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 A B S T R A C T

Accurate wind speed forecasting plays a pivotal role in optimizing wind power generation efficiency and 
advancing wind energy resource development. However, numerical weather prediction relies on global datasets 
and complex mathematical models, posing challenges in capturing subtle weather variations. Additionally, 
factors such as surface, land–sea thermal conditions, and terrain complexity further influence forecast accuracy. 
Existing methods generally suffer from a single data source dependency and an insufficient ability to extract 
spatiotemporal features. This study proposes MTRCL, a novel end-to-end approach developed to address the 
above challenges by integrating multi-source data fusion, time-embedded Residual Network (ResNet) with an 
improved Convolutional Block Attention Module (CBAM), and time-embedded Liquid Time-Constant Networks 
(LTCs). The proposed method leverages the time embedding (TE) technique to encode temporal information, 
thereby enhancing the model’s capacity to capture temporal dependencies. Additionally, an improved channel-
spatial-global (CBAM) three-level attention mechanism is incorporated into the ResNet framework, enabling 
the model to identify correlations between spatiotemporal features effectively. Finally, the efficacy of the 
proposed method is validated using the ERA5 hourly data on a single level. The experimental results show 
that the proposed model increases wind speed forecast accuracy, defined as the Fraction of Absolute Error 
(FA), representing the percentage of samples where the absolute wind speed error does not exceed 1 m/s, 
from 68.36% to 86.64%, compared to ECMWF forecast data. This improvement highlights the effectiveness of 
MTRCL in leveraging multi-source data to address the challenges of wind speed prediction in complex terrains 
and supports optimization of wind energy resource development.
1. Introduction

In recent years, wind energy has emerged as a crucial source of 
clean and renewable power, driven by the dual forces of the global 
energy transition and technological advancements [1,2]. Despite its 
growing significance, the inherent randomness of wind power gener-
ation and its inability to be effectively stored introduce substantial 
uncertainty in energy supply. Furthermore, within the low-altitude 
economic sector, the presence of strong convection and complex me-
teorological conditions in the low-altitude airspace poses a serious 
challenge to the flight safety of low-altitude aircraft. Consequently, 
accurate short-term wind speed forecasting is indispensable for op-
timizing the dispatching and operation of wind power systems and 
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ensuring the safety of low-altitude aviation [3,4]. Currently, numer-
ical weather prediction (NWP) models remain the primary approach 
for forecasting various meteorological variables. However, the chaotic 
nature and inherent uncertainties of the atmospheric system limit the 
capacity of numerical prediction models to fully capture the intricacies 
of the real atmospheric state, leading to varying degrees of deviations 
in forecast results. As a result, addressing the inaccuracies in NWP-
based meteorological predictions has become an urgent issue to be 
addressed [5,6].

Error correction methods for Numerical Weather Prediction (NWP) 
products can be broadly categorized into two major approaches: tra-
ditional statistical techniques and machine learning-based method-
ologies. Traditional statistical techniques for correcting NWP outputs 
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data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/energy
https://www.elsevier.com/locate/energy
https://orcid.org/0000-0003-2579-5359
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0009-0004-4865-2531
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
https://github.com/CSNTU/MTRCL
mailto:Ju.xl@ntu.edu.cn
mailto:Yueym@stmail.ntu.edu.cn
mailto:Xumeng@ntu.edu.cn
mailto:Xchencs@ntu.edu.cn
mailto:lugz@szcu.edu.cn
https://doi.org/10.1016/j.energy.2025.139728
https://doi.org/10.1016/j.energy.2025.139728


X. Ju et al. Energy 342 (2026) 139728 
 Nomenclature
 NWP Numerical Weather Prediction TIGGE THORPEX Interactive Grand Global Ensemble  
 RNNs Recurrent Neural Networks FA Fraction of Absolute Error  
 LSTM Long Short-Term Memory Network RMSE Root Mean Square Error  
 GNNs Graph Neural Networks MAE Mean Absolute Error  
 CNNs Convolutional Neural Networks rRMSE Relative Root Mean Square Error  
 GRU Gate Recurrent Unit rMAE Relative Mean Absolute Error  
 ResNet Residual Network R Correlation Coefficient  
 TE Time Embedding MAPE Mean Absolute Percentage Error  
 CBAM Convolutional Block Attention Module CatBoost Categorical Boosting  
 LTCs Liquid Time-Constant Networks ConvLSTM Convolutional Long Short-Term Memory Network  
 ODEs Ordinary Differential Equations WRF Weather Research and Forecasting Model  
 RK4 Fourth-Order Runge–Kutta Method VMD Variational Mode Decomposition  
 MLP Multilayer Perceptron XGBoost eXtreme Gradient Boosting  
 ECMWF European Centre for Medium-Range Weather Forecasts TC-ResNet Time-embedded ResNet with CBAM  
 TE-LTCs Time-embedded Liquid Time-Constant Networks with

RK4 Integration
RFE Recursive Feature Elimination  

 C-ResNet Residual Network with CBAM STDGN Spatio-temporal Data Generation Network  
 BPNN Back Propagation Neural Network DM Diebold–Mariano  
encompass a wide range of techniques, including time series anal-
ysis, Gaussian statistical models, linear regression, Kalman filtering, 
and nonlinear or non-parametric algorithms such as autocorrelation 
analysis [7,8]. Machine learning techniques, on the other hand, focus 
on identifying patterns and relationships within NWP data, as well 
as historical wind speed records to facilitate accurate predictions of 
future wind speeds [9]. These techniques are highly adaptable and 
data-driven, making them particularly suitable for handling large-scale 
datasets and complex nonlinear dependencies. Standard machine learn-
ing models include the Recurrent Neural Network (RNN) [10], Long 
Short-Term Memory Network (LSTM) [11], and Graph Neural Networks 
(GNNs) [12].

