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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/CSNTU/MTR Accurate wind speed forecasting plays a pivotal role in optimizing wind power generation efficiency and
CL advancing wind energy resource development. However, numerical weather prediction relies on global datasets

and complex mathematical models, posing challenges in capturing subtle weather variations. Additionally,

Ivi,iﬁosrs;d prediction factors such as surface, land-sea thermal conditions, and terrain complexity further influence forecast accuracy.
Multi-source data fusion Existing methods generally suffer from a single data source dependency and an insufficient ability to extract
Time embedding spatiotemporal features. This study proposes MTRCL, a novel end-to-end approach developed to address the
Attention mechanism above challenges by integrating multi-source data fusion, time-embedded Residual Network (ResNet) with an
Wind energy resources improved Convolutional Block Attention Module (CBAM), and time-embedded Liquid Time-Constant Networks

(LTCs). The proposed method leverages the time embedding (TE) technique to encode temporal information,
thereby enhancing the model’s capacity to capture temporal dependencies. Additionally, an improved channel-
spatial-global (CBAM) three-level attention mechanism is incorporated into the ResNet framework, enabling
the model to identify correlations between spatiotemporal features effectively. Finally, the efficacy of the
proposed method is validated using the ERAS5 hourly data on a single level. The experimental results show
that the proposed model increases wind speed forecast accuracy, defined as the Fraction of Absolute Error
(FA), representing the percentage of samples where the absolute wind speed error does not exceed 1 m/s,
from 68.36% to 86.64%, compared to ECMWF forecast data. This improvement highlights the effectiveness of
MTRCL in leveraging multi-source data to address the challenges of wind speed prediction in complex terrains
and supports optimization of wind energy resource development.

1. Introduction ensuring the safety of low-altitude aviation [3,4]. Currently, numer-
ical weather prediction (NWP) models remain the primary approach

In recent years, wind energy has emerged as a crucial source of for forecasting various meteorological variables. However, the chaotic
clean and renewable power, driven by the dual forces of the global nature and inherent uncertainties of the atmospheric system limit the

capacity of numerical prediction models to fully capture the intricacies
of the real atmospheric state, leading to varying degrees of deviations
in forecast results. As a result, addressing the inaccuracies in NWP-
based meteorological predictions has become an urgent issue to be
addressed [5,6].

Error correction methods for Numerical Weather Prediction (NWP)
products can be broadly categorized into two major approaches: tra-
ditional statistical techniques and machine learning-based method-
ologies. Traditional statistical techniques for correcting NWP outputs

energy transition and technological advancements [1,2]. Despite its
growing significance, the inherent randomness of wind power gener-
ation and its inability to be effectively stored introduce substantial
uncertainty in energy supply. Furthermore, within the low-altitude
economic sector, the presence of strong convection and complex me-
teorological conditions in the low-altitude airspace poses a serious
challenge to the flight safety of low-altitude aircraft. Consequently,
accurate short-term wind speed forecasting is indispensable for op-
timizing the dispatching and operation of wind power systems and
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Nomenclature

NWP Numerical Weather Prediction

RNNs Recurrent Neural Networks

LSTM Long Short-Term Memory Network

GNNs Graph Neural Networks

CNNs Convolutional Neural Networks

GRU Gate Recurrent Unit

ResNet Residual Network

TE Time Embedding

CBAM Convolutional Block Attention Module

LTCs Liquid Time-Constant Networks

ODEs Ordinary Differential Equations

RK4 Fourth-Order Runge-Kutta Method

MLP Multilayer Perceptron

ECMWF European Centre for Medium-Range Weather Forecasts

TE-LTCs Time-embedded Liquid Time-Constant Networks with
RK4 Integration

C-ResNet Residual Network with CBAM

BPNN Back Propagation Neural Network

TIGGE THORPEX Interactive Grand Global Ensemble
FA Fraction of Absolute Error

RMSE Root Mean Square Error

MAE Mean Absolute Error

rRMSE Relative Root Mean Square Error

rMAE Relative Mean Absolute Error

R Correlation Coefficient

MAPE Mean Absolute Percentage Error
CatBoost Categorical Boosting
ConvLSTM  Convolutional Long Short-Term Memory Network

WRF Weather Research and Forecasting Model

VMD Variational Mode Decomposition
XGBoost eXtreme Gradient Boosting

TC-ResNet  Time-embedded ResNet with CBAM

RFE Recursive Feature Elimination

STDGN Spatio-temporal Data Generation Network
DM Diebold-Mariano

encompass a wide range of techniques, including time series anal-
ysis, Gaussian statistical models, linear regression, Kalman filtering,
and nonlinear or non-parametric algorithms such as autocorrelation
analysis [7,8]. Machine learning techniques, on the other hand, focus
on identifying patterns and relationships within NWP data, as well
as historical wind speed records to facilitate accurate predictions of
future wind speeds [9]. These techniques are highly adaptable and
data-driven, making them particularly suitable for handling large-scale
datasets and complex nonlinear dependencies. Standard machine learn-
ing models include the Recurrent Neural Network (RNN) [10], Long
Short-Term Memory Network (LSTM) [11], and Graph Neural Networks
(GNNs) [12].

Traditional correction methods for numerical weather prediction
(NWP) have been extensively studied, with several innovative ap-
proaches proposed to enhance prediction accuracy. Devis et al. [13]
proposed a statistical regression-based downscaling technique. Their
findings highlighted that incorporating temperature data significantly
improved prediction accuracy. Similarly, Pearre and Swan [14] demon-
strated that statistical correction techniques could reduce wind speed
prediction errors within 24 h by 20%-25%. Zhao et al. [15] developed
a single-day probabilistic wind speed prediction model to address in-
herent biases in numerical weather predictions. Homleid [16] proposed
the use of the Kalman filtering, which effectively mitigates the system-
atic errors in the forecasts of numerical weather prediction models.
Peng et al. [17] advanced the field further by introducing a pattern
anomaly integral prediction correction method. Liu et al. [18] proposed
a modified Taylor Kriging time series forecasting method, adapted for
wind speed prediction. Fawad et al. [19] proposed a method combining
multiparameter probability distributions with L-moment estimation,
demonstrating its value in extreme wind speed analysis.

With the development of computational technology, machine learn-
ing has emerged as a pivotal tool in mitigating prediction biases in
numerical models. However, wind speed data, influenced by com-
plex meteorological conditions and topographical factors, frequently
exhibit pronounced spatiotemporal coupling characteristics and non-
stationary features. These complexities pose significant challenges for
single-model architectures. To address these challenges, researchers
have proposed machine learning-driven multi-model fusion predic-
tion frameworks. Comparative studies have consistently demonstrated
that hybrid models significantly outperform single-model architectures
in terms of prediction efficiency [20-22]. Specific advancements in
this domain include the work of Li et al. [23], who improved wind
speed prediction accuracy by integrating an improved Hidden Markov
Model with Fuzzy C-Means clustering algorithms. Zhou et al. [24]

proposed a VMD-PCA-RF robust correction framework, demonstrating
stable and high-precision prediction capabilities in annual scenarios.
Empirical studies by Sun et al. [25] revealed that random forest and
support vector machine models constructed using direct strategies out-
perform traditional statistical methods and numerical bias correction
techniques. Wang et al. [26] employed random forest algorithms to
correct wind forecasts derived from WRF products. Moreover, Yang
et al. [27] proposed a two-stage correction prediction method for wind
power. Zhang et al. [28] proposed a hybrid model based on VMD-WT
and PCA-BP-RBF neural networks, achieving notable improvements in
short-term wind speed prediction accuracy.

Deep learning, a specialized branch of machine learning, facilitates
representation learning through multi-layer neural networks, enabling
advanced pattern recognition and problem-solving capabilities. In re-
cent years, its exceptional nonlinear fitting and feature fusion abilities
have led to widespread applications in meteorology. Kim et al. [29] pro-
posed a spatiotemporal neural network for prediction result correction,
which achieves ideal correction effects. Han et al. [30] constructed a
CUnet model to correct the wind speed and direction predictions for
North China by the ECMWF global model. Gong et al. [31] proposed a
hybrid model, VMD-PE-FCGRU, designed explicitly for short-term off-
shore wind speed prediction, whose prediction accuracy is significantly
improved compared with traditional models. Xu et al. [32] constructed
the WRF-VMD-PCA-LSTM model, which effectively enhanced multi-
step wind speed prediction performance. Luo et al. [33] proposed an
enhanced Stacked Extreme Learning Machine method. Zhang et al. [34]
proposed a wind speed prediction model, ST-DFNet, which exhibits
superior predictive accuracy across various time scales.

