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 A B S T R A C T

Context: Just-in-time defect prediction (JIT-DP) is a crucial process in software development that focuses 
on identifying potential defects during code changes, facilitating early mitigation and quality assurance. Pre-
trained language models like CodeBERT have shown promise in various applications but often struggle to 
distinguish between defective and non-defective code, especially when dealing with noisy labels.
Objective: The primary aim of this study is to enhance the robustness of pre-trained language models in 
identifying software defects by developing an innovative framework that leverages contrastive learning and 
feature fusion.
Method: We introduce JIT-CF, a framework that improves model robustness by employing contrastive learning 
to maximize similarity within positive pairs and minimize it between negative pairs, thereby enhancing the 
model’s ability to detect subtle differences in code changes. Additionally, feature fusion is used to combine 
semantic and expert features, enabling the model to capture richer contextual information. This integrated 
approach aims to improve the identification and resolution of code defects.
Results: JIT-CF was evaluated using the JIT-Defects4J dataset, which includes 23,379 code commits from 21 
projects. The results indicate substantial performance improvements over seven state-of-the-art baselines, with 
enhancements of up to 13.9% in F1-score, 8% in AUC, and 11% in Recall@20%E. The study also explores the 
impact of specific customization enhancements, demonstrating the potential for improved just-in-time defect 
localization.
Conclusion: The proposed JIT-CF framework significantly advances the field of just-in-time defect prediction 
by effectively addressing the challenges encountered by pre-trained models in distinguishing code defects. The 
integration of contrastive learning and feature fusion not only enhances the model’s robustness but also leads 
to notable improvements in prediction accuracy, offering valuable insights for future applications in software 
development.

1. Introduction

Defects are an inevitable aspect of software development, often 
resulting from modifications made during the software’s creation and 
evolution [1,2]. These defects can significantly impact the software’s 
reliability and functionality. Consequently, Software Defect Prediction 
(SDP) has emerged as an active research topic, focusing on identifying 
potential defects early in the software development life cycle to enable 
developers to proactively localize and fix them. To achieve this goal, 
researchers have developed a variety of defect prediction approaches 
at different levels of granularity. Coarse-grained approaches typically 

< Corresponding authors.
E-mail addresses: ju.xl@ntu.edu.cn (X. Ju), ntucaoyi@outlook.com (Y. Cao), xchencs@ntu.edu.cn (X. Chen), gonglina@nuaa.edu.cn (L. Gong), 

vaskarchakma7@gmail.com (V. Chakma), xinzhountu@hotmail.com (X. Zhou).

indicates the defect scope at the file or module level [3–7], while fine-
grained approaches seek to pinpoint defects at a more detailed level, 
such as line number of code [8–19].

Modern software development is inherently iterative, characterized 
by frequent code changes and updates. This dynamic evolution requires 
the timely detection of potential defects as they arise. Just-In-Time 
defect prediction (JIT-DP) focuses on predicting defects at the time 
code changes are committed, thereby facilitating immediate correc-
tive actions [20–22]. Recently, JIT-DP has emerged as a significant 
advancement within the Software Defect Prediction domain. State-of-
the-art JIT-DP techniques leverage machine learning models to predict 
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whether specific commits will introduce defects, often through the 
analysis of semantic features or expert features.

Semantic features are derived from the underlying structure and 
relationships within the code, offering insights into potential defect-
prone patterns [23]. These features capture the logical and syntactic 
elements of code, reflecting how changes may influence software be-
havior. Conversely, expert features are based on domain expertise and 
capture characteristics like code change history, developer experience, 
and modification size. The pioneering work by Kamei et al. [20] defined 
14 features across five dimensions: diffusion, size, purpose, code change 
history, and developer experience. These 14 features have become 
expert features in the field of JIT-DP research.

Various state-of-the-art research has been proposed to facilitate 
JIT-DP tasks, making significant progress and achieving promising re-
sults [24–27]. For example, deep learning models such as DeepJIT [23] 
and CC2Vec [25] have shown significant improvements in capturing 
semantic information from code changes. Additionally, recent work 
by Ni et al. [28] proposed integrating semantic features with expert 
features of code changes using a unified learning model, demonstrating 
enhanced prediction performance.

Despite significant progress in recent years, existing JIT-DP tech-
niques still face several limitations: First, distinguishing between sim-
ilar code changes remains a significant challenge. Identifying defect-
inducing commits is particularly difficult when the code changes that 
introduce defects closely resemble those that do not. Traditional ma-
chine learning models, such as decision trees and support vector ma-
chines, often struggle to capture these subtle differences effectively. 
Even neural network-based models find it challenging to discern fine-
grained distinctions between defect-inducing and non-defect-inducing 
code changes, resulting in diminished prediction performance. Second, 
existing techniques often fail to capture sufficient code information [29,
30]. Defect-prone commits are often influenced by the broader context 
in which code changes occur, including historical commit patterns and 
interactions between different code segments. However, most existing 
techniques focus primarily on isolated code modifications, neglecting 
the surrounding context. This incomplete comprehension of the code’s 
environment reduces prediction accuracy, particularly within complex 
software systems. Third, existing JIT-DP techniques are often sensitive 
to noisy labels. Noisy labels are a prevalent issue in software defect 
datasets, where mislabeled or incomplete annotations can mislead the 
model during training. Most existing JIT-DP techniques rely on super-
vised learning approaches that assume all labels are reliable, making 
them vulnerable to errors introduced by noisy data. This sensitivity can 
cause the model to mislabel defect-prone code, thereby reducing the 
model’s overall effectiveness.

To address the limitations of existing JIT-DP techniques, we intro-
duce contrastive learning into the semantic feature extraction stage. 
Contrastive learning operates by maximizing the similarity between se-
mantically related code changes and minimizing the similarity between 
unrelated changes [31–34]. This approach allows the model to learn 
more nuanced representations, making it more robust to subtle code 
changes and reducing the impact of noisy labels. As a result, the model’s 
predictive performance improves, leading to better identification of 
defect-inducing commits.

Additionally, we refine the model architecture during the feature 
fusion stage to enhance context capture. By integrating semantic fea-
tures derived from the code with expert-crafted features based on 
domain knowledge, we optimize the fusion process through various 
configurations of fully connected layers and activation functions. This 
architectural tuning enables the model to learn higher-level abstrac-
tions, capturing both localized code changes and their broader context. 
Consequently, the model can accurately identify defect-prone areas 
while understanding the complex relationships between code compo-
nents, significantly improving the performance and reliability of JIT 
defect prediction.

In this paper, we propose a novel approach called JIT-CF, which 
enhances the ability of pre-trained model [35,36] to extract semantic 
features through contrastive learning. To the best of our knowledge, 
JIT-CF is the first to introduce contrastive learning into the JIT-DP 
task. Specifically, during the semantic feature extraction phase, we 
employ contrastive learning to enhance CodeBERT’s capability to dif-
ferentiate between similar code changes. Furthermore, to improve the 
model’s ability to capture context, we implement feature fusion, during 
which we fine-tune the model and identify an optimal configuration. 
These strategies significantly improve the performance and reliability 
of JIT-DP, providing a robust and scalable solution for predicting 
defect-inducing code modifications.

We also evaluate JIT-CF using the JIT-Defects4J dataset, which 
comprises 21 open-source projects with 27,391 code changes, provid-
ing a comprehensive benchmark for defect prediction. To assess the 
performance of JIT-CF, we compare it against seven state-of-the-art 
baselines [23–26,28,37,38] across a range of experimental settings. Our 
evaluation employs five performance metrics, categorized into effort-
agnostic and effort-aware measures, to ensure a comprehensive analysis 
of prediction performance. Notably, JIT-CF achieves a 13.9% improve-
ment in F1-score over the best baseline, JIT-Fine [28], highlighting its 
superior capability in identifying defect-inducing code changes. These 
improvements in prediction performance demonstrate the effectiveness 
of JIT-CF, confirming its advancement over current state-of-the-art 
methods.