Traditional correction methods for numerical weather prediction 
(NWP) have been extensively studied, with several innovative ap-
proaches proposed to enhance prediction accuracy. Devis et al. [13] 
proposed a statistical regression-based downscaling technique. Their 
findings highlighted that incorporating temperature data significantly 
improved prediction accuracy. Similarly, Pearre and Swan [14] demon-
strated that statistical correction techniques could reduce wind speed 
prediction errors within 24 h by 20%–25%. Zhao et al. [15] developed 
a single-day probabilistic wind speed prediction model to address in-
herent biases in numerical weather predictions. Homleid [16] proposed 
the use of the Kalman filtering, which effectively mitigates the system-
atic errors in the forecasts of numerical weather prediction models. 
Peng et al. [17] advanced the field further by introducing a pattern 
anomaly integral prediction correction method. Liu et al. [18] proposed 
a modified Taylor Kriging time series forecasting method, adapted for 
wind speed prediction. Fawad et al. [19] proposed a method combining 
multiparameter probability distributions with L-moment estimation, 
demonstrating its value in extreme wind speed analysis.

With the development of computational technology, machine learn-
ing has emerged as a pivotal tool in mitigating prediction biases in 
numerical models. However, wind speed data, influenced by com-
plex meteorological conditions and topographical factors, frequently 
exhibit pronounced spatiotemporal coupling characteristics and non-
stationary features. These complexities pose significant challenges for 
single-model architectures. To address these challenges, researchers 
have proposed machine learning-driven multi-model fusion predic-
tion frameworks. Comparative studies have consistently demonstrated 
that hybrid models significantly outperform single-model architectures 
in terms of prediction efficiency [20–22]. Specific advancements in 
this domain include the work of Li et al. [23], who improved wind 
speed prediction accuracy by integrating an improved Hidden Markov 
Model with Fuzzy C-Means clustering algorithms. Zhou et al. [24] 
2 
proposed a VMD-PCA-RF robust correction framework, demonstrating 
stable and high-precision prediction capabilities in annual scenarios. 
Empirical studies by Sun et al. [25] revealed that random forest and 
support vector machine models constructed using direct strategies out-
perform traditional statistical methods and numerical bias correction 
techniques. Wang et al. [26] employed random forest algorithms to 
correct wind forecasts derived from WRF products. Moreover, Yang 
et al. [27] proposed a two-stage correction prediction method for wind 
power. Zhang et al. [28] proposed a hybrid model based on VMD-WT 
and PCA-BP-RBF neural networks, achieving notable improvements in 
short-term wind speed prediction accuracy.

Deep learning, a specialized branch of machine learning, facilitates 
representation learning through multi-layer neural networks, enabling 
advanced pattern recognition and problem-solving capabilities. In re-
cent years, its exceptional nonlinear fitting and feature fusion abilities 
have led to widespread applications in meteorology. Kim et al. [29] pro-
posed a spatiotemporal neural network for prediction result correction, 
which achieves ideal correction effects. Han et al. [30] constructed a 
CUnet model to correct the wind speed and direction predictions for 
North China by the ECMWF global model. Gong et al. [31] proposed a 
hybrid model, VMD-PE-FCGRU, designed explicitly for short-term off-
shore wind speed prediction, whose prediction accuracy is significantly 
improved compared with traditional models. Xu et al. [32] constructed 
the WRF-VMD-PCA-LSTM model, which effectively enhanced multi-
step wind speed prediction performance. Luo et al. [33] proposed an 
enhanced Stacked Extreme Learning Machine method. Zhang et al. [34] 
proposed a wind speed prediction model, ST-DFNet, which exhibits 
superior predictive accuracy across various time scales.

Despite significant advancements in the two categories of correc-
tion methods, most models struggle to simultaneously balance the 
correlations among temporal, spatial, and elemental features during 
feature extraction. This limitation prevents them from comprehen-
sively capturing the intricate relationships within the data. Addition-
ally, existing models often overlook the influence of complex terrain 
on near-surface atmospheric dynamics, which plays a critical role in 
meteorological phenomena. Furthermore, feature fusion across multi-
source data remains a persistent challenge, as integrating diverse and 
relevant information from various data sources proves to be a complex 
and demanding task.

This study focuses on the region spanning 35.13◦–47◦N and 103◦–
126.88◦E, which serves as the core development zone of the national 
large-scale ‘‘Three-North’’ wind power base. It possesses abundant and 
high-density wind energy resources, holding significant strategic value 
for ensuring national energy security and supporting the ‘‘dual carbon’’ 
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Fig. 1. The geographical distribution and topographic height in China and the study area of this paper (red solid box: 35.13◦–47◦N, 103◦–126.88◦E).
transition. However, this region spans the northeastern edge of the 
Qinghai-Tibet Plateau, the Loess Plateau, the Mongolian Plateau, and 
the North China Plain, with significant differences in terrain altitude, 
encompassing various geomorphic units, including gobi deserts, moun-
tains, and river valleys. The local circulation phenomena caused by the 
complex terrain result in extremely uneven wind speed distributions 
in both time and space, posing challenges for prediction. Traditional 
numerical models and single machine learning models often fail to 
capture these intricate topographic features [35]. Therefore, addressing 
this complexity is essential for enabling accurate wind speed predic-
tions. To address the challenges mentioned above, this paper proposes 
an end-to-end framework, named MTRCL (Multi-source data fusion, 
Time-embedded ResNet with CBAM, and Time-embedded Liquid Time-
Constant Networks), leveraging multi-source data fusion to enhance 
wind speed prediction accuracy. The primary contributions of this study 
are as follows.