Despite significant advancements in the two categories of correc-
tion methods, most models struggle to simultaneously balance the
correlations among temporal, spatial, and elemental features during
feature extraction. This limitation prevents them from comprehen-
sively capturing the intricate relationships within the data. Addition-
ally, existing models often overlook the influence of complex terrain
on near-surface atmospheric dynamics, which plays a critical role in
meteorological phenomena. Furthermore, feature fusion across multi-
source data remains a persistent challenge, as integrating diverse and
relevant information from various data sources proves to be a complex
and demanding task.

This study focuses on the region spanning 35.13°-47°N and 103°-
126.88°E, which serves as the core development zone of the national
large-scale “Three-North” wind power base. It possesses abundant and
high-density wind energy resources, holding significant strategic value
for ensuring national energy security and supporting the “dual carbon”
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Fig. 1. The geographical distribution and topographic height in China and the study area of this paper (red solid box: 35.13°-47°N, 103°-126.88°E).

transition. However, this region spans the northeastern edge of the
Qinghai-Tibet Plateau, the Loess Plateau, the Mongolian Plateau, and
the North China Plain, with significant differences in terrain altitude,
encompassing various geomorphic units, including gobi deserts, moun-
tains, and river valleys. The local circulation phenomena caused by the
complex terrain result in extremely uneven wind speed distributions
in both time and space, posing challenges for prediction. Traditional
numerical models and single machine learning models often fail to
capture these intricate topographic features [35]. Therefore, addressing
this complexity is essential for enabling accurate wind speed predic-
tions. To address the challenges mentioned above, this paper proposes
an end-to-end framework, named MTRCL (Multi-source data fusion,
Time-embedded ResNet with CBAM, and Time-embedded Liquid Time-
Constant Networks), leveraging multi-source data fusion to enhance
wind speed prediction accuracy. The primary contributions of this study
are as follows.

(1) This study proposes an innovative end-to-end framework for spa-
tiotemporal multi-source data fusion, which provides the model with a
meteorological physical mechanism background by integrating terrain
parameters, addressing the issue that traditional models neglect the
influence of geographical environment factors on wind fields. Unlike
existing methods that rely on a single data source or lack physical
mechanism interpretability, this framework achieves a direct mapping
from raw multi-source data to wind speed prediction, significantly
enhancing prediction accuracy and practicality.

(2) To address the issues of traditional CNNs lacking adaptabil-
ity and temporal perception when extracting meteorological spatial
features, this study integrates an improved channel-spatial-global three-
level attention mechanism (CBAM) and a time embedding technique
(TE) onto ResNet, constructing the TC-ResNet module. This module
dynamically focuses on highly relevant parameters through the atten-
tion mechanism, while the TE technique captures the periodic patterns
of time, solving the limitation of traditional CNNs’ inability to ad-
just the importance of different meteorological parameters adaptively.
Compared with traditional ResNet and other spatial feature extraction
methods, this module enables synchronous capture of spatiotempo-
ral features and significantly enhances the representation of complex
meteorological spatial features.

(3) To better model the complex dynamic characteristics of wind
speed time series, this study integrates the TE technique and meta-
learning mechanisms into Liquid Time-Constant Networks (LTCs), con-
structing the TE-LTCs module. This module introduces the Fourth-Order
Runge-Kutta method (RK4) to ensure the stability of long sequence
processing and to address the vanishing gradient problem in traditional
RNNs. By fusing temporal context information via the TE technique
and meta-learning mechanisms, while dynamically adjusting the pa-
rameters of differential equations, the model can adaptively capture
wind speed change patterns at different time scales. Compared with
traditional time series models such as LSTM and GRU, this module
demonstrates significant advantages in handling nonlinear temporal
dependencies, effectively improving prediction accuracy and stability.

The study is organized as follows: Section 2 describes the data
and process, including an overview of data sources, preprocessing
procedures, and the architectural design of the MTRCL model. Section 3
presents the experimental setup and the analysis of the results, includ-
ing feature selection, model performance comparison, and the effects of
spatial and temporal corrections. Section 4 describes the advantages of
the MTRCL model, analyzes the limitations of this method and feasible
future directions, and discusses the model’s computational complexity
and training time. Finally, Section 5 concludes the study by summa-
rizing the key findings and discussing the significant implications and
contributions of the research.

2. Data and method
2.1. Data

2.1.1. Data source

Fig. 1 illustrates the topographic map of China, with the study area
outlined by a red solid box. This area spans latitudes 35.13°-47°N
and longitudes 103°-126.88°E, covering parts of northern China. The
numerical model prediction data utilized in this study are sourced from
the TIGGE (THORPEX Interactive Grand Global Ensemble) project of
ECMWE. The dataset covers a period of 1461 days, from January 1,
2021, to December 31, 2024. The TIGGE dataset features a horizontal
resolution of 0.5° x 0.5° and provides forecasts twice daily, at 00:00
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Table 1
ECMWF numerical forecast 26 meteorological factor fields.

Number Element Abbreviation  Final
selection
1 2 m dew point temperature d2m
2 10-m U wind component ul0 Y
3 Convective available potential energy cape
4 Maximum temperature at 2 m in the last 6 mx2t6
h
5 Minimum temperature at 2 m in the last 6 h  mn2t6
6 Skin temperature skt
7 Snowfall water equivalent sf
8 Surface latent heat flux slhf
9 Surface net shortwave (solar) radiation ssr Y
10 Surface sensible heat flux sshf
11 Total cloud cover tee
12 Total column water tew
13 2-m temperature t2m
14 10-m V wind component v10 Y
15 Convective inhibition cin
16 Land-sea mask Ism Y
17 Mean sea level pressure msl Y
18 Orography orog Y
19 Snow depth water equivalent sd
20 Soil moisture sm Y
21 Soil temperature st
22 Sunshine duration sund
23 Surface net long-wave (thermal) radiation str
24 Surface pressure sp
25 Top net long-wave (thermal) radiation ttr
26 Total precipitation tp

and 12:00 UTC. For this study, forecasts were initiated at 00:00 and
12:00 UTC each day, with a focus on the 6-hour and 12-hour inter-
vals. Specifically, the forecasts correspond to 06:00, 12:00, 18:00, and
24:00 UTC(or 00:00 UTC of the subsequent day). Consequently, the
data sample comprises a total of 26,929,152 samples, structured as
follows: “1461” represents the number of days during the research
period (2021-2024). The second dimension, “4”, refers to the four
forecast times per day. The third dimension, “4608” represents the grid
dimension, consisting of 48 latitude points and 96 longitude points. The
TIGGE output includes 26 meteorological parameters (refer to Table
1). Additionally, the zonal wind component (ul10) and meridional wind
component (v10) at 10 m above ground level are combined into a single
variable representing the 10-meter wind speed (TIGGE_wind_speed),
which follows the formula:

TIGGE_wind_speed = \ul02 + v10? (@9

As a result, the TIGGE dataset utilized for prediction contains a total of
27 parameters.

To describe the influence of complex terrain on near-surface at-
mospheric motion, existing numerical models often rely on simplified
parameterization schemes. However, when high-resolution geographic
terrain data is applied in such complex terrain conditions, signifi-
cant gradient variations in parameters can easily lead to instability
in calculating partial differential equations. Deep learning networks,
particularly feature fusion techniques, have demonstrated effectiveness
in addressing this issue [36]. In this study, ASTER GDEM V3 data is
utilized, offering a spatial resolution of 1 arc-second (horizontal spacing
of about 30 m near the equator). Four key parameters—elevation,
relief, slope, and aspect—are incorporated to enhance the accuracy of
terrain representation.

Due to the lack of observed data from real meteorological stations
within the study area, this study utilizes the ERA5 hourly dataset
on single levels, as identified through investigation. Specifically, the
ul0 and v10 components within this dataset are synthesized into
ERAS5_wind_speed to substitute for observed data. As demonstrated
in the study by Zhang et al. [35], ERA5 data has been successfully
employed to predict short-term hub-height wind speeds in northeastern
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China, verifying the feasibility and effectiveness of ERA5 data as a sub-
stitute for observed data in wind speed prediction research. The ERA5
dataset features a spatial resolution of 0.25° x 0.25° and a temporal
resolution of 1 h. Provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), ERAS is a global reanalysis dataset that
has been processed and generated according to uniform standards,
ensuring stable and high-quality data. This study also extracted five
temporal parameters from the raw data, namely Year, Month, Day,
Hour, and Season.

