.479%, 0.959%) (0.719%, 0.549%) (3.189%, 5.018%) (7.673%, 8.416%) (1.005%, 1.134%) (1.660%, 1.696%)
1-6 (3.728%, 4.367%) (1.190%, 0.615%) (1.218%, 2.040%) (1.815%, 4.043%) (2.153%, 6.220%) (1.519%, 4.099%)
Room for AccEE,,, 7-12 (9.633%, 3.072%) (7.939%, 2.847%) (10.963%, 6.071%) (7.230%, 4.466%) (3.490%, 7.854%) (3.540%, 2.639%)
13-18 (9.713%, 4.710%) (9.408%, 4.591%) (12.833%, 2.832%) (10.971%, 6.765%) (11.423%, 4.756%) (7.214%, 4.632%)

Table 6
The performance improvement room after comparing the method Best and the method
PACE grouped by the class number.

Data type # Class Room for AccEE,, Room for AccEE,,,
10 (2.085%, 1.819%) (5.886%, 2.333%)
Image 100 (1.349%, 0.608%) (10.963%, 6.071%)
1000 (0.599%, 0.654%) (9.561%, 4.624%)
Audio 30 (0.514%, 1.029%) (3.490%, 7.854%)
Table 7

The correlation between AccEE,,, and AccEE,, by adopting the Best method with

the increasing of the subset size on 18 groups of experimental subjects.

Subject ID Pearson correlation

1-3 0.943 0.660 0.414
4-6 0.185 0.640 0.319
7-9 0.658 0.962 0.948
10-12 0.958 0.525 0.967
13-15 0.985 0.919 0.963
16-18 0.940 0.933 0.947

In this section, we quantitatively compute the correlation between
AccEE,,, and AccEE,; by adopting the Best method (introduced in
Section 6.3) with the increasing of the subset size (the detailed setting
can be found in Section 6.1) on 18 groups of experimental subjects.
The experimental results are shown in Table 7. In this table, we can
find AccEE,,, and AccEE,, show a positive correlation on all of
the experimental subjects and there is a strong positive correlation
on 11 experimental subjects. These results show that reducing the
accuracy estimation error on each class can help to achieve accurate
accuracy estimation on all the classes. However, as analyzed in RQ1,
only considering the reduction of the accuracy estimation error on all
the classes cannot guarantee the test diversity of the subset. Therefore,
keeping test diversity in the subset should be considered in future
TIS-DNN studies.

7.2. Improving test diversity via multi-objective optimization

In our empirical studies, we find that there is still a lot of per-
formance improvement room after analyzing the TIS-DNN method
PACE [14]. Therefore, we should encourage researchers to design more
advanced TIS-DNN methods, which can achieve accurate performance
estimation both on all the classes and on each class.

In this section, we wish to design a novel TIS-DNN method via
multi-objective optimization, which has been successfully used in some
software engineering tasks (such as defect prediction [41,42], vulnera-
bility identification [43]), to guarantee the test diversity in the subset.
Before introducing this method, we first formalize TIS-DNN problem
from the perspective of multi-objective optimization.

10

Definition 2 (Multi-objective Optimization Based Test Input Selection for
DNN). Given original test inputs 7, the DNN model M to be tested, and
the evaluation function fi, f,, ..., f;, Suppose the selected test subset
is denoted as T’, the Multi-objective optimization based test input
selection for DNN aims to make 7’ meet the following conditions:

IT'II < NTI: fi(T, M) = fL(T", M), f,(T,M) = f(T',M), -,
f(T, M) = f(T', M)

In most of previous TIS-DNN methods, there is usually only one
evaluation function f, that is, the overall accuracy of all test inputs (No-
tice, DeepReduce [17] takes neuron coverage as the second evaluation
function). To ensure the test diversity, We resort to multi-objective opti-
mization method and propose a novel method MultiSelect. Specifically,
we first label T according to the prediction result of M, then we cluster
T hierarchically and take the proportion of different classes in each
cluster as the evaluation function fi, f,, ..., f,. Later we continuously
reduce the data distribution difference of each cluster between T and T’
through multi-objective optimization. We hope 7' can cover the classes
of the original test inputs as much as possible and achieve the similar
accuracy estimation on all the classes when compared to 7.

We conducted experiments on all the experimental subjects. The
results of the subject 8 and the subject 9 are shown in Fig. 7. Notice
that our proposed method MultiSelect will generate multiple non-
dominated solutions due to the nature of the multi-objective optimiza-
tion. We choose the solution with the best performance as the final
selection result in terms of the performance measure AccEE,,,. In this
figure, we can find our proposed method can better guarantee the
test diversity than state-of-the-art TIS-DNN baselines. More comparison
results on other experimental subjects can be found in our project
homepage.