(1) This study proposes an innovative end-to-end framework for spa-
tiotemporal multi-source data fusion, which provides the model with a 
meteorological physical mechanism background by integrating terrain 
parameters, addressing the issue that traditional models neglect the 
influence of geographical environment factors on wind fields. Unlike 
existing methods that rely on a single data source or lack physical 
mechanism interpretability, this framework achieves a direct mapping 
from raw multi-source data to wind speed prediction, significantly 
enhancing prediction accuracy and practicality.

(2) To address the issues of traditional CNNs lacking adaptabil-
ity and temporal perception when extracting meteorological spatial 
features, this study integrates an improved channel-spatial-global three-
level attention mechanism (CBAM) and a time embedding technique 
(TE) onto ResNet, constructing the TC-ResNet module. This module 
dynamically focuses on highly relevant parameters through the atten-
tion mechanism, while the TE technique captures the periodic patterns 
of time, solving the limitation of traditional CNNs’ inability to ad-
just the importance of different meteorological parameters adaptively. 
Compared with traditional ResNet and other spatial feature extraction 
methods, this module enables synchronous capture of spatiotempo-
ral features and significantly enhances the representation of complex 
meteorological spatial features.
3 
(3) To better model the complex dynamic characteristics of wind 
speed time series, this study integrates the TE technique and meta-
learning mechanisms into Liquid Time-Constant Networks (LTCs), con-
structing the TE-LTCs module. This module introduces the Fourth-Order 
Runge–Kutta method (RK4) to ensure the stability of long sequence 
processing and to address the vanishing gradient problem in traditional 
RNNs. By fusing temporal context information via the TE technique 
and meta-learning mechanisms, while dynamically adjusting the pa-
rameters of differential equations, the model can adaptively capture 
wind speed change patterns at different time scales. Compared with 
traditional time series models such as LSTM and GRU, this module 
demonstrates significant advantages in handling nonlinear temporal 
dependencies, effectively improving prediction accuracy and stability.

The study is organized as follows: Section 2 describes the data 
and process, including an overview of data sources, preprocessing 
procedures, and the architectural design of the MTRCL model. Section 3 
presents the experimental setup and the analysis of the results, includ-
ing feature selection, model performance comparison, and the effects of 
spatial and temporal corrections. Section 4 describes the advantages of 
the MTRCL model, analyzes the limitations of this method and feasible 
future directions, and discusses the model’s computational complexity 
and training time. Finally, Section 5 concludes the study by summa-
rizing the key findings and discussing the significant implications and 
contributions of the research.

2. Data and method

2.1. Data

2.1.1. Data source
Fig.  1 illustrates the topographic map of China, with the study area 

outlined by a red solid box. This area spans latitudes 35.13◦–47◦N
and longitudes 103◦–126.88◦E, covering parts of northern China. The 
numerical model prediction data utilized in this study are sourced from 
the TIGGE (THORPEX Interactive Grand Global Ensemble) project of 
ECMWF. The dataset covers a period of 1461 days, from January 1, 
2021, to December 31, 2024. The TIGGE dataset features a horizontal 
resolution of 0.5◦ × 0.5◦ and provides forecasts twice daily, at 00:00 
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Table 1
ECMWF numerical forecast 26 meteorological factor fields.
 Number Element Abbreviation Final 

selection
 

 1 2 m dew point temperature d2m  
 2 10-m U wind component u10 Y  
 3 Convective available potential energy cape  
 4 Maximum temperature at 2 m in the last 6 

h
mx2t6  

 5 Minimum temperature at 2 m in the last 6 h mn2t6  
 6 Skin temperature skt  
 7 Snowfall water equivalent sf  
 8 Surface latent heat flux slhf  
 9 Surface net shortwave (solar) radiation ssr Y  
 10 Surface sensible heat flux sshf  
 11 Total cloud cover tcc  
 12 Total column water tcw  
 13 2-m temperature t2m  
 14 10-m V wind component v10 Y  
 15 Convective inhibition cin  
 16 Land–sea mask lsm Y  
 17 Mean sea level pressure msl Y  
 18 Orography orog Y  
 19 Snow depth water equivalent sd  
 20 Soil moisture sm Y  
 21 Soil temperature st  
 22 Sunshine duration sund  
 23 Surface net long-wave (thermal) radiation str  
 24 Surface pressure sp  
 25 Top net long-wave (thermal) radiation ttr  
 26 Total precipitation tp  

and 12:00 UTC. For this study, forecasts were initiated at 00:00 and 
12:00 UTC each day, with a focus on the 6-hour and 12-hour inter-
vals. Specifically, the forecasts correspond to 06:00, 12:00, 18:00, and 
24:00 UTC(or 00:00 UTC of the subsequent day). Consequently, the 
data sample comprises a total of 26,929,152 samples, structured as 
follows: ‘‘1461’’ represents the number of days during the research 
period (2021–2024). The second dimension, ‘‘4’’, refers to the four 
forecast times per day. The third dimension, ‘‘4608’’ represents the grid 
dimension, consisting of 48 latitude points and 96 longitude points. The 
TIGGE output includes 26 meteorological parameters (refer to Table 
1). Additionally, the zonal wind component (u10) and meridional wind 
component (v10) at 10 m above ground level are combined into a single 
variable representing the 10-meter wind speed (TIGGE_wind_speed), 
which follows the formula: 
𝑇 𝐼𝐺𝐺𝐸_𝑤𝑖𝑛𝑑_𝑠𝑝𝑒𝑒𝑑 =

√

𝑢102 + 𝑣102 (1)

As a result, the TIGGE dataset utilized for prediction contains a total of 
27 parameters.