The key contributions of this paper are as follows:

• We introduce JIT-CF, an innovative framework that incorpo-
rates contrastive learning and feature fusion into the JIT-DP task. 
This approach enhances the model’s ability to discern subtle 
differences in code changes, thereby improving its capacity to 
differentiate between similar code modifications and effectively 
mitigate the impact of noisy labels.

• We fine-tune the model during the feature fusion phase, identify 
an optimal architectural configuration that maximizes perfor-
mance. This optimal design choice enhances the integration of 
semantic and expert features, resulting in the best predictive 
performance in JIT-DP task.

• We conduct an extensive evaluation of the impact of contrastive 
learning and network architecture optimization on model perfor-
mance, utilizing metrics such as F1-score and AUC. Our experi-
mental results demonstrate that integrating contrastive learning 
with feature fusion significantly outperforms seven state-of-the-
art approaches.

We provide access to JIT-CF1 to facilitate and encourage future 
research in Just-In-Time Defect Prediction.

The rest of this paper is organized as follows. Section 2 outlines 
the background and motivation for our research. Section 3 details the 
design of JIT-CF. Section 4 examines the experimental settings, in-
cluding the comparative baselines and performance metrics considered. 
Section 5 presents the experimental results. Subsequently, Section 6 
discusses various issues and potential threats to validity. Section 7 
reviews related work and highlights the novelty of our study. Finally, 
we conclude our work and suggest directions for future research in 
Section 8.

2. Background and motivation

2.1. Just-In-Time defect prediction

Just-In-Time defect prediction (JIT-DP) has attracted growing in-
terest in recent years due to its potential to identify defects at the 

1 https://github.com/ntu-juking/JIT-CF
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moment of code commitment, thereby facilitating early detection and 
resolution. The key goal of JIT-DP is to predict which code changes are 
likely to introduce defects, enabling developers to take immediate ac-
tion before the code is merged into the software system. This proactive 
approach contrasts with traditional defect prediction techniques, which 
often focus on detecting defects after they have been introduced.

The foundational work in this field by Mockus and Weiss [39] 
introduced a classifier that utilizes commit history information—such 
as the number of modified subsystems, changed files, and lines of 
code added—to identify high-risk commits. Building on this foundation, 
Kamei et al. [20] proposed 14 change-level features, which have since 
become recognized as expert features in JIT-DP research for capturing 
the characteristics of code changes. These features are especially valu-
able in effort-aware scenarios, where prioritizing changes based on the 
effort required to resolve them is crucial.

Subsequent studies have aimed to enhance JIT-DP models by re-
fining feature representation and prediction techniques. For instance, 
Yang et al. [24,40] introduced deep learning-based models to capture 
more complex relationships in code changes. They developed a method 
using Deep Belief Networks (DBNs) to extract high-level features [24], 
and later combined decision trees with ensemble learning to create a 
more robust predictor [40].

As research in this domain advanced, the focus shifted towards 
enhancing model performance and addressing practical challenges. For 
example, Young et al. [19] proposed a deep ensemble approach that 
optimizes weights across classifiers to boost performance. Meanwhile, 
Liu et al. [41] introduced an unsupervised model for JIT-DP called Code 
Changes. Chen et al. [42] framed JIT-DP as a multi-objective optimiza-
tion problem to identify features that improve predictive performance. 
McIntosh et al. [15] conducted a longitudinal study involving over 
37,000 changes, revealing that longer time intervals between training 
and testing negatively impact model performance, recommending that 
at least six months of historical data for training.

Other research has addressed challenges in the JIT-DP application. 
Wan et al. [43] reviewed current defect prediction tools and surveyed 
practitioners to identify limitations and future research needs. Cabral 
et al. [8] tackled issues of validation latency and class imbalance in 
online JIT-DP using a new sampling technique. More recently, deep 
learning techniques have been applied to JIT-DP, such as the work 
by Hoang et al. [23,25], who developed methods that learn repre-
sentations from both commit messages and code changes, effectively 
capturing the semantics and context of code modifications.

A typical JIT-DP workflow generally involves feature extraction 
from code changes, utilizing both semantic features (e.g., code structure 
and syntactic dependencies) and expert-defined features (e.g., change 
history, developer experience) are used to train a model. This trained 
model then predicts the likelihood of a new code change being defect-
inducing. Through this process, JIT-DP aims to provide actionable in-
sights to developers, thereby enhancing software quality and reducing 
the cost associated with fixing defects post-deployment.

2.2. Contrastive learning

Contrastive learning is a representation learning technique designed 
to bring similar samples closer together in the feature space while 
pushing dissimilar samples farther apart. By minimizing the distance 
between similar pairs and maximizing the distance between dissimilar 
pairs, contrastive learning effectively enhances the model’s ability to 
learn discriminative features. This approach has demonstrated con-
siderable success across various domains in recent years, particularly 
in computer vision and natural language processing. In the field of 
computer vision, contrastive learning methods have been instrumen-
tal in improving image classification, object detection, and represen-
tation learning tasks [34,42,44–46]. In natural language processing 
(NLP), contrastive learning has effectively improved sentence embed-
dings, text classification, and language understanding by leveraging the 
similarities and differences between sentence pairs [47–49].

Recent research has increasingly focused on the application of 
contrastive learning across various software engineering tasks, owing 
to its effectiveness in learning robust representations. For example, Bui 
et al. [50] introduced Corder, a contrastive learning framework tailored 
for software tasks such as code-to-code retrieval, text-to-code retrieval, 
and code-to-text summarization. By learning the semantic relationships 
between different code and text samples, Corder achieved notable 
improvements across these tasks. Similarly, VarCLR [51] employs con-
trastive learning to capture the semantic representations of variable 
names, enhancing performance in downstream tasks like variable sim-
ilarity scoring and correcting variable misspellings. ContraCode [52] 
further demonstrates the versatility of contrastive learning by gener-
ating syntactic variants of JavaScript code through source-to-source 
compilation. These generated code samples are then used to train a 
contrastive model, successfully improving tasks such as clone detection, 
type inference, and code summarization.

Contrastive learning’s ability to distinguish fine-grained differences 
between similar entities while effectively leveraging their context has 
made it an increasingly popular approach in software engineering 
research. By learning to better represent code semantics and iden-
tify relationships between code changes, contrastive learning holds 
significant potential for enhancing various tasks, including JIT-DP.

2.3. Motivation

JIT-DP plays a critical role in ensuring software quality and re-
liability. Recent advances in deep learning, particularly in natural 
language processing (NLP) tasks, have demonstrated the capability of 
pre-trained models to capture the semantic features of source code [28]. 
However, despite these advancements, current state-of-the-art JIT-DP 
techniques still encounter considerable challenges which include diffi-
culty distinguishing between similar code changes, insufficient capture 
of contextual information, and sensitivity to noisy labels.

The first challenge is to identify differences between similar code 
changes. This capability is essential for the precise identification of 
defect-inducing commits. Seemingly minor modifications, such as vari-
able renaming or formatting changes, may not alter the code’s logic, 
yet they can cause existing models to misclassify these changes. Fig. 
1 illustrate this issue: the original code snippet (Fig.  1(a)), correctly 
identified as non-defective, becomes incorrectly classified as defective 
after a superficial change, like variable renaming (Fig.  1(b)). This 
sensitivity to minor modifications underscores the limitations of current 
feature extraction techniques, including pre-trained models such as 
CodeBERT. These models often concentrate on shallow-level features 
and encounter difficulties in capturing deeper semantic similarities 
when confronted with minor syntactic changes.

The second challenge is the insufficient capture of contextual infor-
mation. Current JIT-DP models often overlook broader context, such 
as historical commit patterns and interactions between code segments, 
which can play a critical role in defect introduction. We address this by 
refining the network architecture during the feature fusion phase, and 
optimizing the use of fully connected layers and activation functions. 
This architectural enhancement enables the model to better capture 
contextual relationships, thereby improving precision in predicting 
defect-inducing changes.