Finally, the preprocessed dataset, spanning from January 2021 to
December 2022, served as the training set for model parameter op-
timization. This dataset included 8 parameters (TIGGE_wind_speed,
orog, sm, v10, ulO, Ism, msl, ssr) selected from 27 TIGGE meteo-
rological parameters that have the most significant correlation with
ERA5_wind_speed. Additionally, three terrain parameters (elevation,
relief, slope) were selected from 4 ASTER GDEM V3 terrain parameters
that have the most significant correlation with ERA5_wind_speed, and
5 time parameters (Year, Month, Day, Hour, Season). All parame-
ters were covered at four time points—UTC 06:00, 12:00, 18:00, and
24:00 (UTC 00:00 of the next day)—resulting in a total of 13,455,360
samples. The dataset for 2023, comprising the same features and to-
taling 6,727,680 samples, was utilized as the validation set to assess
the model’s performance during training and refine hyperparameters.
Similarly, the dataset for 2024, containing 6,746,112 samples with
identical features, was employed as the test set to evaluate the accuracy
of the model’s predictions in practical applications. To ensure fair
comparison, all baseline models and comparison methods evaluated
in this study utilized the same input features and dataset splits as
described above.

2.1.2. Data preprocessing
A multi-step approach was employed to address missing values in
the datasets, including ERA5_wind_speed, 27 meteorological parame-
ters from TIGGE, and the four terrain parameters of ASTER GDEM V3.
Specifically, linear interpolation along the time dimension was applied
to meteorological parameters [37]. The interpolation process follows
the formula:
x(ty, i, j) — (1,1, j) )

s (t-1) @

x(t,i,j) = x(ty,i,j)+
where x(1, i, j) represents the interpolation result at time ¢ and grid point
@i, j). x(ty,i,j) and x(#5,i,j) are the values of the nearest valid time
points before and after the missing point, respectively. 7, and 7, are
the valid time indices.

For the three data sources, linear interpolation and nearest-neighbor
interpolation were applied in the spatial dimension, as described in
[38]. The nearest-neighbor interpolation process follows the formula:

X(t» i, /) = x(1, [neare:t’ jnearest) (3)

where the coordinates of the nearest-neighbor point are:

(inearest’jnearesl) = argmm(i’,j’)EValid V(- i,)z +( - j,)z (4)

where Valid represents the set of all valid data points, serves as the
foundation for filling missing values. For the remaining small number
of missing values that could not be resolved through this method, they
are subsequently filled using the global average value of the variable.
This final step ensures completeness and consistency across the dataset.

Subsequently, we employed the 3¢ rule to process the outliers in
all datasets. This statistically grounded approach effectively identifies
extreme values that differ significantly from the normal distribution,
thereby mitigating the influence of anomalous data on the model.

To ensure the consistency of the datasets in both temporal and spa-
tial dimensions, alignment procedures were applied to the
ERAS5_wind_speed data and the 27 meteorological parameters from
TIGGE. Temporal alignment was achieved by identifying the standard
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Fig. 2. The Overall Architecture and Innovative Modules of the MTRCL Model: (a) Overview of the MTRCL framework, (b) Convolutional Block Attention Module
(CBAM), (c) specific structure of TE in ResNet, (d) specific structure of TE in LTCs.

timestamps (06:00, 12:00, 18:00, and 24:00 UTC) shared between the
two datasets and then filtering the data to these common time points.
For spatial alignment, the linear interpolation was employed to inter-
polate all datasets onto a unified latitude-longitude grid, effectively
resolving the discrepancies in spatial resolution across different data
sources.

Finally, the maximum-minimum normalization method was em-
ployed to standardize all data, scaling it to fall within the interval [0,
1]. The formula for the normalization is as follows:

X XITllI'l (5)
X, max ~ X, min
where X represents the original data, X ;, and X, ,, are the minimum
and maximum values in the dataset, respectively, and Xg 4 is the
standardized data.

Xsta =

2.2. Method

2.2.1. Model architecture of mtrcl

Accurate wind speed prediction requires the integration of spa-
tial features while simultaneously capturing dynamic temporal varia-
tions, posing significant challenges for model design. Traditional single
models often fail to effectively learn spatio-temporal features concur-
rently. To address this limitation, this study proposes an innovative
end-to-end model architecture, called MTRCL (Multi-source data fu-
sion, Time-embedded ResNet with CBAM, and Time-embedded Liquid
Time-Constant Networks).

Fig. 2 illustrates the comprehensive architecture of the MTRCL
model, including the detailed design of the Convolutional Block Atten-
tion Module (CBAM), and the implementation strategies for integrating
temporal embedding (TE) into both the ResNet branch and the Liquid
Time-Constant Networks (LTCs) branch.

The MTRCL model achieves high-precision wind speed prediction
through the close collaboration of multiple components. It addresses
the existing issues in current wind speed prediction tasks, such as
the insufficient collaborative extraction of spatio-temporal features, the
difficulty in eliminating the interference of complex terrain, and the
unstable modeling of long-sequence temporal dependencies. As shown
in Fig. 2(a), firstly, multi-source data undergoes data preprocessing and
feature selection in sequence. Then, the core features are mapped into a
unified tensor by the fusion layer and input into two branch modules in
parallel. Subsequently, the TC-ResNet module extracts high-level, non-
linear spatial feature representations. It simultaneously identifies the
geographical regions and meteorological variables most relevant to the
prediction task at specific time points. Meanwhile, the TE-LTCs module
is employed to model the temporal evolution process of wind speed
time series. Finally, the model incorporates a gated fusion mechanism
to concatenate the features extracted by the two branch modules along
the channel dimension, forming a feature vector. A two-layer neural
network is used to calculate the fusion weights, achieving adaptive
feature fusion. The fused features are then processed by the Multilayer
Perceptron (MLP) module, which maps these features through multiple
nonlinear transformations to the final wind speed predictions.
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2.2.2. TC-ResNet

Convolutional Neural Networks (CNNs) often encounter limitations
in feature extraction and challenges such as gradient vanishing when
processing spatial features in wind speed prediction [39]. To address
these challenges, this study employs the ResNet architecture [40] to
introduce residual connections, which are mathematically expressed as
follows:

out = identity + F(x) (6)

where identity represents the input shortcut connection via 1 x 1
convolution, and F(x) is the non-linear transformation of the main
path. The TC-ResNet module consists of five convolutional layers. The
first convolutional layer employs a 3 x 3 kernel with a stride of 1 and
padding of 1. To ensure dimension compatibility, the shortcut connec-
tion applies a 1 x 1 convolution with a stride of 1 and no padding.
The subsequent convolutional layers share identical configurations,
with each employing a 3 x 3 kernel, a stride of 1, and padding of 1.
This uniform parameterization preserves spatial resolution throughout
the network, and the incorporation of residual connections facilitates
robust deep feature learning.

The TC-ResNet module enhances the basic ResNet architecture by
incorporating the channel-spatial-global (CBAM) three-level attention
mechanism and the time embedding (TE) technique. These are specif-
ically designed to extract high-quality spatial features and enhance
their temporal sensitivity. ResNet provides a stable foundation for deep
feature extraction through skip connections, enabling the network to
learn multi-level spatial representations, from local details to large-
scale meteorological field distributions. When processing the diverse,
multi-source data in this study, this structure ensures that the model
can deepen the network layers while maintaining a smooth information
flow, thereby preventing the decline in learning ability caused by
gradient issues.

Based on this, the study introduces CBAM to improve the accuracy
and effectiveness of spatial feature extraction. The channel attention
dynamically evaluates the importance of different meteorological and
terrain parameters, automatically focusing on the most relevant chan-
nels for wind speed prediction. Spatial attention accurately locates
key impact areas geographically, highlighting significant regions under
complex terrain conditions and reducing interference from irrelevant
areas. Global attention enhances the integration of channel and spatial
information overall, ensuring the model captures correlations among
multi-dimensional features comprehensively.

Simultaneously, by incorporating the TE technique, temporal pa-
rameters are encoded into high-dimensional vectors and integrated
into convolutional operations through feature modulation. This grants
the spatial feature extraction process the ability to perceive time,
enabling it to identify periodic meteorological patterns across various
time scales.

The three main components of the TC-ResNet module work together
seamlessly as detailed in Algorithm 1. First, the TE technique dynam-
ically incorporates temporal parameters into spatial features, giving
the model temporal awareness. Next, ResNet performs initial feature
extraction on multi-source data, creating a foundational feature map.
An improved CBAM then filters key features from this map across
channel, spatial, and global dimensions.