8. Threats to validity

Internal threats. The first threat of internal validity lies in the imple-
mentation correctness of TIS-DNN baselines. For the baseline methods,
we use the source code shared by previous TIS-DNN studies and use the
optimal hyperparameter value suggested by these studies [14,16,17].
The second threat is the theoretically approximate optimal solution for
different experimental subjects for result analysis for RQ3. Since we
know the ground-truth labels of all the test inputs in our controlled
experimental study, we can construct this optimal solution by our
designed simple method Best.

External threats. The threat of external validity is related to the
representative of our chosen experimental subjects. To alleviate this
threat, we mainly consider the experimental subjects used to evaluate
the effectiveness of the recently proposed TIS-DNN method PACE [14].
Since the test diversity property investigated in our empirical study
is based on the classification task, we consider all the experimen-
tal subjects for the classification tasks. These experimental subjects
can cover different model structures, different types of test inputs,
different test input generation methods, and models with different
performances. Therefore, the generalization of our experimental results
can be guaranteed.

Construct threats. The construct threat in this study is the perfor-
mance measure used to measure the test diversity of the selected subset
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Fig. 7. Comparison between our proposed method Multi-select and the state-of-the-art TIS-DNN baselines in terms of AccEE,,, performance measure.

Table 8
The brief textual definitions for acronyms and abbreviations.
Acronym/Abbreviation Definition
DNN Deep Neural Network
TIS Test Input Selection
SRS Simple Random Sampling
CSS Confidence-based Stratified Sampling
CES Cross-Entropy based Sampling
PACE Practical Accuracy Estimation
NC Neuron Coverage
KMNC K-Multisection Neuron Coverage
NBC Neuron Boundary Coverage
SNAC Strong Neuron Activation Coverage
TKNC Top-K Neuron Coverage
Accy,, the ACCuracy on the SUBset
Acc,,y the ACCuracy on the ORiGinal test inputs
AccEE,, the ACCuracy Estimation Error on ALL the classes
AccEE,, the average value of ACCuracy Estimation Error
on each class
Couvy,, the COVerage rate on the SUBset
Cov,, the COVerage rate on the ORiGinal test inputs
CouvDif f the COVerage rate DIFFerence between the

selected subset and the original test inputs

by TIS-DNN methods. To alleviate this threat, we used AccEE,,, as
the simple proxy for test diversity since high accuracy difference in
some classes can make the value of AccEE,,, high, while the value of
AccEE,); can still low. Notice AccEE,;, and AccEE,,, may have some
redundancy when each class has the same number of instances and the
same accuracy in the original set and the subset. However, this scenario
rarely happens in our empirical study. In our study, for the subsets
returned by the TIS-DNN methods, the number of instances contained
in different classes may vary greatly. In the worst cases, instances in
some classes do not even appear in subsets especially when the dataset
has many different classes. Moreover, the accuracy of different classes
may also vary greatly in our empirical study.

9. Conclusion and future work

Test input selection methods for deep neural networks have been
proposed to reduce labeling costs. However, the selected subset may

11

miss some classes of the inputs, which will reduce the test diversity
of the original test inputs. We conducted a large-scale empirical study
based on 18 DNN models and five state-of-the-art TIS-DNN baselines to
investigate this issue. Empirical results show that the accuracy estima-
tion on each class (i.e., test diversity) is still not satisfactory. Moreover,
maintaining the test diversity in the subset will help to achieve accurate
coverage rate estimation of the original inputs based on some DNN-
based coverage criteria (especially for the criterion NC [19] and the
criterion TKNC [20]). Since there has a large performance improvement
room for current TIS-DNN methods, we hope that more effective TIS-
DNN methods which can perform accurate performance estimation on
all classes and each class can be designed in the future. In this study, we
introduce our proposed multi-objective optimization-based TIS-DNN
method and show the preliminary results to verify the feasibility of this
research direction.

In the future, we first want to investigate the generalization of
our empirical results by considering more DNN models from other
application domains (such as text mining). We second want to design
more effective methods, which can guarantee the test diversity of
TIS-DNN. Finally, we want to analyze the test diversity problem for
TIS-DNN in the finer granularity. For example, we can retrieve a vector
of accuracy (one element for each class) and then analyze the vector
component by component.
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