The third challenge is the sensitivity to noisy labels. Incorrect or 
incomplete annotations in training datasets often leads to decreased 
model performance. By refining feature representations and optimizing 
the learning process, the deep learning approach can become more 
resilient to noise, thereby enhancing its generalizability across diverse 
datasets.

To address these challenges, we propose JIT-CF, a novel framework 
designed to enhance both the representation of code changes and the 
model’s prediction performance in JIT defect prediction.
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Fig. 1. An example of defect prediction error caused by overly similar code.

Fig. 2. The framework of our approach JIT-CF.

3. Approach

Our approach, JIT-CF as shown in Fig.  2, incorporates contrastive 
learning during the semantic feature extraction phase for just-in-time 
defect prediction. Additionally, JIT-CF optimizes the network archi-
tecture with the features fusion to enhance the model’s capability 
in feature representation and improve its robustness. JIT-CF consists 
of four main steps: ¨ Data Pre-processing: Collect data from code 
repository and issue tracking system, including code commit history, 
source code, bug report, etc. ≠ Feature Extracting and Enhancing: 
Expert features are extracted by adopting the 14 code change-level 
features defined by Kamei et al. [20]. Concurrently, semantic features 
are extracted with the pre-trained model CodeBERT. Furthermore, 
Contrastive learning is applied during the semantic feature extraction 
phase to enhance feature representation; Æ Integrated Learning and 
Defect Predicting: The optimal fully connected layer is identified by 
experimenting with various combinations of fully connected layers 
and activation functions for feature fusion, leading to the final model 
training; Ø Prediction Result Reporting: Create prediction reports 
of JIT-DP and document the identified defects within issue tracking 
system. Details of JIT-CF are presented in the following subsections.

3.1. Data pre-processing

In the first stage of our approach, we focus on systematically col-
lecting and organizing data from both the code repository and the 
issue tracking system. This involves gathering comprehensive infor-
mation, including the code commit history, which encompasses com-
mit messages, added lines, and deleted lines. Additionally, we extract 
the source code and relevant bug reports. This stage is crucial as 
it lays the foundation for subsequent analysis by ensuring that all 
pertinent data is accurately captured and structured. The collected data 
serves as the basis for further processing and analysis, facilitating a 
deeper understanding of the code changes and their impact on software 
quality.

3.2. Feature extracting and enhancing

This stage include two main sub-tasks: ̈  expert features extracting 
and ≠ semantic features extracting and enhancing. Together, these sub-
tasks create a comprehensive feature set that combines both structured, 
expert-driven insights and rich, context-aware semantic representa-
tions. This dual approach enhances the overall predictive accuracy and 
robustness of the model by leveraging the strengths of both expert 
knowledge and advanced machine learning techniques.

3.2.1. Expert features extracting
Expert feature extraction, involves identifying and extracting prede-

fined code change-level features that have been established by domain 
experts, providing a structured and quantifiable basis for analysis. 
These features offer insights into specific aspects of code changes 
that are considered significant based on prior research and expert 
knowledge.

In our approach, we utilized the 14 expert features proposed by 
Kamei et al. [20], which capture various aspects of code changes, 
including diffusion, size, purpose, history, and developer experience. 
As detailed in Table  1, these features are selected based on their 
well-established relevance and effectiveness in the field of JIT defect 
prediction. For instance, diffusion features (e.g., NS, ND, NF) reflect 
the scope and complexity of changes, while size features (e.g., LA, 
LD) quantify the impact of changes on the codebase. Additionally, 
history features (e.g., AGE, NUC) capture the frequency and stabil-
ity of changes, and developer experience features (e.g., EXP, SEXP) 
reflect the familiarity and potential risk associated with developers’ 
modifications. 

3.2.2. Semantic features extracting and enhancing
The extraction and enhancement of semantic features are crucial 

for JIT-DP due to their ability to capture the nuanced and contextual 
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Fig. 3. Feature Extraction via CodeBERT. The figure illustrates the process by which code tokens and related metadata are processed through multiple layers within the CodeBERT 
to generate feature embeddings utilized for JIT-DP.

Table 1
The 14 expert features used in our study.
 Name Description Dimension 
 NS Number of modified subsystems Diffusion  
 ND Number of modified directories Diffusion  
 NF Number of modified files Diffusion  
 Entropy Distribution of modified code across files Diffusion  
 LA Lines of code added Size  
 LD Lines of code deleted Size  
 LT Lines of code in file before change Size  
 FIX Indicates if the change is a defect fix Purpose  
 NDEV Number of developers who modified the files History  
 AGE Average time between last and current change History  
 NUC Number of unique changes to the files History  
 EXP Developer’s overall experience Experience 
 REXP Developer’s recent experience Experience 
 SEXP Developer’s experience in the specific subsystem Experience 

information embedded within code changes. Unlike expert features, 
which rely on predefined metrics, semantic features delve into the 
deeper meanings and relationships within the code, enabling a more 
comprehensive understanding of the code changes. Our approach lever-
ages CodeBERT for semantic feature extraction to enhance the analysis 
of software code. CodeBERT, a transformer-based model pre-trained 
on a large corpus of code and natural language, excels at understand-
ing the intricate relationships between code tokens [28]. By utilizing 
CodeBERT, we can extract semantic features that capture the deeper 
meaning and context of the code, beyond what traditional syntactic 
analysis can achieve.

The details of the semantic features extractor within JIT-CF are 
shown in Fig.  3, which incorporates various types of information, 
including commit message, added lines, deleted lines, etc. The term 
‘‘Commit message’’ refers to the description of the submitted commit, 
whereas ‘‘added lines’’ and ‘‘deleted lines’’ represent the lines added 
and deleted in the commit, respectively.

The input to the CodeBERT model consists of a sequence of tokens 
derived from the source code, commit messages, and code changes. 
The tokenization process is critical, as it systematically handles various 

components of the code, such as added or deleted lines, by differen-
tiating them with specific token markers. For instance, newly added 
lines might be tagged with a unique token, distinguishing them from 
modified or deleted lines. This nuanced handling ensures that the 
structural and semantic integrity of the code is preserved during feature 
extraction.

Once tokenized, these sequences are transformed into embeddings—
high-dimensional vector representations that encode not only the syn-
tactical but also the contextual information of each token. CodeBERT 
processes these embeddings through multiple transformer layers. These 
layers, designed with self-attention mechanisms, enable the model to 
capture intricate dependencies and relationships across different parts 
of the code. Consequently, the generated feature vectors provide a rich, 
semantically informed representation of the code, which is valuable for 
downstream tasks.

These high-dimensional feature vectors serve as the foundational 
input to our contrastive learning approach. By utilizing CodeBERT’s 
extracted features, the model can focus on the most pertinent aspects of 
the code, such as subtle changes that might indicate potential defects. 
This focus is particularly crucial for JIT defect prediction, where the 
goal is to accurately identify defects based on recent changes in the 
code repository.

In the original semantic feature extraction phase, CodeBERT ex-
tracts semantic features by processing the textual content of the source 
code. Although CodeBERT is effective at capturing both syntactic and 
semantic aspects of the code, it still has certain limitations when 
handling subtle code changes or semantically similar code snippets. 
For instance, subtle changes like variable renaming or slight formatting 
adjustments do not affect the logic of the code, but CodeBERT, without 
additional handling, may interpret these changes as significant seman-
tic differences, leading to incorrect classification. This sensitivity to 
superficial modifications reduces the performance of JIT-DP, hindering 
the model’s ability to accurately predict defects.

To address this issue, we introduce a contrastive learning strategy 
aimed at enhancing the robustness and discriminative power of feature 
representations. Contrastive learning works by maximizing the similar-
ity between positive samples and minimizing the similarity between 
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negative samples. Specifically, in our approach, we compare code 
snippets with the same defect labels and those with different defect 
labels, guiding the model to learn more discriminative features while 
ignoring irrelevant shallow-level changes.