Fig. 2(b) shows the specific structure of CBAM. The channel at-
tention mechanism evaluates feature channels through global average
pooling to generate attention weights, and employs two 1 x 1 convo-
lutional layers with a stride of 1 and no padding. The formula is as
follows:

a=o(W, - ReLU(W, - AvgPool(x))) (a € R'>1X!) 7)

where W} is the bottleneck convolutional layer that reduces the channel
dimension, W, is the channel-expanding convolutional layer that maps
back to the original channel dimension, and ReLU represents the
activation function, which is used to add non-linearity.
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Algorithm 1 Time-embedded Residual Network with an improved
CBAM
Inputs: X, .,y € REXIXHXW: spatial features;
T catures € RE: time features
Outputs: F,,,,;, € RE**MW: enhanced spatial features

1: for each input batch do
2 Ejjpe < TimeEmbed (T oorures)
3 E,ime < Reshape(E,;,..[B,56,1,1])
// Extract initial spatial features
4: Fconvl - COHVZd(XSpatial)
F,,; < BatchNorm(F,,,,;) + E;; .
6: identity < Conv1x1(X,uiq)
// Residual block construction
7: fori=2to 5 do

a9

8: Fony, < Conv2d(F, )
9: Fy,, < BatchNorm(F,,,, ) + identity
10: identity < Fy,

11: end for
// Apply improved CBAM attention mechanism
12: a < ChannelAttention(F},s)
13: Fchannel “ a0 anS
14: p < SpatialAttention(F, ;.1
15: Fspatial,att « ﬂ (O] Fcharmel
16: y < GlobalAttention(F;a o)
17: Fspatial - Fspatial,att +70 Fspatial,utt
18: end for

19: return F .,y

The spatial attention mechanism captures the localized features
through channel pooling operations to generate spatial attention
weights, employing a 7 x 7 convolutional layer with a stride of 1 and
padding of 3. The formula is as follows:

B =0 (Convyyg (Concat(Fy,. F,yy))) (B € RU) (®)

avg»

where F,,, and F,,, denote the average pooling and max pooling oper-
ations performed on the feature map, respectively; and Conv;,; repre-
sents the convolution operation that conducts spatial feature extraction
and dimension compression on the concatenated feature map. The
global attention mechanism extracts a global feature vector through

adaptive average pooling, thereby generating global weights:
¥ =0W  Upignen) (y € RMXIX ©

where v/, denotes the global feature vector obtained by flattening
the feature map after adaptive average pooling, W refers to the weight
matrix of the fully connected layer, o is the Sigmoid activation function
used to generate attention weights, and y is the generated global
attention weight vector that adaptively reweights the original feature
map to emphasize globally critical information. Through this multi-
level attention mechanism, CBAM enables the model to adjust feature
weights from a global perspective dynamically. As a result, it focuses
on the spatial features crucial for wind speed prediction, improving the
model’s prediction ability.

To integrate Time Embedding (TE) into the ResNet architecture, five
temporal parameters are mapped to a feature space using a three-layer
fully connected neural network. The mathematical formulation for this
mapping is provided below.

TE(t) = Wy - ReLUW3 - ReLU(W, - 1)) (10)

where ¢ denotes the input vector of five temporal parameters; W,, W3,
and W, represent the weight matrices corresponding to the three fully
connected layers in sequence; and T E(¢) is the final time embedding
vector, which is fused with the feature maps to incorporate temporal
information into spatial feature learning. As shown in Fig. 2(c), this
design enables the model to perceive the temporal dependencies of the
data and capture the variation patterns of wind speed at different times.
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2.2.3. TE-Liquid Time-Constant Networks

In the task of wind speed prediction, traditional time series models,
such as simple RNNs and their variants (LSTM, etc.), demonstrate a
specific capacity to capture the dynamic characteristics of temporal
data [41]. However, they are prone to issues such as vanishing or
exploding gradients during the processing of long sequences. Further-
more, their ability to fuse multi-source heterogeneous data is limited,
preventing them from fully leveraging the spatial and temporal in-
formation of the wind speed data. To address these challenges, this
study introduces the Liquid Time-Constant Networks (LTCs) architec-
ture [42]. LTCs are designed based on continuous-time recurrent neural
networks and model the dynamic behavior of time series using ordinary
differential equations (ODEs). Their adaptive time constant feature
allows the network to automatically adjust response times based on the
input’s rate of change, making them especially effective at capturing
nonlinear dynamic features in meteorological systems.

The TE-LTCs module combines LTCs, the time embedding (TE) tech-
nique, the Fourth-Order Runge-Kutta Method (RK4), the gating mech-
anism, and a meta-learning mechanism to deeply model the complex
dynamic evolution of wind speed time series.

By incorporating the TE technique and RK4, this study improves
the model’s ability to capture complex temporal patterns, especially
in handling non-stationary wind speed sequences. The TE encodes
multi-scale temporal parameters into vectors and integrates them into
the LTCs’ state update process via a gating mechanism, enabling the
model to recognize periodic meteorological patterns. RK4 ensures com-
putational stability and accuracy in solving ODEs through adaptive
step-size numerical integration, effectively capturing complex tempo-
ral dependencies and providing a solid foundation for time series
modeling.

Additionally, the TE-LTCs module incorporates a meta-learning
mechanism to adjust the parameters of ODEs dynamically. By learning
from prior knowledge of historical meteorological patterns, the model
is provided with optimized initial parameter values, which accelerates
the adaptation process to new meteorological conditions. Meanwhile,
the application of a time-varying step size function further enhances
the model’s flexibility. During periods when wind speed changes are
relatively stable, the model can use a larger step size for calculation,
thereby improving computational efficiency. In the event of sudden
changes in wind speed, the model automatically reduces the step size
to capture the nonlinear transient characteristics during these abrupt
changes accurately.

During the actual operation, as detailed in Algorithm 2, the ba-
sic structure of LTCs is responsible for the preliminary extraction of
temporal features and the modeling of long-term dependencies in the
wind speed time series. The TE technique enhances the model’s per-
ception of temporal dynamics and periodicity. The gating mechanism
enables intelligent parameter adjustment. The RK4 method ensures the
accuracy and stability of numerical calculations. The meta-learning
mechanism optimizes the model’s adaptability to different wind speed
change patterns. The time-varying step size function flexibly adjusts the
step size of the RK4 integration, ensuring that the model can accurately
capture various temporal features of wind speed while maintaining
computational efficiency. These components work synergistically to
build a robust temporal modeling capability that can precisely han-
dle the nonlinear dynamic features, multi-scale periodic changes, and
sudden meteorological disturbances in wind speed time series. This
capability forms a spatiotemporal complementarity with the spatial
features extracted by the TC-ResNet module, thereby improving the
overall prediction accuracy of the model.

As shown in Fig. 2(d). Initially, the temporal embedding vector is
processed by a multi-layer perceptron, yielding a temporal feature rep-
resentation that is isomorphic to the hidden state. Subsequently, at each
time step, a gating mechanism is applied to dynamically integrate the
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Algorithm 2 Time-embedded Liquid Time-Constant Networks with
RK4 Integration

Inputs: X, € REXTXCXHXW: sequential features;
T,,, € RP¥XT3: time features

seq
Outputs: H,,, € RBX>*HXW: gutput temporal features

1: h < Initialize(Bx H x W,d)

2: fort=1to T do

3: e « MLP(TimeEmbed(TS(,q[: 4 :)

// Compute gating mechanism and feature fusion

4: g,<—z7(VVg[Xm][:,t,:,:,:];e’]+bg)

5: fi o8O Xt 1+ (1—g)0Oe,

// Generate time-adaptive parameters
6: Wy(2), by(t) < ParamNet(e})
7: Are) « a - exp(wzte; +by)+ P
// Apply RK4 integration for ODE solving

8:  k, « ODEFunc(h, f,; Wp(0), by(t))

9:  ky < ODEFunc(h + 0.54tk;, f,; Wp(1), by(t))
10:  ky <« ODEFunc(h + 0.54tky, f,; Wp(1), by(1))
11:  k, < ODEFunc(h + Atks, f,; Wp(1), by(t)
120 hoe h+ kg + 2k +2ks + ky)

13: h < Clamp(h, —100, 100)
14: end for

15: H,,, < OutputLayer(h)

16: return H

temporal features with the network’s hidden states. The corresponding
formula governing this gating mechanism is provided as follows:

g =o(W,lx:ell+b). fi=g0x+(-g)oc an

where x, denotes the input data, while e, represents the temporal
embedding vector. The temporal feature e, isomorphic to the hidden
state, is derived from e, through a transformation using a multi-layer
perceptron. The parameters W, and b, are learnable variables within
the gating mechanism. Furthermore, the time embedding modulates
the differential equation parameters of LTCs through a meta-learning
mechanism. The corresponding formula for this process is provided as
follows:

Wy (1), by(t) = ParamNet(e]) 12)

where ParamNet represents the parameter-generating network, Wj(t)
represents the time-varying weight matrix, and b,(r) represents the
bias vector. To enhance the capacity for modeling non-stationary time
series data, the RK4 integration step incorporates a time-varying step
size function. The corresponding formula for the time-varying step size
function is provided as follows:

At(e)) =a- exp(wzte; +by)+ B 13)

where « and # are hyperparameters, and w,, and b,, are learnable pa-
rameters that dynamically adjust the integration step size and direction.
These parameters utilize temporal embedding features, enabling the
model to capture the nonlinear characteristics of wind speed changes
accurately.