To describe the influence of complex terrain on near-surface at-
mospheric motion, existing numerical models often rely on simplified 
parameterization schemes. However, when high-resolution geographic 
terrain data is applied in such complex terrain conditions, signifi-
cant gradient variations in parameters can easily lead to instability 
in calculating partial differential equations. Deep learning networks, 
particularly feature fusion techniques, have demonstrated effectiveness 
in addressing this issue [36]. In this study, ASTER GDEM V3 data is 
utilized, offering a spatial resolution of 1 arc-second (horizontal spacing 
of about 30 m near the equator). Four key parameters—elevation, 
relief, slope, and aspect—are incorporated to enhance the accuracy of 
terrain representation.

Due to the lack of observed data from real meteorological stations 
within the study area, this study utilizes the ERA5 hourly dataset 
on single levels, as identified through investigation. Specifically, the 
u10 and v10 components within this dataset are synthesized into 
ERA5_wind_speed to substitute for observed data. As demonstrated 
in the study by Zhang et al. [35], ERA5 data has been successfully 
employed to predict short-term hub-height wind speeds in northeastern 
4 
China, verifying the feasibility and effectiveness of ERA5 data as a sub-
stitute for observed data in wind speed prediction research. The ERA5 
dataset features a spatial resolution of 0.25◦ × 0.25◦ and a temporal 
resolution of 1 h. Provided by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), ERA5 is a global reanalysis dataset that 
has been processed and generated according to uniform standards, 
ensuring stable and high-quality data. This study also extracted five 
temporal parameters from the raw data, namely Year, Month, Day, 
Hour, and Season.

Finally, the preprocessed dataset, spanning from January 2021 to 
December 2022, served as the training set for model parameter op-
timization. This dataset included 8 parameters (TIGGE_wind_speed, 
orog, sm, v10, u10, lsm, msl, ssr) selected from 27 TIGGE meteo-
rological parameters that have the most significant correlation with 
ERA5_wind_speed. Additionally, three terrain parameters (elevation, 
relief, slope) were selected from 4 ASTER GDEM V3 terrain parameters 
that have the most significant correlation with ERA5_wind_speed, and 
5 time parameters (Year, Month, Day, Hour, Season). All parame-
ters were covered at four time points—UTC 06:00, 12:00, 18:00, and 
24:00 (UTC 00:00 of the next day)—resulting in a total of 13,455,360 
samples. The dataset for 2023, comprising the same features and to-
taling 6,727,680 samples, was utilized as the validation set to assess 
the model’s performance during training and refine hyperparameters. 
Similarly, the dataset for 2024, containing 6,746,112 samples with 
identical features, was employed as the test set to evaluate the accuracy 
of the model’s predictions in practical applications. To ensure fair 
comparison, all baseline models and comparison methods evaluated 
in this study utilized the same input features and dataset splits as 
described above.

2.1.2. Data preprocessing
A multi-step approach was employed to address missing values in 

the datasets, including ERA5_wind_speed, 27 meteorological parame-
ters from TIGGE, and the four terrain parameters of ASTER GDEM V3. 
Specifically, linear interpolation along the time dimension was applied 
to meteorological parameters [37]. The interpolation process follows 
the formula: 

𝑥(𝑡, 𝑖, 𝑗) = 𝑥(𝑡1, 𝑖, 𝑗) +
𝑥(𝑡2, 𝑖, 𝑗) − 𝑥(𝑡1, 𝑖, 𝑗)

𝑡2 − 𝑡1
⋅ (𝑡 − 𝑡1) (2)

where 𝑥(𝑡, 𝑖, 𝑗) represents the interpolation result at time 𝑡 and grid point 
(𝑖, 𝑗). 𝑥(𝑡1, 𝑖, 𝑗) and 𝑥(𝑡2, 𝑖, 𝑗) are the values of the nearest valid time 
points before and after the missing point, respectively. 𝑡1 and 𝑡2 are 
the valid time indices.

For the three data sources, linear interpolation and nearest-neighbor 
interpolation were applied in the spatial dimension, as described in 
[38]. The nearest-neighbor interpolation process follows the formula: 

𝑥(𝑡, 𝑖, 𝑗) = 𝑥(𝑡, 𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑗𝑛𝑒𝑎𝑟𝑒𝑠𝑡) (3)

where the coordinates of the nearest-neighbor point are: 
(𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑗𝑛𝑒𝑎𝑟𝑒𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑖′ ,𝑗′)∈𝑉 𝑎𝑙𝑖𝑑

√

(𝑖 − 𝑖′)2 + (𝑗 − 𝑗′)2 (4)

where 𝑉 𝑎𝑙𝑖𝑑 represents the set of all valid data points, serves as the 
foundation for filling missing values. For the remaining small number 
of missing values that could not be resolved through this method, they 
are subsequently filled using the global average value of the variable. 
This final step ensures completeness and consistency across the dataset.

Subsequently, we employed the 3𝜎 rule to process the outliers in 
all datasets. This statistically grounded approach effectively identifies 
extreme values that differ significantly from the normal distribution, 
thereby mitigating the influence of anomalous data on the model.