Given the specific characteristics of JIT-DP, we adapt the standard 
contrastive learning process. Contrastive learning typically operates 
based on pairs of positive and negative samples, and in the JIT-DP 
context, code changes are the core objects being compared. For each 
code sample, we define a positive set comprising code changes with 
the same defect status and a negative set consisting of code changes 
with different defect statuses.
Algorithm 1: Contrastive learning for JIT-CF in code commits

Input: Code commits C = {C1,C2, ...,CN}, Labels 
y = {y1, y2, ..., yN}, Temperature ⌧

Output: Optimized Code Commit Embeddings H
1 for each code commit Ci do
2 Encode the input code commit Ci using CodeBERT to 

obtain embedding Hi;
3 Define positive set Pi = {Cp › yp = yi} based on commits 

with the same defect status;
4 Define negative set Ai = {Cn › yn ë yi} based on commits 

with different defect statuses;
5 for each positive commit Cp À Pi do
6 Compute similarity between embeddings Hi and Hp: 

zi � zp;

7 for each negative commit Cn À Ai do
8 Compute similarity between embeddings Hi and Hn: 

zi �Hn;

9 Compute the contrastive loss Lcontrast using the similarities 
between positive and negative commits;

10 Update model parameters using backpropagation to 
minimize the contrastive loss Lcontrast;

11 return Optimized code commit embeddings H;

Algorithm 1 describes how we apply contrastive learning to enhance 
CodeBERT’s semantic feature extraction process for JIT-DP. In this 
algorithm, each input code commit is denoted as Ci, where yi represents 
its associated label indicating whether the commit is non-defective (yi =
0) or defective (yi = 1). The model first processes Ci using CodeBERT to 
generate an embedding Hi, which captures the syntactic and semantic 
features of the code commit. For each anchor code commit Ci, a positive 
set Pi is defined, consisting of all other commits that share the same 
defect label as Ci. This means that these commits either all introduce 
defects or all do not introduce defects, thus forming the set of positive 
examples. On the other hand, the negative set Ai is composed of 
commits that have a different defect label from Ci, representing cases 
where the commits either introduce defects while Ci does not, or vice 
versa.

Once the positive and negative sets Pi and Ai are defined for each 
anchor commit, the algorithm computes the similarities between the 
embedding Hi of the anchor commit and the embeddings of the positive 
samples Hp for all p À Pi, using the dot product of their feature vectors 
zi � zp. Similarly, the similarities between Hi and the embeddings of 
the negative samples Hn for all n À Ai are computed. The goal is 
to maximize the similarity between the anchor commit and positive 
samples while minimizing the similarity with negative samples. This 
is achieved through the supervised contrastive loss function, which is 
defined as: 
Lsup = 1

N
…
i

1
Pi

…
pÀPi

log
exp(zi � zp_⌧)≥

nÀAi
exp(zi � zn_⌧)

(1)

where zi and zp represent the normalized embeddings of the anchor 
code commit Ci and a positive sample Cp, respectively. The numerator 
encourages the model to maximize the similarity between the anchor 

commit and positive samples, while the denominator minimizes the 
similarity between the anchor commit and negative samples Cn. The 
temperature parameter ⌧ controls the sharpness of the softmax distri-
bution, allowing the model to fine-tune its sensitivity to variations in 
the embeddings.

This contrastive learning approach, which leverages the comparison 
of code commits based on their defect status, significantly enhances 
the model’s robustness and discriminative performance. By focusing on 
the true semantic differences related to defects, rather than superficial 
syntactic changes, JIT-CF can accurately differentiate between non-
defective and defective code commits. This results in more reliable 
defect predictions, even when minor code modifications that do not 
affect functionality are present.

3.3. Integrated learning and defect predicting

After enhancing the semantic features through contrastive learning, 
the next step in our JIT-CF framework is to integrate expert features. 
To integrate the semantic features (768-dimensional vectors) with the 
lower-dimensional expert features (14-dimensional vectors), we expand 
the expert features to match the dimensionality of the semantic fea-
tures. We achieve this expansion by using a fully connected layer that 
transforms the expert feature vector VEF into a higher-dimensional 
representation. The resulting expanded expert feature vector is then 
concatenated with the semantic feature vector VSF to form a combined 
feature vector VF .

After combining the features, we enhance the representation
through fully connected layers to capture complex interactions between 
semantic and expert features. To identify the optimal network archi-
tecture for this feature fusion, we systematically tuned the model by 
experimenting with twelve different combinations of fully connected 
layers (varying between 1 to 3 layers) and activation functions (ReLU, 
GELU, ELU, and Leaky ReLU). Each combination was thoroughly evalu-
ated to identify the best-performing configuration that balances feature 
learning and prediction accuracy.

This fine-tuning process, comprising extensive experimentation
across multiple network depths and non-linear transformations, is 
crucial in enhancing the model’s capacity to learn intricate patterns 
within the combined feature space. By carefully selecting the optimal 
architecture, we significantly improve JIT-CF’s performance, ensuring 
that it can robustly learn from both semantic and expert-defined 
features to predict defect-prone code changes effectively.

3.4. Prediction result reporting

In the final stage of our approach, we focus on synthesizing and 
communicating the outcomes of the JIT-DP process. This involves 
generating comprehensive prediction reports that detail the findings 
and insights derived from the analysis. These reports are meticulously 
crafted to provide clear and actionable information about potential 
defects. Furthermore, the identified defects are systematically docu-
mented within the issue tracking system, ensuring that they are inte-
grated into the ongoing workflow for resolution. This stage is essential 
for closing the loop between prediction and action, enabling teams to 
address potential issues proactively and maintain high software quality.

4. Experimental evaluation

4.1. Research questions

We aim to evaluate JIT-CF by answering the following four research 
questions:

RQ1: How effective is JIT-CF in JIT-DP?
To answer this question, we compare JIT-CF with seven state-of-the-

art approaches for JIT-DP. The objective is to assess the model’s ability 
to identify potential defects in code changes before they are merged 
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Table 2
Details of Code Commits in JIT-Defects4J.
 Java Project Timeframe #BC #CC % Ratio (Bugs/ALL)  
 ant-ivy 2005-06-16 - 2018-02-13 332 1,439 18.75% (332/1,771)  
 commons-bcel 2001-10-29 - 2019-03-12 60 765 7.27% (60/825)  
 commons-beanutils 2001-03-27 - 2018-11-15 37 574 6.06% (37/611)  
 commons-codec 2003-04-25 - 2018-11-15 36 725 4.73% (36/761)  
 commons-collections 2001-04-14 - 2018-11-15 50 1,773 2.74% (50/1,823)  
 commons-compress 2003-11-23 - 2018-11-15 178 1,452 10.92% (178/1,630)  
 commons-configuration 2003-12-23 - 2018-11-15 155 1,683 8.43% (155/1,838)  
 commons-dbcp 2001-04-14 - 2019-03-12 58 979 5.59% (58/1,037)  
 commons-digester 2001-05-03 - 2018-11-16 19 1,067 1.76% (19/1,086)  
 commons-io 2002-01-25 - 2018-11-16 73 1,069 6.39% (73/1,142)  
 commons-jcs 2002-04-07 - 2018-11-15 88 743 10.59% (88/831)  
 commons-lang 2002-07-19 - 2018-10-10 146 2,823 4.92% (146/2,969)  
 commons-math 2003-05-12 - 2018-02-15 335 3,691 8.32% (335/4,026)  
 commons-net 2002-04-03 - 2018-11-14 117 1,004 10.44% (117/1,121)  
 commons-scxml 2005-08-17 - 2018-11-16 47 497 8.64% (47/544)  
 commons-validator 2002-01-06 - 2018-11-19 36 562 6.42% (36/598)  
 commons-vfs 2002-07-16 - 2018-11-19 114 996 10.27% (114/1,110)  
 giraph 2010-10-29 - 2018-11-21 163 681 19.31% (163/844)  
 gora 2010-10-08 - 2018-06-18 39 514 7.05% (39/553)  
 opennlp 2008-09-28 - 2018-06-18 91 995 8.38% (91/1,086)  
 parquet-mr 2012-08-31 - 2018-07-01 158 962 14.11% (158/1,120)  
 ALL 2,332 24,987 8.54% (2,332/27,319) 

into code repository. This evaluation will help determine whether 
JIT-CF provides significant improvements over existing methods.