2.2.4. Model training

During the model training phase, Bayesian optimization is employed
to conduct a global search for hyperparameters. In comparison to
traditional methods such as grid search and random search, Bayesian
optimization constructs a surrogate model of the objective function,
leveraging prior knowledge and historical evaluation results to search
for the optimal solution of hyperparameters more efficiently. All ex-
periments were conducted on a computer equipped with an Intel Core
i5-13600 K CPU and an NVIDIA GeForce RTX 4090 GPU with 24 GB
VRAM. For model configuration, the input length was set to 4 time
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Table 2
List of the search ranges for hyperparameters of each model.
Parameters Model
MTRCL ConvLSTM TE-LTCs ResNet TE-ResNet TC-ResNet LSTM GRU Trans XGBoost
former
Learning rate [1e—4,5e—-4] [5e-5,3e—4] [5e—-5,5e—4] [le-5,1e-3] [le-5,1e-3] [le-5,1e-3] [5e-5,3e—4] [5e-5,3e—4] [le-5,1e—4] [le-2,3e-1]
Weight decay [le—4,1e-2] [le—4,1e-2] [le—4,1e-2] [le—4,1e-2] [le—4,1e-2] [le—4,1e-2] [1e—4,5e-3] [1e—4,5e-3] [1e—4,5e-3] -
Dropout rate [5e-2,3e-1] [2e—-1,5e-1] [5e-2,3e-1] [le—1,4e-1] [le-1,4e-1] [le—1,4e-1] [le-1,6e-1] [le—1,6e-1] [le-1,6e-1] -
ResNet hidden dim {32,48,56, - - {32,48,56, {32,48,56, {32,48,56, - - - -
64,128} 64,128} 64,128} 64,128}
LTCs hidden dim {192,200, - {192,200, - - - - - - -
216,224} 216,224}
ConvLSTM hidden - {32,64,128} - - - - - - - -
dim
CBAM reduction {8,12,16, - - - - {8,12,16, - - - -
20,24} 20,24}
Batch size {8,16,24} {8,16,24} {8,16,24} {8,16,24} {24,28,32} {16,24,32} {4,8,16} {4,8,16} {2,4,8} -
Early stopping [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] -
round
Accumulation steps {1,2,4} {1,2,4}y {1,2,4y {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4y {1,2,4y -
LSTM hidden dim - - - - - - {64,96, - - -
128,160}
GRU hidden dim - - - - - - - {64,96, - -
128,160}
d_model - - - - - - - - {128,192, -
256,320}
nhead - - - - - - - - {4,8,16} -
num_layers - - - - - - {1,2,3,4} {1,2,3,4y {2,3,4,6} -
n_estimators - - - - - - - - - [1le2,1e3]
STDGN hidden dim - - - - - - - - - -
Parameters Model
STDGN BPNN C-ResNet
Learning rate [le-4,1e-3] [1e-4,1e-3] [le-4,1e-3]
Weight decay [1e-4,5e-3] [1e—4,5e-3] [1e-4,5e-3]
Dropout rate [le-1,4e-1] [le-1,4e-1] [le-1,4e-1]
ResNet hidden dim - - {32,48,56,64,128}
LTCs hidden dim - - -
LSTM hidden dim - - -
CBAM reduction - - {8,12,16,20,24}
Batch size {8,16,24} {8,16,24} {8,16,24}
Early stopping round [3,8] [3,8] [3,8]
Accumulation steps {1,2,4} {1,2,4} {1,2,4}

LSTM hidden dim -
GRU hidden dim -
d_model -
nhead -
num_layers -
n_estimators -
STDGN hidden dim {64,96,128,160}

steps, corresponding to 24 h of historical data. The prediction hori-
zon was configured as 1 time step, which equals a 6-hour advance
prediction. The time step interval was 6 h, aligning with the four
daily observation times (06:00, 12:00, 18:00, and 24:00 UTC). The
specific search ranges of hyperparameters for each model are detailed
in Table 2. After conducting 75 rounds of experiments, the optimal
hyperparameter combinations for each model are finally determined
and are presented in Table 3. It should be noted that, as the baseline
model selected for this study, the Pangu model directly adopts the
default parameter configuration publicly implemented in its paper [43];
while for the other comparison model, Statistical regression, due to its
simple model structure, its core parameters are conventional settings
recognized within the field, and thus are not listed separately. The
AdamW optimizer is employed for parameter updates, in conjunction
with a cosine annealing learning rate scheduler to ensure smooth
convergence. The loss function is SmoothL1Loss. Additionally, gradient
accumulation techniques are employed to accommodate limited video
memory, ensuring efficient utilization of computational resources.

2.2.5. Evaluation metric

The accuracy of wind speed forecasts is assessed through a com-
prehensive set of evaluation metrics. This study employs the Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Correlation
Coefficient (R), Relative Root Mean Square Error (rRMSE), Relative
Mean Absolute Error (rMAE), Mean Absolute Percentage Error (MAPE),
and the Fraction of Absolute Error (FA), which represents the percent-
age of samples where the absolute wind speed error does not exceed
1 m/s. These indicators collectively provide a robust framework for

evaluating the predictive performance of the forecasting models [44].
The calculation formulas for these indicators are as follows:

N
1

RMSE = |~ Z(Vp,k — Vi) 14

k=1

1 N
MAE = — k; Vi = Varkl (15)
211{\;1 [(VP,k “Vo)Vark — Wﬂ
R= (16)
VEX Vs = VoP S Vassc — Var?
\/% St Ve i = Varn)?

rRMSE = — x 100% a7

(ﬁ Zk=1 VM,k)

1 N
=Y Ve =V
rMAE = & ’]‘ ! INP"‘ al x 100% (18)
(ﬁ Zk=1 VM,k)
NI‘
FA=—Lx100% 19)
Ny
N
Vo, =V,
MAPE = + 3|22 TMAL 009, (20)
N k=1 Vk

In the formulas mentioned above, V), represents the measured wind
speed, V), , represents the measured wind speed at time k after trans-
formation, V,, represents the average value of the measured wind speed
within the assessment period after transformation, Vp represents the
predicted wind speed, ¥V represents the predicted wind speed at time

k after transformation, V, represents the average value of the predicted
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Table 3
List of the selected parameters for each model.
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Parameters Model

MTRCL  Conv TE-

LSTM LTCs

ResNet TE- TC-
ResNet

ResNet

LSTM GRU XG-

Boost

BPNN C-
ResNet

Trans
former

3.9e-4 2e-4 3e—4 2e—4 4e—4
le—4 le-3 le—4 8e-3 le-3
0.25 0.4 0.2 0.3 0.3 0.3
56 - - 56 56 56

Learning rate
Weight decay
Dropout rate
ResNet hidden
dim

LTCs hidden
dim
ConvLSTM - 64 - - - -
hidden dim

CBAM 16 - - - - 16
reduction

Batch size 16 16 16 8 28 24
Early stopping 5 5 5 3 5 5
round

Accumulation 1 1 1 1 1 1
steps

LSTM hidden - - - - - -
dim

GRU hidden - - - - - -
dim

d_model - - - - - -
nhead - - - - - -
num_layers - - - - - -
n_estimators - - - - - -
STDGN hidden - - - - - -
dim

216 - 216 - - -

5e-5 0.1 4e—4
le-3 - le-3
0.4 0.4 0.4 - 0.3 0.3 0.3
- - - - - - 56

8 8 4 - 8 16 24

- 128 - - - - -

wind speed within the assessment period after transformation, N refers
to the sample size, N, represents the number of samples with an
absolute wind-speed error no greater than 1 m/s, and N, represents
the number of predicted samples.

3. Results
3.1. Feature selection

Feature selection methods are generally classified into three cat-
egories: filter selection, wrapper selection, and embedded selection.
To verify the effectiveness of different feature selection methods, this
study selected typical algorithms for each of the three categories to
conduct comparative experiments. Among them, for filter selection,
the Pearson correlation coefficient and mutual information methods
were used together for screening, and ultimately, 8 meteorological
parameters (TIGGE_wind_speed, ul0, Ism, sund, sm, ssr, str, sshf) and 3
terrain parameters (relief, slope, elevation) were selected. For wrapper
selection, the recursive feature elimination (RFE) method was adopted,
and all selected parameters were: TIGGE_wind_speed, mn2t6, ul0, t2m,
msl, Ism, skt, orog, slope, aspect, and relief. For embedded selection,
the random forest algorithm was used, and all selected parameters
were: TIGGE_wind_speed, ul0, v10, Ism, sm, orog, sund, ssr, elevation,
relief, and slope. After feature selection by different methods, dedicated
datasets were constructed, and the performance was evaluated based on
various indicators in the testing phase.