To ensure the consistency of the datasets in both temporal and spa-
tial dimensions, alignment procedures were applied to the
ERA5_wind_speed data and the 27 meteorological parameters from 
TIGGE. Temporal alignment was achieved by identifying the standard 
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Fig. 2. The Overall Architecture and Innovative Modules of the MTRCL Model: (a) Overview of the MTRCL framework, (b) Convolutional Block Attention Module 
(CBAM), (c) specific structure of TE in ResNet, (d) specific structure of TE in LTCs.
timestamps (06:00, 12:00, 18:00, and 24:00 UTC) shared between the 
two datasets and then filtering the data to these common time points. 
For spatial alignment, the linear interpolation was employed to inter-
polate all datasets onto a unified latitude–longitude grid, effectively 
resolving the discrepancies in spatial resolution across different data 
sources.

Finally, the maximum–minimum normalization method was em-
ployed to standardize all data, scaling it to fall within the interval [0, 
1]. The formula for the normalization is as follows: 

𝑋std =
𝑋 −𝑋min

𝑋max −𝑋min
(5)

where 𝑋 represents the original data, 𝑋min and 𝑋max are the minimum 
and maximum values in the dataset, respectively, and 𝑋std is the 
standardized data.

2.2. Method

2.2.1. Model architecture of mtrcl
Accurate wind speed prediction requires the integration of spa-

tial features while simultaneously capturing dynamic temporal varia-
tions, posing significant challenges for model design. Traditional single 
models often fail to effectively learn spatio-temporal features concur-
rently. To address this limitation, this study proposes an innovative 
end-to-end model architecture, called MTRCL (Multi-source data fu-
sion, Time-embedded ResNet with CBAM, and Time-embedded Liquid 
Time-Constant Networks).
5 
Fig.  2 illustrates the comprehensive architecture of the MTRCL 
model, including the detailed design of the Convolutional Block Atten-
tion Module (CBAM), and the implementation strategies for integrating 
temporal embedding (TE) into both the ResNet branch and the Liquid 
Time-Constant Networks (LTCs) branch.

The MTRCL model achieves high-precision wind speed prediction 
through the close collaboration of multiple components. It addresses 
the existing issues in current wind speed prediction tasks, such as 
the insufficient collaborative extraction of spatio-temporal features, the 
difficulty in eliminating the interference of complex terrain, and the 
unstable modeling of long-sequence temporal dependencies. As shown 
in Fig.  2(a), firstly, multi-source data undergoes data preprocessing and 
feature selection in sequence. Then, the core features are mapped into a 
unified tensor by the fusion layer and input into two branch modules in 
parallel. Subsequently, the TC-ResNet module extracts high-level, non-
linear spatial feature representations. It simultaneously identifies the 
geographical regions and meteorological variables most relevant to the 
prediction task at specific time points. Meanwhile, the TE-LTCs module 
is employed to model the temporal evolution process of wind speed 
time series. Finally, the model incorporates a gated fusion mechanism 
to concatenate the features extracted by the two branch modules along 
the channel dimension, forming a feature vector. A two-layer neural 
network is used to calculate the fusion weights, achieving adaptive 
feature fusion. The fused features are then processed by the Multilayer 
Perceptron (MLP) module, which maps these features through multiple 
nonlinear transformations to the final wind speed predictions.
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2.2.2. TC-ResNet
Convolutional Neural Networks (CNNs) often encounter limitations 

in feature extraction and challenges such as gradient vanishing when 
processing spatial features in wind speed prediction [39]. To address 
these challenges, this study employs the ResNet architecture [40] to 
introduce residual connections, which are mathematically expressed as 
follows: 
𝑜𝑢𝑡 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 + 𝐹 (𝑥) (6)

where 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 represents the input shortcut connection via 1 × 1 
convolution, and 𝐹 (𝑥) is the non-linear transformation of the main 
path. The TC-ResNet module consists of five convolutional layers. The 
first convolutional layer employs a 3 × 3 kernel with a stride of 1 and 
padding of 1. To ensure dimension compatibility, the shortcut connec-
tion applies a 1 × 1 convolution with a stride of 1 and no padding. 
The subsequent convolutional layers share identical configurations, 
with each employing a 3 × 3 kernel, a stride of 1, and padding of 1. 
This uniform parameterization preserves spatial resolution throughout 
the network, and the incorporation of residual connections facilitates 
robust deep feature learning.

The TC-ResNet module enhances the basic ResNet architecture by 
incorporating the channel-spatial-global (CBAM) three-level attention 
mechanism and the time embedding (TE) technique. These are specif-
ically designed to extract high-quality spatial features and enhance 
their temporal sensitivity. ResNet provides a stable foundation for deep 
feature extraction through skip connections, enabling the network to 
learn multi-level spatial representations, from local details to large-
scale meteorological field distributions. When processing the diverse, 
multi-source data in this study, this structure ensures that the model 
can deepen the network layers while maintaining a smooth information 
flow, thereby preventing the decline in learning ability caused by 
gradient issues.

Based on this, the study introduces CBAM to improve the accuracy 
and effectiveness of spatial feature extraction. The channel attention 
dynamically evaluates the importance of different meteorological and 
terrain parameters, automatically focusing on the most relevant chan-
nels for wind speed prediction. Spatial attention accurately locates 
key impact areas geographically, highlighting significant regions under 
complex terrain conditions and reducing interference from irrelevant 
areas. Global attention enhances the integration of channel and spatial 
information overall, ensuring the model captures correlations among 
multi-dimensional features comprehensively.

Simultaneously, by incorporating the TE technique, temporal pa-
rameters are encoded into high-dimensional vectors and integrated 
into convolutional operations through feature modulation. This grants 
the spatial feature extraction process the ability to perceive time, 
enabling it to identify periodic meteorological patterns across various 
time scales.