RQ2: How does contrastive learning influence the performance 
of JIT-CF?

In JIT-CF, contrastive learning is fundamental, aiming to improve 
the model’s capacity to distinguish between similar and dissimilar 
code changes. This research question investigates the impact of se-
mantic features, enhanced through contrastive learning, on the model’s 
performance.

RQ3: What impact does the optimization of model architecture, 
incorporating feature fusion, have on JIT-CF?

For JIT-CF, optimizing the model architecture incorporating feature 
fusion is crucial for enhancing its ability to capture complex patterns 
in data. This RQ examines how modifications in the configuration of 
layers and activation functions affect performance. By analyzing these 
optimizations, we aim to identify the optimal design strategy to bal-
ance model complexity and prediction performance, thereby providing 
valuable insights for future JIT-DP models.

4.2. Datasets

For our experiments, we utilize the JIT-Defects4J [28] dataset, 
which serves as a comprehensive and widely-adopted benchmark for 
JIT defect prediction research. Specifically, the dataset includes 27,319 
code commit records sourced from 21 well-maintained Java open-
source projects, spanning diverse domains such as libraries, utilities, 
and web frameworks. Among these commits, 2332 are labeled as 
defective, while the remaining 24,987 are labeled as non-defective. The 
details of the dataset related to defect prediction are shown in Table  2.

The JIT-Defects4J [28]dataset is meticulously curated to capture 
real-world software development patterns, providing not only commit 
histories but also detailed defect information that reflects actual soft-
ware bugs encountered during the development process. This dataset 
includes a rich set of features, such as code metrics (e.g., lines of 
code changed, file diffusion), project-level attributes, and developer 
activities. These features make it highly suitable for training deep 
learning models that demand an in-depth understanding of both code 
structure and commit metadata.

4.3. Evaluation metrics

To evaluate the performance of JIT-CF, we employ two categories 
of evaluation metrics: effort-agnostic performance measures and
effort-aware performance measures. These metrics offer a compre-
hensive understanding of the model’s performance, considering both 
general prediction accuracy and the practical effort required in real-
world scenarios.
Effort-agnostic performance measures. focus on the overall prediction 
quality without considering the associated effort for identifying defects. 
The key metrics in this category are F1-score and AUC.

F1-score is widely used in classification tasks, particularly for 
imbalanced datasets. It is the harmonic mean of precision and recall, 
balancing the trade-off between the two. The F1-score is defined as:

F1-score = 2 ù Precision ù Recall
Precision + Recall (2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

where TP , FP , and FN represent true positives, false positives, and 
false negatives, respectively.

Area Under the ROC Curve (AUC) measures the area under the 
Receiver Operating Characteristic (ROC) curve, which plots the true 
positive rate (TPR) against the false positive rate (FPR) at various 
thresholds. AUC provides a scalar value that summarizes the model’s 
performance across all thresholds: 

AUC =  
1

0
TPR(x) dx (5)

Effort-aware performance measures. incorporate the practical cost and 
effort associated with defect detection, making them more relevant 
to real-world scenarios where reviewing code changes requires signif-
icant effort. The key metrics in this category are Recall@20%Effort, 
Effort@20%Recall, and Popt.

Recall@20%Effort (R@20%E) evaluates the proportion of defects 
identified within the top 20% of the riskiest code changes, as predicted 
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by the model. It is calculated as: 

R@20%E =
≥k

i=1 TPi≥n
i=1 TPi

(6)

where k is the number of changes constituting 20% of the total effort, 
and n is the total number of changes.

Effort@20%Recall (E@20%R) indicates the effort required to de-
tect 20% of all defects. It reflects the percentage of code that needs to 
be inspected to achieve this recall level. The formula is: 

E@20%R =
≥m

i=1 LOCi≥N
i=1 LOCi

(7)

where m is the number of changes needed to achieve 20% recall, LOCi
represents the lines of code in change i, and N is the total number of 
changes.

Popt is on the basic of the concept of the Alberg diagram [53] which 
evaluates the model’s performance in prioritizing defective changes by 
comparing the effort spent reviewing changes the model prioritized to 
an optimally prioritized effort. It is calculated as: 

Popt = 1 *
≥n

i=1(Rankmodel(i) * Rankoptimal(i))2≥n
i=1(Rankworst(i) * Rankoptimal(i))2

(8)

where, Rankmodel(i) is the rank assigned to change i by the model, 
Rankoptimal(i) is the optimal rank, and Rankworst(i) is the worst possible 
rank.

By considering both effort-agnostic and effort-aware metrics, we ob-
tain a more comprehensive evaluation of our defect prediction model’s 
performance, addressing its prediction accuracy and the real-world 
effort required for defect identification.

4.4. Baseline methods

We evaluate our proposed model against seven state-of-the-art 
methods: LApredict, Deeper, DeepJIT, CC2Vec, Yan et al.’s work, 
JITLine, and JIT-Fine. The selection of these baselines is driven by their 
established effectiveness and relevance in the field of just-in-time defect 
prediction. Each of these methods represents a significant advancement 
in leveraging machine learning techniques to predict software defects 
based on code changes and commit histories.

(1) LApredict [26]: LApredict uses Logistic Regression on hand-
crafted features from commit messages and code changes, such as 
lines of code added or deleted. Its simplicity and effective feature 
engineering make it a solid baseline.

(2) Deeper [24]: Deeper employs Convolutional Neural Networks 
(CNNs) to learn feature representations from code changes. It processes 
code diffs as token sequences, capturing local patterns with multiple 
convolutional layers.

(3) DeepJIT [23]: DeepJIT combines Long Short-Term Memory 
(LSTM) networks and CNNs to capture sequential and spatial features 
from commit messages and code changes. It processes each separately 
before combining their representations.

(4) CC2Vec [25]: CC2Vec encodes code changes into vector rep-
resentations using hierarchical attention to focus on relevant parts. It 
generates context-aware embeddings for defect prediction.

(5) Yan et al.’s Work [38]: Yan et al. propose a hybrid model 
that integrates traditional machine learning with deep learning. It uses 
handcrafted features from code changes and commit messages as inputs 
to a deep neural network.

(6) JITLine [37]: JITLine integrates both syntactic and semantic 
features by utilizing AST-based features and word embeddings ex-
tracted from commit messages. This comprehensive approach enhances 
its predictive performance, making it highly effective in identifying 
software defects.

(7) JIT-Fine [28]: JIT-Fine extends JITLine by integrating expert-
defined features with semantic features from pre-trained models like 
CodeBERT. It uses a multi-layer fully connected network and attention 
mechanisms for improved prediction performance.