Categorical Boosting(CatBoost), a gradient-boosting decision tree
model, can compute the importance scores of each feature during the
model training process. The comparison results show (see Table 4) that
its performance in all indicators in the final testing phase was superior
to other feature selection methods, fully demonstrating the advantages
of CatBoost in feature selection tasks. Similarly, Zeng et al. [44] em-
ployed the CatBoost selection method to screen key meteorological
features in their research on short-term wind speed prediction, and
verified the effectiveness of this method in identifying critical variables

for meteorological prediction. Building on the comparative experiment
results of this study and research foundation, we employ the CatBoost
algorithm to conduct feature importance assessment and selection.

Fig. 3(a) illustrates the significance of TIGGE features obtained
through CatBoost training, highlighting several meteorological param-
eters that strongly influence wind speed. Terrain influences airflow
speed via altitude differences, thereby affecting wind speed; variations
in land cover roughness directly regulate near-surface wind speed [35].
Soil moisture changes can modify energy exchange between the sur-
face and atmosphere [45], while the level of mean sea level pressure
determines airflow rate. Collectively, these factors impact the accuracy
of wind speed predictions, confirming the validity of feature selection
using the embedded CatBoost method.

To identify the optimal number of features for wind speed pre-
diction, we further analyzed the relationship between feature count
and model performance. This analysis involved gradually increasing
the number of features and evaluating the model using error metrics,
specifically the RMSE and the MAE, for each subset of features. As
illustrated in Fig. 3(b), both RMSE and MAE decrease as the number
of features increases. Notably, when the number of meteorological
parameters reaches eight, the error metrics plateau, indicating that
these eight parameters sufficiently improve the ECMWF model’s predic-
tions. Beyond this threshold, the inclusion of additional features yields
negligible improvement in model performance. Consequently, the eight
most influential meteorological parameters were selected as the final
feature set, ensuring an optimal balance between model complexity and
predictive accuracy.

Fig. 4(a) illustrates the importance of the ASTER GDEM V3 ter-
rain features derived from CatBoost training. These terrain parameters
exhibit a strong correlation with ERA5_wind_speed, highlighting their
influence on atmospheric dynamics. As altitude increases, atmospheric
pressure and air density decrease, leading to increased wind speeds.
Additionally, terrain relief is closely related to wind speed. In regions
with extensive topographic variations, such as mountainous areas, air-
flow is influenced by terrain-forced effects, resulting in complex wind
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Table 4
Evaluation of forecast results of different feature selection methods.
Method FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%)
Filter selection 80.63 0.83 0.62 23.14 17.14 0.91 20.57
Wrapper selection 81.38 0.82 0.61 22.94 17.01 0.92 20.41
Embedded selection 83.04 0.80 0.60 21.78 16.54 0.92 19.94
CatBoost 86.64 0.70 0.52 19.57 14.55 0.94 14.85
(a) Feature Importance (b) Feature Selection
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Feature selection of ECMWF-TIGGE based on the CatBoost model: (a) the importance of different characteristics, (b) the MAE and RMSE between

ERA5_wind_speed and the wind speed predicted by the MTRCL model after training with different numbers of input features.

patterns. Additionally, the slope of the terrain impacts airflow velocity;
steep slopes tend to accelerate airflow, while gentle slopes exert a com-
paratively minor influence. These findings underscore the importance
of terrain features in determining the magnitude and direction of wind
speed, thereby validating the effectiveness of feature selection using the
embedded methods within CatBoost [46].

To determine the optimal number of terrain features for wind speed
prediction, we utilized the same approach as for TIGGE features. As
illustrated in Fig. 4(b), the error metrics exhibit stabilization when the
number of terrain parameters reaches three. This finding suggests that
three parameters—elevation, relief, and slope—significantly enhance
the predictive accuracy of the ECMWF model. Consequently, the top
three-ranked terrain features were selected for further analysis.

Meanwhile, to further verify the advantages of the multivariate
wind speed prediction model proposed in this study, we also conducted
additional comparative experiments to compare its performance with
scenarios of univariate and single-category feature inputs. Specifically,
we constructed four different input configurations for performance
evaluation, namely the complete multivariate feature set (integrat-
ing all 8 meteorological parameters and 3 terrain parameters), the
meteorological feature set (using only the 8 selected meteorological
parameters), the terrain feature set (using only the 3 selected terrain
parameters), and the univariate input (using only the core bench-
mark parameter TIGGE_wind_speed directly related to wind speed).
To eliminate the interference caused by differences in model settings
or evaluation criteria, the same prediction model and indicators were
used for evaluation in all four groups of experiments. As shown in
Table 5, the multivariate wind speed prediction model proposed in this
study performed optimally in all indicators, fully demonstrating the
advantages of multivariate fusion.

Furthermore, this study also conducted sensitivity experiments on
the 11 selected parameters to clarify the impact of individual input
parameters on the model’s predictive performance. We sequentially
removed one parameter from the complete multivariate input set, used
the remaining 10 parameters as the model input, and evaluated the

10

model’s performance using the same metrics in the testing phase.
This approach was adopted to determine the variation patterns of
prediction accuracy and error levels after removing each feature. As
shown in Table 6, the removal of core features had the most signifi-
cant impact on the model’s performance. For instance, removing the
TIGGE_wind_speed parameter resulted in a 25.17% decrease in FA and
a 0.73 m/s increase in RMSE.

3.2. Model performance comparisons

The final prediction performance of the model was evaluated using
the 2024 dataset as the test set, ensuring that it did not overlap
with the training and validation sets. Furthermore, the model’s per-
formance was compared with that of various representative models in
the current field, specifically including the Pangu-Weather model [43],
Convolutional Long Short-Term Memory Network (ConvLSTM), Long
Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU),
Transformer, STDGN [47], Back Propagation Neural Network (BPNN),
eXtreme Gradient Boosting (XGBoost), and traditional statistical meth-
ods (Statistical regression). The comparative prediction results of all the
aforementioned models are presented in Table 7.

Ablation experiments were also conducted to evaluate the effective-
ness of each branch and component within the MTRCL model. In this
study, several configurations were tested. TE-LTCs refer to introducing
TE into the traditional LTCs architecture, ResNet denotes the traditional
model without adding any components, TE-ResNet refers to introducing
TE into the ResNet architecture, C-ResNet refers to introducing CBAM
into the ResNet architecture, and TC-ResNet refers to introducing TE
and CBAM into the ResNet architecture. As detailed in Table 7, the
MTRCL model demonstrated significant improvements across all evalu-
ation metrics compared to alternative models. Specifically, the MTRCL
model achieved an FA value of 86.64%, RMSE of 0.70, MAE of 0.52,
rRMSE of 19.57%, rMAE of 14.55%, MAPE of 14.85%, and an R-value
of 0.94.
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Fig. 4. Feature selection of ASTER GDEM V3 based on the CatBoost model: (a) the importance of different characteristics, (b) the MAE and RMSE between
ERAS5_wind_speed and the wind speed predicted by the MTRCL model after training with different numbers of input features.

Table 5

Evaluation of forecast results of different input feature types.
Input feature type FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%)
Meteorological features 76.81 0.95 0.72 25.12 18.21 0.91 21.85
Terrain features 45.10 1.81 1.42 49.18 37.26 0.52 44.71
Univariate 70.78 1.12 0.83 29.24 21.87 0.88 24.06
Multivariate 86.64 0.70 0.52 19.57 14.55 0.94 14.85

Table 6

Results of sensitivity analysis of input parameters.
Sensitivity analysis group FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%)
Without TIGGE_wind_speed 61.47 1.43 1.05 39.13 28.28 0.74 33.94
Without orog 73.68 1.01 0.76 26.93 20.26 0.89 23.09
Without sm 74.94 0.98 0.74 26.13 20.14 0.90 22.45
Without Ism 75.22 0.96 0.73 25.66 19.76 0.91 22.07
Without v10 78.86 0.89 0.66 23.93 17.99 0.92 21.38
Without ul0 77.45 0.94 0.69 25.07 18.11 0.91 21.63
Without ssr 81.61 0.82 0.60 22.38 16.87 0.92 20.34
Without msl 79.32 0.86 0.65 23.57 17.90 0.92 20.86
Without elevation 68.91 1.17 0.92 29.36 22.61 0.82 24.87
Without relief 69.04 1.15 0.87 29.34 22.55 0.83 24.81
Without slope 71.36 1.03 0.79 27.67 21.56 0.88 23.72
Full parameters 86.64 0.70 0.52 19.57 14.55 0.94 14.85

To further confirm the statistical significance of the forecasting
results, we perform Diebold-Mariano (DM) tests [48] to assess whether
the MTRCL model shows statistically superior forecasting performance
compared to baseline models. The DM test results across different
seasons and the whole year are shown in Table 8. At a 1% signif-
icance level, the results reveal that the MTRCL model significantly
outperforms all baseline models during each seasonal period and for
the entire year. The lowest annual DM value observed is 4.77, which
substantially exceeds the critical threshold at the 1% significance level,
indicating notable performance differences even with the strongest
baseline model. These DM test results provide statistical evidence that
the MTRCL model outperforms baseline models in forecasting accuracy
across different time periods.