The three main components of the TC-ResNet module work together 
seamlessly as detailed in Algorithm 1. First, the TE technique dynam-
ically incorporates temporal parameters into spatial features, giving 
the model temporal awareness. Next, ResNet performs initial feature 
extraction on multi-source data, creating a foundational feature map. 
An improved CBAM then filters key features from this map across 
channel, spatial, and global dimensions.

Fig.  2(b) shows the specific structure of CBAM. The channel at-
tention mechanism evaluates feature channels through global average 
pooling to generate attention weights, and employs two 1 × 1 convo-
lutional layers with a stride of 1 and no padding. The formula is as 
follows: 
𝛼 = 𝜎(𝑊1 ⋅ 𝑅𝑒𝐿𝑈 (𝑊0 ⋅ 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥))) (𝛼 ∈ 𝑅11×1×1) (7)

where 𝑊0 is the bottleneck convolutional layer that reduces the channel 
dimension, 𝑊1 is the channel-expanding convolutional layer that maps 
back to the original channel dimension, and 𝑅𝑒𝐿𝑈 represents the 
activation function, which is used to add non-linearity.
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Algorithm 1 Time-embedded Residual Network with an improved 
CBAM
Inputs: 𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ 𝑅𝐵×11×𝐻×𝑊 : spatial features;

𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝑅𝐵×5: time features
Outputs: 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ 𝑅𝐵×56×𝐻×𝑊 : enhanced spatial features
1: for each input batch do
2:  𝐸𝑡𝑖𝑚𝑒 ← TimeEmbed(𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
3:  𝐸𝑡𝑖𝑚𝑒 ← Reshape(𝐸𝑡𝑖𝑚𝑒, [𝐵, 56, 1, 1])
// Extract initial spatial features

4:  𝐹𝑐𝑜𝑛𝑣1 ← Conv2d(𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙)
5:  𝐹𝑏𝑛1 ← BatchNorm(𝐹𝑐𝑜𝑛𝑣1) + 𝐸𝑡𝑖𝑚𝑒
6:  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ← Conv1x1(𝑋𝑠𝑝𝑎𝑡𝑖𝑎𝑙)
// Residual block construction

7:  for 𝑖 = 2 to 5 do
8:  𝐹𝑐𝑜𝑛𝑣𝑖 ← Conv2d(𝐹𝑏𝑛𝑖−1 )
9:  𝐹𝑏𝑛𝑖 ← BatchNorm(𝐹𝑐𝑜𝑛𝑣𝑖 ) + 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
10:  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ← 𝐹𝑏𝑛𝑖
11:  end for

// Apply improved CBAM attention mechanism
12:  𝛼 ← ChannelAttention(𝐹𝑏𝑛5)
13:  𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ← 𝛼 ⊙ 𝐹𝑏𝑛5
14:  𝛽 ← SpatialAttention(𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙)
15:  𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑎𝑡𝑡 ← 𝛽 ⊙ 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙
16:  𝛾 ← GlobalAttention(𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑎𝑡𝑡)
17:  𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ← 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑎𝑡𝑡 + 𝛾 ⊙ 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑎𝑡𝑡
18: end for
19: return 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙

The spatial attention mechanism captures the localized features 
through channel pooling operations to generate spatial attention
weights, employing a 7 × 7 convolutional layer with a stride of 1 and 
padding of 3. The formula is as follows: 
𝛽 = 𝜎

(

𝐶𝑜𝑛𝑣7×7
(

𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑎𝑣𝑔 , 𝐹𝑚𝑎𝑥)
))

(𝛽 ∈ 𝑅1×48×96) (8)

where 𝐹𝑎𝑣𝑔 and 𝐹𝑚𝑎𝑥 denote the average pooling and max pooling oper-
ations performed on the feature map, respectively; and 𝐶𝑜𝑛𝑣7×7 repre-
sents the convolution operation that conducts spatial feature extraction 
and dimension compression on the concatenated feature map. The 
global attention mechanism extracts a global feature vector through 
adaptive average pooling, thereby generating global weights: 
𝛾 = 𝜎(𝑊 ⋅ 𝑣𝑓𝑙𝑎𝑡𝑡𝑒𝑛) (𝛾 ∈ 𝑅11×1×1) (9)

where 𝑣𝑓𝑙𝑎𝑡𝑡𝑒𝑛 denotes the global feature vector obtained by flattening 
the feature map after adaptive average pooling, 𝑊  refers to the weight 
matrix of the fully connected layer, 𝜎 is the Sigmoid activation function 
used to generate attention weights, and 𝛾 is the generated global 
attention weight vector that adaptively reweights the original feature 
map to emphasize globally critical information. Through this multi-
level attention mechanism, CBAM enables the model to adjust feature 
weights from a global perspective dynamically. As a result, it focuses 
on the spatial features crucial for wind speed prediction, improving the 
model’s prediction ability.