Table 3
Defect prediction of JIT-CF compared against seven baselines.
 Methods F1-score AUC R@20%E E@20%R Popt  
 LApredict 0.059 0.694 0.625 0.020 0.814 
 Yan et al. 0.062 0.675 0.615 0.022 0.819 
 Deeper 0.246 0.682 0.638 0.021 0.827 
 DeepJIT 0.293 0.775 0.676 0.014 0.860 
 CC2Vec 0.248 0.791 0.676 0.014 0.861 
 JITLine 0.261 0.802 0.705 0.015 0.883 
 JIT-Fine 0.431 0.881 0.773 0.010 0.927 
 JIT-CF 0.491 0.896 0.831 0.010 0.944 

4.5. Experimental settings

The Experiment was conducted on a server equipped with an 
NVIDIA GeForce RTX 3090 GPU. In our experiments, we adopted 
the same experimental settings as described in JIT-Fine [28]. We 
partitioned the JIT-Defects4J dataset into disjoint training, validation, 
and test sets, using a random split ratio of 8:1:1. Our model leverages 
CodeBERT with a maximum input sequence length of 512 tokens. We 
set the maximum number of training epochs to 50, starting with an 
initial learning rate of 5e*4, which gradually increased from 0 during 
the warm-up phase. For the contrastive learning component, we set 
the temperature parameter (⌧) to 0.7 and employed a batch size of 32 
per GPU with gradient accumulation steps of 32. To ensure efficient 
training and prevent overfitting, we implemented early stopping with 
a patience of 10 epochs.

5. Experiment results

5.1. RQ1. Effectiveness of JIT-CF

To demonstrate the effectiveness of JIT-CF, we compared JIT-CF 
with seven baselines on JIT-Defects4J. The experimental results are 
presented in Table  3.

From Table  3, we observe that our proposed method, JIT-CF, out-
performs all the baselines across all evaluated metrics. JIT-CF achieves 
the highest performance in terms of F1-score, AUC, R@20%E, and Popt, 
while maintaining a competitive results for E@20%R. Specifically, JIT-
CF improves the F1-score by 13.9% relative to the current best baseline, 
JIT-Fine. The corresponding relative improvement in AUC is 0.65%, 
demonstrating the model’s enhanced ability to distinguish between 
defective and non-defective changes. Furthermore, JIT-CF increases 
the R@20%E by 7.29%, highlighting its efficiency in identifying a 
larger proportion of actual defects within the top 20% of predictions. 
Although the E@20%R remains consistent with the baseline, the Popt 
metric shows a relative improvement of 1.86%, indicating a more 
optimized effort in inspecting the most defect-prone code changes.

In essence, our results indicate that the JIT-CF surpasses existing 
works that utilize traditional and deep learning-based methods for JIT-
DP. Numerous prior studies have demonstrated the effectiveness of 
various machine learning and deep learning models for defect pre-
diction. However, the results presented in Table  3 demonstrate that 
through the integration of contrastive learning and feature fusion, our 
method outperforms all other baselines on the JIT-Defects4J dataset.

Several factors contribute to this performance enhancement. First, 
contrastive learning significantly enhances the feature representations 
by encouraging the model to distinguish between subtle differences 
in code changes. This enhancement is crucial in JIT defect prediction 
task, where minor variations can indicate the presence of defects. 
Second, the multi-layer fully connected architecture allows the model 
to capture complex interactions between features, further boosting 
its prediction performance. These combined factors enable JIT-CF to 
effectively outperform other methods.
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Table 4
Impact of Semantic and Expert Features with and without Contrastive Learning on 
Model Performance.
 Setting F1-score AUC R@20%E E@20%R Popt  
 EF 0.230 0.661 0.632 0.020 0.825 
 SF 0.375 0.846 0.731 0.015 0.901 
 SF+CL 0.396 0.851 0.739 0.014 0.911 
 EF+SF 0.431 0.881 0.773 0.010 0.927 
 EF+SF+CL 0.491 0.896 0.831 0.010 0.944 

Answer to RQ1: JIT-CF outperforms all baselines in terms 
of F1-score, AUC, R@20%E, and Popt. The F1-score of JIT-
CF is 13.9% higher than the best baseline method, JIT-Fine, 
indicating its superior performance in JIT-DP.

5.2. RQ2. Effectiveness of contrastive learning

To address RQ2, we conducted ablation experiments to evaluate 
the effectiveness of contrastive learning in JIT-CF. We compared five 
experimental configurations: Expert Features (EF), Semantic Features 
(SF), Semantic Features with Contrastive Learning (SF+CL), Expert 
Features and Semantic Features (EF+SF), and Expert Features and 
Semantic Features with Contrastive Learning (EF+SF+CL). The results 
are detailed in Table  4.

The EF+SF+CL configuration consistently outperforms other setups 
across all metrics. When contrastive learning is added to SF alone, 
the F1-score improves by 5.6%, AUC increases slightly, and R@20%E 
rises, indicating a higher capture of true positives. Although E@20%R 
decreases marginally, Popt improves, suggesting better prioritization of 
defect-prone changes.

Comparing EF to EF+SF, the inclusion of semantic features leads 
to a significant performance boost: the F1-score increases by 87.4%, 
from 0.230 to 0.431, and AUC improves by 33.2%. This highlights the 
importance of integrating expert and semantic features for capturing 
more meaningful information about the code changes.

In the comparison EF+SF and EF+SF+CL, the impact is even more 
pronounced: F1-score rises by 13.9%, from 0.431 to 0.491, demon-
strating a significant increase in defect identification capability. AUC 
improves by 1.7%, indicating better separation between defective and 
non-defective changes. R@20%E also sees a 7.5% improvement, and 
Popt rises from 0.927 to 0.944, confirming the efficiency of contrastive 
learning in optimizing defect prioritization.

To further investigate the impact of contrastive learning, we per-
formed a t-SNE visualization of CodeBERT and CodeBERT with con-
trastive learning (CodeBERT_CL). t-SNE is a widely used dimensional-
ity reduction technique that maps high-dimensional data to a lower-
dimensional space (typically 2D or 3D) while preserving local sim-
ilarities between data points. This makes it particularly useful for 
visualizing complex data distributions and identifying clusters or sepa-
rations in the data. As shown in Fig.  4. in these visualizations, red points 
represent defective instances, and blue points represent non-defective 
instances.

In Fig.  4(a), which representing CodeBERT without contrastive 
learning, there is a significant overlap between defective and non-
defective instances, particularly in the boundary areas. This suggests 
that CodeBERT alone struggles to clearly distinguish between the two 
classes. Conversely, Fig.  4(b) demonstrates that the introduction of 
contrastive learning leads to a much clearer separation between defec-
tive and non-defective instances, with fewer overlapping points. This 
improved separation highlights how contrastive learning enhances the 
model’s ability to discriminate between risky and safe code changes.

The effectiveness of contrastive learning in enhancing the model’s 
discriminative power can be attributed to its ability to better represent 
code features. By effectively separating defective and non-defective 

Table 5
Performance of using different fully connected layers and activation functions.
 Layers Activation Function F1-score AUC R@20%E E@20%R Popt  
 1 layer ReLU 0.424 0.847 0.789 0.011 0.927 
 1 layer GELU 0.425 0.842 0.770 0.012 0.920 
 1 layer Leaky ReLU 0.420 0.845 0.774 0.012 0.922 
 1 layer ELU 0.428 0.843 0.772 0.012 0.921 
 2 layers ReLU 0.491 0.896 0.831 0.010 0.944 
 2 layers GELU 0.454 0.887 0.793 0.012 0.935 
 2 layers Leaky ReLU 0.466 0.882 0.804 0.010 0.936 
 2 layers ELU 0.447 0.889 0.802 0.012 0.935 
 3 layers ReLU 0.431 0.855 0.775 0.011 0.910 
 3 layers GELU 0.435 0.850 0.768 0.011 0.908 
 3 layers Leaky ReLU 0.428 0.852 0.770 0.011 0.909 
 3 layers ELU 0.426 0.851 0.769 0.011 0.908 

instances in the feature space, contrastive learning enables the model 
to focus on underlying structural and semantic differences, such as 
subtle changes caused by variable renaming or code refactoring. This 
fine-grained feature extraction capability allows JIT-CF to perform 
exceptionally well in handling scenarios where the code changes ap-
pear similar on the surface but differ logically, thereby significantly 
improving defect detection accuracy.