Fig. 5 presents a radar chart of the performance of different models
in key evaluation dimensions for wind energy prediction, including
four core indicators: mean consistency, distribution consistency, sea-
sonal consistency, and high-energy capture. These indicators are all

11

calculated based on the following wind power density formula [49]:

1
WPD =~
2!’

V3 (21)
where W PD is the wind power density (unit: W m=2), V is the wind
speed (unit: m s~!), and p is the air density (unit: kg m=3). The wind
speed data of each model at four time points every day (06:00, 12:00,
18:00, and 24:00 UTC) are used for calculation.

Mean Consistency is evaluated by comparing the mean difference
between the predicted wind energy of each model and the observed
wind energy. Its formula is as follows:

\WPD,, ., —WPD,, |
MC=1— pred obs (22)
W PD,
where WPD,,,, is the spatiotemporal average of the predicted wind

power density, and W PD,,, is the spatiotemporal average of the ob-
served wind power density. Distribution Consistency is quantified by
the KL divergence, which measures the similarity between the predicted
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Table 7
Evaluation of forecast results of each method.
Method FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%)
ECMWF-TIGGE 68.36 1.06 0.82 29.42 22.74 0.89 27.29
TE-LTCs 75.05 0.96 0.72 26.66 20.10 0.91 22.11
ResNet 64.44 1.28 0.95 35.54 26.28 0.87 31.64
TE-ResNet 76.54 1.07 0.73 29.64 20.38 0.88 22.41
TC-ResNet 79.14 0.86 0.65 23.87 17.95 0.92 26.44
ConvLSTM 71.11 1.02 0.78 28.24 21.60 0.89 25.92
LSTM 70.29 1.11 0.82 30.95 22.68 0.89 28.28
GRU 77.49 0.98 0.65 27.30 18.28 0.90 25.49
Transformer 78.61 0.94 0.69 26.14 19.19 0.91 26.03
Statistical regression 74.65 1.02 0.71 28.25 20.58 0.89 25.84
XGBoost 81.77 0.81 0.59 21.99 15.78 0.90 19.75
Pangu 85.41 0.85 0.64 21.03 17.95 0.94 15.19
STDGN 81.16 0.82 0.62 22.01 15.83 0.90 19.79
BPNN 67.31 1.12 0.85 31.15 23.68 0.84 27.93
C-ResNet 74.51 1.01 0.72 27.98 21.56 0.89 25.86
MTRCL 86.64 0.70 0.52 19.57 14.55 0.94 14.85
Table 8 mean consistency. In terms of distribution consistency, MTRCL achieves
The result of DM test. 0.92, indicating that it can more accurately characterize the probability
Method All year Spring Summer Autumn  Winter distribution of wind speed, providing a reliable basis for risk assessment
ECMWEF-TIGGE 11.79* 562*  6.08* 5.81* 5.70* and grid dispatch. Additionally, MTRCL achieves a score of 0.90 in
TE-LTCs 6.47* 3.30%  3.32* 3.03* 3.66* seasonal consistency, significantly exceeding the 0.65 of the numerical
ResNet 14.44 7.45%  7.04% 7.20% 7.37% weather prediction model ECMWEF-TIGGE, demonstrating its superior
TE-ResNet 8.72¢ 4.80*  4.05% 4.28* 4.35% ability to capture seasonal wind energy variations. Compared with
TC-ResNet 6.70" 3.37  3.55* 3.19% 3.47* other models with varying biases, MTRCL provides more comprehen-
ConvLSTM 10'87:}: 611 6'44j 5'68?‘ 484 sive and reliable technical support for wind energy resource assessment
LSTM 12.8?" 6455:’ 5.90: 6.58: 6480:’ based on ERA5 wind speed data.
GRU 6.74* 3.79* 2.67* 3.25% 3.78*
Transformer 9.98* 5.14* 4.95*% 4.87* 5.08*
Statistical regression  7.44* 4.96*  5.35* 4.25% 4.25% 3.3. The result of space correction by mtrcl model
XGBoost 6.59* 3.26* 3.25* 2.59*%
Pangu 4.77* 2.59*  2.63* 2.35%* Fig. 6 illustrates the spatial distribution of evaluation indicators for
STDGN 7.18* 4.55%  4.11% 3.87* grid points within the study area, both before and after correction.
BPNN 13.76*  7.99*  6.81% 6.64* The difference in land-sea thermal conditions affects atmospheric cir-
C-ResNet 9.53" 3.62%  4.08 3.81% culation and wind speed, making it challenging to accurately capture
Note: the resulting complex wind field changes. Due to this limitation, the

* 1% significance level.
** 50 significance level.

wind energy distribution and the actual distribution. Its formula is as
follows:

DC=1- KL(Pohs ” Ppred) (23

where P, and P, are the probability distributions of the observed
and predicted wind power densities, respectively. Seasonal Consistency
is calculated by grouping wind energy data by season to assess the
prediction accuracy of each season. Its formula is as follows:

SC = li 1 |WPDpred,S_WPDobs,s|
4 WPD

s=1 obs,s

(24)

where WPD,,,, , and W PD,,, ; are the average wind power densities
of the predicted and observed values for the sth season. High Energy
Capture categorizes wind energy into 7 grades based on a threshold
and assesses the model’s predictive ability for high wind energy grade
events. Its formula is as follows:
TP
T TP+FN
where TP is the number of grid points where both the prediction
and observation indicate high wind energy, and FN is the number of
grid points where the observation indicates high wind energy but the
prediction indicates low wind energy.

The MTRCL model significantly outperforms other benchmark mod-
els in all evaluation dimensions, especially in high energy capture and

HEC (25)
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ECMWF model exhibits significant prediction errors. In addition, the
intricate terrain in coastal regions introduces effects such as wind block-
ing and acceleration, which the ECMWF model does not fully account
for. In contrast, the MTRCL model leverages multi-source data and
captures spatio-temporal features through an innovative architecture.
This approach mitigates the impact of terrain-induced interference on
wind speed predictions, thereby enhancing the model’s accuracy and
reliability in complex environments.

The gray histograms on the left side of each subplot in Fig. 6
represent the quantitative frequency distribution characteristics of each
evaluation index within the study area. For the FA index, the histogram
of the MTRCL model indicates that the false alarm rates of most grid
points are concentrated in the lower value interval. In contrast, the
ECMWF model exhibits a more dispersed distribution, with notably
higher frequencies in regions characterized by elevated false alarm
rates. Regarding RMSE and MAE indices, the histogram peaks of the
MTRCL model are located within a narrower error range, indicat-
ing that the prediction errors are more concentrated and of lower
magnitude. Conversely, the ECMWF model exhibits a broader error dis-
tribution, with higher frequencies in intervals corresponding to larger
errors. For the MAPE index, the histogram of the MTRCL model shows
that most grid points are concentrated in the lower-value interval. In
contrast, the ECMWF model exhibits a more dispersed distribution,
with higher frequencies in regions characterized by elevated MAPE
values. The spatial distribution of various evaluation indicators reveals
that the MTRCL model is markedly superior to the ECMWF model. This
superiority is particularly evident in its ability to deliver more accurate
and stable wind speed predictions.
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Fig. 5. Radar chart of wind energy prediction performance metrics across each model.

Fig. 7 illustrates the corrected grid wind speed forecast produced
by the MTRCL model, alongside the grid wind speed forecast from the
ECMWEF model, and the grid wind speed data from ERAS. Generally, the
corrected wind speed values are always lower than the forecast values
before correction and are closer to the observed values. This indicates
the improved accuracy and reliability of the MTRCL model in refining
wind speed predictions.

The gray histograms on the left side of each subplot in Fig. 7 provide
a quantitative display of the frequency distribution characteristics of
wind speed values within the study area. The histogram corresponding
to the MTRCL model indicates that wind speeds exhibit a relatively
narrow distribution and a distinct peak. This suggests that the corrected
wind speed forecasts generated by the MTRCL model exhibit strong
consistency. In contrast, the histogram of ECMWEF-TIGGE presents a
more dispersed distribution, with relatively higher frequencies in the
higher wind speed interval. The histogram distribution of ERA5 wind
speed data is intermediate between the two but closer to the distribu-
tion pattern of the MTRCL model, further verifying the effectiveness of
the MTRCL model’s correction. As shown in Fig. 7, notable variations in
wind speed are observed across various geographical locations within
the two datasets. This figure effectively highlights the spatial distribu-
tion of wind speed predictions, showcasing both the similarities and
differences between the two models. It provides valuable insights into
the geographical variability of wind speed and the associated sample-
related information, contributing to a comprehensive evaluation of the
models’ predictive capabilities.