To integrate Time Embedding (TE) into the ResNet architecture, five 
temporal parameters are mapped to a feature space using a three-layer 
fully connected neural network. The mathematical formulation for this 
mapping is provided below. 
𝑇𝐸(𝑡) = 𝑊4 ⋅ 𝑅𝑒𝐿𝑈 (𝑊3 ⋅ 𝑅𝑒𝐿𝑈 (𝑊2 ⋅ 𝑡)) (10)

where 𝑡 denotes the input vector of five temporal parameters; 𝑊2, 𝑊3, 
and 𝑊4 represent the weight matrices corresponding to the three fully 
connected layers in sequence; and 𝑇𝐸(𝑡) is the final time embedding 
vector, which is fused with the feature maps to incorporate temporal 
information into spatial feature learning. As shown in Fig.  2(c), this 
design enables the model to perceive the temporal dependencies of the 
data and capture the variation patterns of wind speed at different times.
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2.2.3. TE-Liquid Time-Constant Networks
In the task of wind speed prediction, traditional time series models, 

such as simple RNNs and their variants (LSTM, etc.), demonstrate a 
specific capacity to capture the dynamic characteristics of temporal 
data [41]. However, they are prone to issues such as vanishing or 
exploding gradients during the processing of long sequences. Further-
more, their ability to fuse multi-source heterogeneous data is limited, 
preventing them from fully leveraging the spatial and temporal in-
formation of the wind speed data. To address these challenges, this 
study introduces the Liquid Time-Constant Networks (LTCs) architec-
ture [42]. LTCs are designed based on continuous-time recurrent neural 
networks and model the dynamic behavior of time series using ordinary 
differential equations (ODEs). Their adaptive time constant feature 
allows the network to automatically adjust response times based on the 
input’s rate of change, making them especially effective at capturing 
nonlinear dynamic features in meteorological systems.

The TE-LTCs module combines LTCs, the time embedding (TE) tech-
nique, the Fourth-Order Runge–Kutta Method (RK4), the gating mech-
anism, and a meta-learning mechanism to deeply model the complex 
dynamic evolution of wind speed time series.

By incorporating the TE technique and RK4, this study improves 
the model’s ability to capture complex temporal patterns, especially 
in handling non-stationary wind speed sequences. The TE encodes 
multi-scale temporal parameters into vectors and integrates them into 
the LTCs’ state update process via a gating mechanism, enabling the 
model to recognize periodic meteorological patterns. RK4 ensures com-
putational stability and accuracy in solving ODEs through adaptive 
step-size numerical integration, effectively capturing complex tempo-
ral dependencies and providing a solid foundation for time series 
modeling.

Additionally, the TE-LTCs module incorporates a meta-learning 
mechanism to adjust the parameters of ODEs dynamically. By learning 
from prior knowledge of historical meteorological patterns, the model 
is provided with optimized initial parameter values, which accelerates 
the adaptation process to new meteorological conditions. Meanwhile, 
the application of a time-varying step size function further enhances 
the model’s flexibility. During periods when wind speed changes are 
relatively stable, the model can use a larger step size for calculation, 
thereby improving computational efficiency. In the event of sudden 
changes in wind speed, the model automatically reduces the step size 
to capture the nonlinear transient characteristics during these abrupt 
changes accurately.

During the actual operation, as detailed in Algorithm 2, the ba-
sic structure of LTCs is responsible for the preliminary extraction of 
temporal features and the modeling of long-term dependencies in the 
wind speed time series. The TE technique enhances the model’s per-
ception of temporal dynamics and periodicity. The gating mechanism 
enables intelligent parameter adjustment. The RK4 method ensures the 
accuracy and stability of numerical calculations. The meta-learning 
mechanism optimizes the model’s adaptability to different wind speed 
change patterns. The time-varying step size function flexibly adjusts the 
step size of the RK4 integration, ensuring that the model can accurately 
capture various temporal features of wind speed while maintaining 
computational efficiency. These components work synergistically to 
build a robust temporal modeling capability that can precisely han-
dle the nonlinear dynamic features, multi-scale periodic changes, and 
sudden meteorological disturbances in wind speed time series. This 
capability forms a spatiotemporal complementarity with the spatial 
features extracted by the TC-ResNet module, thereby improving the 
overall prediction accuracy of the model.

As shown in Fig.  2(d). Initially, the temporal embedding vector is 
processed by a multi-layer perceptron, yielding a temporal feature rep-
resentation that is isomorphic to the hidden state. Subsequently, at each 
time step, a gating mechanism is applied to dynamically integrate the 
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Algorithm 2 Time-embedded Liquid Time-Constant Networks with 
RK4 Integration
Inputs: 𝑋𝑠𝑒𝑞 ∈ 𝑅𝐵×𝑇×𝐶×𝐻×𝑊 : sequential features;

𝑇𝑠𝑒𝑞 ∈ 𝑅𝐵×𝑇×5: time features
Outputs: 𝐻𝑜𝑢𝑡 ∈ 𝑅𝐵×𝑑×𝐻×𝑊 : output temporal features
1: ℎ ← Initialize(𝐵 ×𝐻 ×𝑊 ,𝑑)
2: for 𝑡 = 1 to 𝑇  do
3:  𝑒′𝑡 ← MLP(TimeEmbed(𝑇𝑠𝑒𝑞[∶, 𝑡, ∶]))
// Compute gating mechanism and feature fusion

4:  𝑔𝑡 ← 𝜎(𝑊𝑔[𝑋𝑠𝑒𝑞[∶, 𝑡, ∶, ∶, ∶]; 𝑒′𝑡] + 𝑏𝑔)
5:  𝑓𝑡 ← 𝑔𝑡 ⊙𝑋𝑠𝑒𝑞[∶, 𝑡, ∶, ∶, ∶] + (1 − 𝑔𝑡)⊙ 𝑒′𝑡
// Generate time-adaptive parameters