Answer to RQ2: Contrastive learning enhances JIT-CF’s abil-
ity to differentiate between defective and non-defective code 
changes by improving its capacity to capture subtle struc-
tural and semantic differences. This leads to more effective 
identification of defective code changes.

5.3. RQ3: Effectiveness of model architecture optimization

To explore the impact of model architecture optimization on the 
performance of the JIT-CF model, we investigated two main factors: the 
number of fully connected layers and the choice of activation functions. 
Our goal was to identify an architecture that effectively balances model 
complexity and performance across key metrics, including F1-score, 
AUC, R@20%E, E@20%R, and Popt.

We experimented with a total of 12 different combinations, consist-
ing of three configurations for the number of layers (1 layer, 2 layers, 
and 3 layers) paired with four different activation functions (ReLU, 
GELU, Leaky ReLU, and ELU). The detailed performance results are 
presented in Table  5.

From Table  5, it is evident that performance varies significantly 
depending on both the number of layers and the activation function 
used. A key trend observed is that increasing the depth of the model 
(from 1 to 3 layers) generally improves performance initially, but 
can lead to diminishing returns and even degradation in some cases. 
Notably, the 2-layer configurations consistently outperform both the 1-
layer and 3-layer models, suggesting that two layers strike the optimal 
balance between model capacity and generalization ability. Among 
these, the configuration with ReLU as the activation function achieves 
the best overall results, achieving an F1-score of 0.491, an AUC of 
0.896, and a Popt of 0.944.

The performance advantage of using 2 layers with ReLU is evident 
across all metrics. While the 1-layer models suffer from insufficient 
capacity to learn complex patterns in the code changes, the 3-layer 
models introduce additional depth that does not translate into im-
proved performance, likely due to overfitting and increased training 
difficulty. This effect is visible in the drop in metrics such as F1-
score and AUC when moving from 2 layers to 3 layers across different 
activation functions.

The superior performance of the 2-layer model with ReLU can be 
attributed to its balanced architecture. With two layers, the model has 
enough capacity to capture complex interactions and patterns within 
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Fig. 4. t-SNE visualization comparison between CodeBERT and CodeBERT enhanced with contrastive learning.

the feature space without becoming overly complex. ReLU’s effective-
ness as the activation function lies in its simplicity and efficiency. It 
introduces non-linearity without complicating the gradient flow during 
training, helping the model learn effectively from the data. ReLU also 
mitigates issues like vanishing gradients, which is crucial for models 
with deeper architectures.

Answer to RQ3: The best configuration for JIT-CF is a two-
layer architecture with ReLU activation. This setup maximizes 
model performance key metrics, achieving the optimal bal-
ance between model complexity and generalization capability, 
thereby enhancing JIT-DP.

6. Discussion

6.1. How does JIT-CF perform in Just-In-Time defect localization?

Our approach, similar with JIT-Fine, employs a unified model to 
concurrently perform JIT defect prediction and defect localization. 
CodeBERT, as a pre-trained model for code representation, plays a 
crucial role in this process by extracting semantic and contextual 
features from code changes, enabling it to rank lines of code based 
on their likelihood of being defective. The embeddings generated by 
CodeBERT allow the model to identify potential defect-prone areas 
within a commit effectively.

Furthermore, the application of contrastive learning enhances these 
feature representations, significantly improving the model’s ability to 
differentiate between defective and non-defective lines, even in cases 
of minor code variations. This enhances the precision of defect local-
ization, as the model learns to focus on relevant differences, resulting 
in better identification and ranking of defect-prone lines within code 
changes.

We evaluate its performance of our approach against three baseline 
methods: JITLine [37], Yan et al. [38], and JIT-Fine [28]. The evalua-
tion employs several metrics, including Top-5 and Top-10
accuracy, Recall@20%Effortline (R@20%Eline), Effort@20%Recallline
(E@20%Rline), and Initial False Alarmline (IFAline). The results are 
presented in Table  6.

Top-5 and Top-10 accuracy metrics assess the model’s capability 
to accurately identify defects within its top 5 and top 10 predictions, 
respectively. R@20%Eline evaluates the proportion of defective lines 
that can be found with the top 20% of lines of code ranked by risk, 
given a certain effort. A higher value in this metric indicates more 
accurate identification of defect-prone lines. E@20%Rline measures the 
effort required to identify 20% of the actual defective lines, typically 
expressed in LOC. A lower value means that the developers can locate 
defect on these lines with reduced effort. IFAline reflects the amount 
of code that needs to be inspected before encountering the first false 

Table 6
Defect localization of JIT-CF compared against baselines.
 Methods Top-5 Top-10 R@20%El E@20%Rl IFAl   
 JITLine 0.104 0.098 0.157 0.332 24.2  
 Yan et al. 0.193 0.195 0.143 0.345 15.3  
 JIT-Fine 0.212 0.214 0.208 0.318 10.8  
 JIT-CF 0.229 0.239 0.213 0.318 10.3  

alarm, with a lower value indicating fewer false positives early in the 
review process.

As shown in Table  6, JIT-CF consistently outperforms the baseline 
methods across all evaluation metrics, demonstrating its superior per-
formance in defect localization. Notably, JIT-CF achieves the highest 
Top-5 accuracy of 0.229 and Top-10 accuracy of 0.239, which are 
higher than those of JIT-Fine, Yan et al. and JITLine. This indicates 
that JIT-CF is more effective in ranking the top defective lines within 
code commits.

JIT-CF yields the best performance in R@20%El with a value of 
0.213, and the lowest E@20%Rl at 0.318. These results suggest that 
JIT-CF requires less effort to locate the same amount of defective lines 
compared to the other baselines, making it more efficient for developers 
in real-world scenarios. Additionally, the IFAl is also reduced to 10.3, 
indicating a significant decrease in false positives generated by the 
model, further enhancing its usability in practice.

6.2. What impact would more fully connected layers have on the model’s 
performance?

In this section, we analyze the impact of increasing the depth of 
fully connected layers during the feature fusion process in JIT-CF. We 
extend our investigation to explore deeper architectures with up to 7 
layers. Given that ReLU consistently achieved the best performance in 
RQ3, all experiments in this section are conducted using ReLU as the 
default activation function.

Our objective was to investigate whether increasing the number of 
fully connected layers could enhance the model’s capability to capture 
complex patterns or, conversely, lead to performance degradation due 
to overfitting or computational inefficiencies. As shown in Fig.  5, we 
observe that while the performance of the model improved initially 
as we increased the layers from 1 to 2. However, any further in-
crease in the number of layers led to either stagnation or a decline in 
performance.

Notably, the two-layer architecture emerged as the best performer 
across multiple metrics, achieving an optimal balance between model 
capacity and generalization. Adding more layers beyond two did not 
yield meaningful performance gains; instead, it often resulted in slight 
declines across metrics like F1-score, AUC, Recall@20%Effort, and 
Popt. For instance, while the F1-score peaked at 0.491 with two layers, 
it gradually decreased with more layers, with a marked drop at seven 
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Fig. 5. Performance impact of 1 to 7 fully connected layers on JIT-CF.

Table 7
Performance comparison of JIT-CF using different pre-trained models.
 Model F1-score AUC Recall@20%E Effort@20%R Popt  
 CodeBERT 0.491 0.896 0.831 0.010 0.944 
 GraphCodeBERT 0.481 0.886 0.821 0.012 0.922 
 CodeT5 0.483 0.876 0.811 0.011 0.912 
 UniXcoder 0.473 0.871 0.813 0.011 0.921 

layers. Similarly, AUC and other metrics followed this trend, confirming 
that deeper architectures do not provide additional benefits in this 
context.

These results suggest that increasing the model depth beyond two 
layers introduces complexity that likely leads to overfitting, thereby 
reducing the model’s ability to generalize to unseen examples. Fur-
thermore, the marginal gains in some metrics do not justify the added 
computational cost, particularly when the overall performance begins 
to degrade as the model depth increases.