3.4. The result of time correction by mtrcl model

To evaluate the correction effects of different models on wind speed
across various time dimensions, we conducted a systematic experimen-
tal analysis, which primarily involved comparisons by season, month,
and at four specific time points each day (06:00, 12:00, 18:00, and
24:00 UTC). Fig. 8 presents the seasonal comparisons of the predicted
wind speeds from various models for the year 2024. Fig. 9 provides
a comprehensive assessment of the monthly predicted wind speeds of
each model in the year 2024. These results demonstrate that the MTRCL
model has significant advantages over other models in wind speed
prediction across different seasons and months.
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To demonstrate the model’s correction more effectively, Fig. 10
presents time-series plots and scatter plots of the forecast results of the
ECMWF model with the correction results generated by the MTRCL
model for four specific time points each day throughout 2024. The
time-series plots demonstrate that the corrected forecast results of the
MTRCL model closely align with the ERA5 wind speed data, main-
taining a consistent trend of change. Additionally, the scatter plots
indicate that the wind speeds forecasted after correction by the MTRCL
model are more concentrated and distributed along the 1:1 diagonal
line. In contrast, the ECMWF model exhibits relatively large wind speed
forecast errors at various times, with notable deviations in predicting
wind speed change trends.

4. Discussion
4.1. Advantages of the mtrcl model

Accurate short-term wind speed prediction is essential for the de-
ployment, operation, and maintenance of wind power facilities, as well
as ensuring the safety of low-altitude aircraft. In this work, we intro-
duce an innovative end-to-end model architecture called MTRCL. The
model constructs a dual-branch architecture that decouples and fuses
spatiotemporal features, combining a multi-source data framework to
demonstrate excellent capabilities in spatiotemporal collaborative mod-
eling. With an improved CBAM integrated into the TC-ResNet module,
the model emphasizes key features relevant to wind speed prediction.
Meanwhile, in the TE-LTCs module, its adaptive mechanism effectively
minimizes the influence of data noise on temporal modeling, leading to
more stable predictions.

Furthermore, the MTRCL model excels in dynamic temporal model-
ing due to the deep integration of the time embedding (TE) technique
within the dual-branch structure. In the TC-ResNet module, TE enables
the model to detect differences in the temporal background while
extracting terrain and meteorological correlations, thereby preventing
deviations that result from neglecting the temporal dimension. In the
TE-LTCs module, TE adjusts the parameters of ODEs and the RK4
integration step size via a gating mechanism, allowing the model
to adaptively modulate the granularity of its forecasts according to
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Fig. 6. Comparison of the ERA5_wind_speed in 2024 with spatial distribution maps for wind speed forecasts by the ECMWF-TIGGE model and the MTRCL model:
(a-b) FA index difference maps, (c-d) RMSE index difference maps, (e-f) MAE index difference maps, (g-h) rRMSE index difference maps, (i—j) rMAE index
difference maps, (k-1) R index difference maps, (m-n) MAPE index difference maps.

wind speed variations at different time scales, thereby improving the

accuracy of capturing wind speed evolution over time.

Additionally, the MTRCL model demonstrates strong adaptability
and robustness. In the face of the complex terrain within the study
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area, which features alternating highlands, canyons, and plains, the
model can successfully analyze the terrain dynamic phenomena that
are difficult for NWP models to represent. At the same time, this
adaptability and robustness extend to the temporal dimension, enabling
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the model to stably cope with the dynamic changes in wind speed
across different seasons and time periods.

4.2. Limitations and future directions

The proposed model has certain limitations, which can be addressed
in future research. Currently, the MTRCL model mainly focuses on
deterministic (point) wind speed prediction, providing specific wind
speed values. However, in practical wind power generation planning
and operation scenarios, assessing prediction uncertainty is equally
essential. Probabilistic prediction can quantify the uncertainty of the
prediction and provide more comprehensive information. Therefore,
future research can explore the realization of probabilistic wind speed
prediction. By combining methods such as confidence intervals for pre-
diction results and quantile regression, the model can provide a more
comprehensive basis for decision-making in wind power operations.

Meanwhile, the MTRCL model may face challenges in terms of
stability and accuracy when dealing with extreme weather events. In
such scenarios, the proportion of sample data in the training set is
low, leading to insufficient learning of these meteorological features
by the model and an increased risk of prediction bias. To address this
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limitation, future research could design new loss functions to enhance
the model’s focus on extreme events, while also exploring data augmen-
tation techniques to simulate and generate sample data that conform to
the characteristics of real extreme weather events. Additionally, when
applying the model to other regions, scenarios, or data of different
resolutions, fine-tuning or re-training may be necessary.

4.3. Analysis of computational complexity and training time

The computational complexity and training time of a model are
key factors influencing its practical deployment. To comprehensively
evaluate the computational efficiency of the proposed MTRCL model,
we compare it with the baseline models discussed in this paper, fo-
cusing on four leading indicators: Gflops, forecast time, training time,
and parameters. As shown in Table 9, the MTRCL model has high
prediction accuracy but requires more computing resources. Its Gflops
is 109, which exceeds most baselines, but its forecast time is only 19 ms.
Regarding training time, the total training duration for the MTRCL
model is 72 min, less than that of most baseline models. In terms
of model size, the MTRCL model contains 1.68 M parameters, which
is lower than several baseline models, demonstrating its parameter
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Fig. 10. (a-h) Time-series plots and scatter plots of the prediction results of the ECMWF-TIGGE model and the MTRCL model at 06:00, 12:00, 18:00, and 24:00

(i.e., 00:00) UTC each day in 2024.

efficiency. Overall, the MTRCL model strikes a good balance between
computational resource needs and performance, demonstrating strong
potential for practical deployment.

5. Conclusion

This study proposes an innovative method designed to enhance the
accuracy of short-term wind speed predictions. The proposed model
was evaluated using multi-source meteorological data from the study
area from January 1, 2021, to December 31, 2024. Furthermore, com-
parative analyses involving multiple models, along with ablation stud-
ies, were conducted to evaluate the performance and robustness of the
proposed approach. The key findings of this study are summarized as
follows:

(1) The proposed MTRCL model adopts a dual-branch spatiotem-
poral feature fusion architecture. Specifically, the TC-ResNet module
combines ResNet with the improved Convolutional Block Attention
Module (CBAM) and time embedding (TE) to extract spatial features
while enhancing sensitivity to temporal dimensions. Additionally, the
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TE-LTCs module, built upon the Liquid Time-Constant networks (LTCs),
incorporates time embedding (TE) and utilizes a gating mechanism
alongside meta-learning to dynamically modulate the parameters of
differential equations, thereby uncovering intricate dynamic patterns
in time series. This innovative design offers a robust framework for
modeling and predicting complex temporal phenomena.

(2) When compared with all the baseline models in this paper, the
proposed MTRCL model achieved more outstanding and consistently
stable short-term wind speed predictions. The FA, RMSE, MAE, rRMSE,
rMAE, R, and MAPE values obtained by the proposed method were
86.64%, 0.70, 0.52, 19.57%, 14.55%, 0.94, and 14.85%, respectively.
These results indicate that the proposed model can reduce errors and
more accurately capture the trends of wind speed changes.

(3) A series of ablation studies and comparative experiments were
conducted to assess the contributions of individual components within
the MTRCL model to its overall performance. The results demonstrate
that incorporating the improved Convolutional Block Attention Module
(CBAM) and the time embedding (TE) technique significantly improves
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Comparison of the computational complexity and training time of each method.

Method Gflops Forecast time (ms) Training time (min) Parameters (M)
TC-ResNet 83 36 69 0.46
TE-ResNet 74 23 70 0.44
ResNet 68 20 51 0.43
ConvLSTM 101 66 104 10.80
TE-LTCs 81 29 64 1.02
LSTM 94 58 98 0.31
GRU 105 93 111 6.58
Transformer 114 108 122 18.98
Statistical regression 47 19 73 0.003
XGBoost 77 46 119 5.47
STDGN 78 50 85 8.82
BPNN 91 37 71 1.12
C-ResNet 79 24 80 0.45
MTRCL 109 19 72 1.68
model accuracy and stability, with their combined integration yielding References

superior performance compared to variants lacking these components.

The proposed MTRCL model represents a promising advancement
in correcting short-term wind speed forecasts. With more accurate
wind speed forecast results, meteorological researchers and relevant
departments can optimize meteorological service plans in advance. In
the energy sector, wind power dispatch strategies can be adjusted ac-
cording to the forecast results, allowing for planned power output when
the predicted wind speed is high, thereby enhancing the efficiency of
wind energy utilization.
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