6.3. How do different pre-trained models impact JIT-CF’s performance?

To explore the robustness and versatility of JIT-CF, we evaluated 
our framework using various pre-trained models, including CodeBERT, 
GraphCodeBERT, CodeT5, and UniXcoder [35,54–56]. The results are 
summarized in Table  7.

The results indicate that CodeBERT achieved the highest perfor-
mance across all metrics, suggesting its effectiveness in capturing se-
mantic and syntactic features for JIT defect prediction. GraphCode-
BERT, which incorporates data flow information, performed slightly 
lower than CodeBERT but still demonstrated strong performance. This 
suggests that while data flow information is useful, the general seman-
tic understanding provided by CodeBERT is more critical for defect 
prediction in this context. CodeT5, designed for code understanding 
and generation tasks, showed competitive results but was slightly less 
effective, likely due to its focus on broader code generation rather 
than specific defect detection. UniXcoder, which is optimized for cross-
modal tasks, achieved the lowest performance among the tested mod-
els. This may be attributed to its training objectives, which are less 
aligned with the specific needs of defect prediction. Overall, these 
findings highlight the importance of selecting appropriate pre-trained 
models based on the specific requirements of the downstream task.

6.4. Threats to validity

In this subsection, we discuss potential threats to the validity of our 
research results and the measures taken to mitigate them.

Threats to internal validity primarily concern factors such as 
hyperparameter selection that could influence experimental outcomes. 
JIT-CF depends on hyperparameters such as learning rate, batch size, 
and the number of layers, all of which can significantly affect its 
performance. To mitigate this, we conducted comprehensive exper-
iments to choose reasonable and stable parameter values based on 
standard practices and preliminary trials. While our main objective was 
to demonstrate the model’s effectiveness rather than optimize every 
parameter, we believe that the chosen configurations fairly reflect the 
capabilities of JIT-CF.
Threats to external validity involve the generalizability of our results 
to other datasets and programming languages. To alleviate this threat, 
our evaluation was conducted on the JIT-Defects4J dataset, a widely 
adopted benchmark in JIT defect prediction research. Despite this, 
the dataset consists mainly of Java projects, which may limit the 
applicability of our findings to other languages and contexts. To address 
this, we made efforts to ensure that the design of JIT-CF remains 
flexible and applicable to other domains, although our experiments 
were focused on this specific dataset. When considering the application 
of JIT-CF to projects developed in other programming languages, sev-
eral challenges may arise, including syntactic and semantic differences 
between languages, the availability and quality of pre-trained models, 
and language-specific coding practices. These factors may require ad-
justments to the semantic feature extraction process and the selection 
of expert features to better fit the context of different languages.

Threats to construct validity relate to the suitability of the metrics 
used to evaluate JIT-CF. To alleviate this threat, we employed a set 
of well-established metrics, including F1-score, AUC, Recall@20%E, 
Effort@20%R, and Popt, to provide a balanced assessment of the 
model’s performance. Since these metrics are widely used in defect 
prediction literature, they provide a comprehensive view of the model’s 
predictive and effort-aware capabilities. However, to mitigate potential 
issues with class imbalance in the dataset, we included effort-aware 
metrics like R@20%E and E@20%R to ensure the robustness of our 
evaluation.

7. Related work

7.1. Just-in-Time Defect Prediction

The field of Just-In-Time Defect Prediction has undergone signif-
icant evolution, starting from early work that relied on traditional 
handcrafted features to predict software defects. Kamei et al. [20] 
utilized features such as the number of modified lines, developer experi-
ence, and change history to identify potential defects. These traditional 
features became widely used in JIT-DP models. However, a debate 
emerged around the relative effectiveness of simple versus complex fea-
tures. Studies like [57] showed that simpler models can often perform 
as well as, or even better than, complex ones, questioning the need for 
overly intricate features in JIT-DP.

As limitations of traditional feature-based models — such as their 
generalizability across projects — became apparent, deep learning 
approaches gained traction. Models like DeepJIT [23] and CC2Vec [25] 
leveraged semantic information directly from code changes. Unlike 
traditional models, these deep learning methods automatically learn 
feature representations, which enhances prediction performance and 
model robustness.

Recent advancements in JIT-DP have focused on integrating expert-
defined features with semantic features to achieve better performance. 
For example, JIT-Fine [28] combines semantic features from Code-
BERT with expert features, demonstrating significant improvements in 
defect prediction accuracy. Another notable work is MOJ-SDP [58], 
which models JIT-DP as a multi-objective optimization problem by 
defining two conflicting optimization goals. This approach leverages 
the complementary nature of expert metrics and semantic metrics 
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through model-level fusion, effectively combining these metrics using 
techniques like the maximum rule.

Different from previous studies,  our proposed JIT-CF framework 
builds on these advancements by introducing contrastive learning to 
further enhance semantic feature representation. Unlike existing mod-
els such as MOJ-SDP and JIT-Fine, which rely solely on fusing expert 
and semantic metrics, JIT-CF leverages contrastive learning to max-
imize the similarity within positive pairs and minimize it between 
negative pairs. This approach significantly improves the model’s ability 
to distinguish between similar code changes and enhances its robust-
ness against noisy labels. Additionally, JIT-CF optimizes the feature 
fusion process through careful architecture design, specifically using 
a two-layer fully connected network with ReLU activation. This con-
figuration allows the model to capture complex interactions between 
semantic and expert features, leading to superior performance.

7.2. Contrastive learning in pre-trained models

Contrastive learning has emerged as a powerful technique for learn-
ing robust representations by contrasting positive and negative sam-
ples [59,60]. Its application in pre-trained models has shown significant 
improvements across various tasks. The central idea is to bring seman-
tically similar samples closer in feature space while pushing dissimilar 
samples further apart. This approach has been successfully integrated 
into pre-trained models like BERT and its variants [34,61].

Contrastive learning often uses data augmentation techniques to 
generate positive and negative pairs [62]. Methods like synonym re-
placement, back-translation, and random cropping of text segments are 
commonly employed to create diverse examples, enabling the model to 
learn more robust representations. By contrasting positive and negative 
pairs, the model captures fine-grained differences in data, leading to 
enhanced performance in downstream tasks.

In pre-trained language models, contrastive learning has been em-
ployed to improve the quality of learned representations. Researchers 
have explored supervised contrastive learning for fine-tuning BERT [61,
63,64], yielding improvements in sentence-level classification tasks. 
Additionally, contrastive learning has also been applied in entity and 
relation extraction tasks, showcasing its versatility and effectiveness 
across different applications.

Despite its success in many NLP tasks, contrastive learning has seen 
limited application in JIT-DP. This study bridge the gap by integrating 
contrastive learning with a pre-trained model for JIT-DP, demonstrat-
ing significant performance improvements through enhanced feature 
representations and improved generalization.

8. Conclusion and future work

In this paper, we introduce JIT-CF, a framework for just-in-time 
defect prediction that leverages the advantages of contrastive learn-
ing and optimized feature fusion. By integrating contrastive learning 
with CodeBERT, JIT-CF enhances the semantic representations of code 
changes, thereby improving their discriminative capabilities. A key 
aspect of our approach is the architecture optimization during feature 
fusion, specifically through the selection of a two-layer fully connected 
network with ReLU activation, which is crucial for boosting the model’s 
performance and robustness.

Our experiments on the JIT-Defects4J dataset demonstrate that JIT-
CF significantly outperforms state-of-the-art baselines such as JIT-Fine 
and JITLine. The results confirm that the combination of contrastive 
learning for semantic feature extraction and architecture optimization 
in feature fusion effectively enhances JIT defect prediction perfor-
mance. In future, we plan to apply JIT-CF to projects developed in other 
programming languages and explore more advanced contrastive learn-
ing methods to further enhance the model’s capabilities. Additionally, 
we aim to investigate more sophisticated feature fusion techniques to 
optimize the model’s overall performance and generalizability.
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