6:  𝑊𝜃(𝑡), 𝑏𝜃(𝑡) ← ParamNet(𝑒′𝑡)
7:  𝛥𝑡(𝑒′𝑡) ← 𝛼 ⋅ exp(𝑤𝑇

𝛥𝑡𝑒
′
𝑡 + 𝑏𝛥𝑡) + 𝛽

// Apply RK4 integration for ODE solving
8:  𝑘1 ← ODEFunc(ℎ, 𝑓𝑡;𝑊𝜃(𝑡), 𝑏𝜃(𝑡))
9:  𝑘2 ← ODEFunc(ℎ + 0.5𝛥𝑡𝑘1, 𝑓𝑡;𝑊𝜃(𝑡), 𝑏𝜃(𝑡))
10:  𝑘3 ← ODEFunc(ℎ + 0.5𝛥𝑡𝑘2, 𝑓𝑡;𝑊𝜃(𝑡), 𝑏𝜃(𝑡))
11:  𝑘4 ← ODEFunc(ℎ + 𝛥𝑡𝑘3, 𝑓𝑡;𝑊𝜃(𝑡), 𝑏𝜃(𝑡))
12:  ℎ ← ℎ + 𝛥𝑡

6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)
13:  ℎ ← Clamp(ℎ,−100, 100)
14: end for
15: 𝐻𝑜𝑢𝑡 ← OutputLayer(ℎ)
16: return 𝐻𝑜𝑢𝑡

temporal features with the network’s hidden states. The corresponding 
formula governing this gating mechanism is provided as follows: 
𝑔𝑡 = 𝜎(𝑊𝑔[𝑥𝑡; 𝑒′𝑡] + 𝑏𝑔), 𝑓𝑡 = 𝑔𝑡 ⊙ 𝑥𝑡 + (1 − 𝑔𝑡)⊙ 𝑒′𝑡 (11)

where 𝑥𝑡 denotes the input data, while 𝑒𝑡 represents the temporal 
embedding vector. The temporal feature 𝑒′𝑡, isomorphic to the hidden 
state, is derived from 𝑒𝑡 through a transformation using a multi-layer 
perceptron. The parameters 𝑊𝑔 and 𝑏𝑔 are learnable variables within 
the gating mechanism. Furthermore, the time embedding modulates 
the differential equation parameters of LTCs through a meta-learning 
mechanism. The corresponding formula for this process is provided as 
follows: 
𝑊𝜃(𝑡), 𝑏𝜃(𝑡) = 𝑃𝑎𝑟𝑎𝑚𝑁𝑒𝑡(𝑒′𝑡) (12)

where 𝑃𝑎𝑟𝑎𝑚𝑁𝑒𝑡 represents the parameter-generating network, 𝑊𝜃(𝑡)
represents the time-varying weight matrix, and 𝑏𝜃(𝑡) represents the 
bias vector. To enhance the capacity for modeling non-stationary time 
series data, the RK4 integration step incorporates a time-varying step 
size function. The corresponding formula for the time-varying step size 
function is provided as follows: 
𝛥𝑡(𝑒′𝑡) = 𝛼 ⋅ 𝑒𝑥𝑝(𝑤𝑇

𝛥𝑡𝑒
′
𝑡 + 𝑏𝛥𝑡) + 𝛽 (13)

where 𝛼 and 𝛽 are hyperparameters, and 𝑤𝛥𝑡 and 𝑏𝛥𝑡 are learnable pa-
rameters that dynamically adjust the integration step size and direction. 
These parameters utilize temporal embedding features, enabling the 
model to capture the nonlinear characteristics of wind speed changes 
accurately.

2.2.4. Model training
During the model training phase, Bayesian optimization is employed 

to conduct a global search for hyperparameters. In comparison to 
traditional methods such as grid search and random search, Bayesian 
optimization constructs a surrogate model of the objective function, 
leveraging prior knowledge and historical evaluation results to search 
for the optimal solution of hyperparameters more efficiently. All ex-
periments were conducted on a computer equipped with an Intel Core 
i5-13600 K CPU and an NVIDIA GeForce RTX 4090 GPU with 24 GB 
VRAM. For model configuration, the input length was set to 4 time 
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Table 2
List of the search ranges for hyperparameters of each model.
 Parameters Model

 MTRCL ConvLSTM TE-LTCs ResNet TE-ResNet TC-ResNet LSTM GRU Trans 
former

XGBoost  

 Learning rate [1e−4,5e−4] [5e−5,3e−4] [5e−5,5e−4] [1e−5,1e−3] [1e−5,1e−3] [1e−5,1e−3] [5e−5,3e−4] [5e−5,3e−4] [1e−5,1e−4] [1e−2,3e−1] 
 Weight decay [1e−4,1e−2] [1e−4,1e−2] [1e−4,1e−2] [1e−4,1e−2] [1e−4,1e−2] [1e−4,1e−2] [1e−4,5e−3] [1e−4,5e−3] [1e−4,5e−3] –  
 Dropout rate [5e−2,3e−1] [2e−1,5e−1] [5e−2,3e−1] [1e−1,4e−1] [1e−1,4e−1] [1e−1,4e−1] [1e−1,6e−1] [1e−1,6e−1] [1e−1,6e−1] –  
 ResNet hidden dim {32,48,56, 

64,128}
– – {32,48,56, 

64,128}
{32,48,56, 
64,128}

{32,48,56, 
64,128}

– – – –  
 LTCs hidden dim {192,200, 

216,224}
– {192,200, 

216,224}
– – – – – – –  

 ConvLSTM hidden 
dim

– {32,64,128} – – – – – – – –  
 CBAM reduction {8,12,16, 

20,24}
– – – – {8,12,16, 

20,24}
– – – –  

 Batch size {8,16,24} {8,16,24} {8,16,24} {8,16,24} {24,28,32} {16,24,32} {4,8,16} {4,8,16} {2,4,8} –  
 Early stopping 
round

[3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] [3,8] –  
 Accumulation steps {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} –  
 LSTM hidden dim – – – – – – {64,96, 

128,160}
– – –  

 GRU hidden dim – – – – – – – {64,96, 
128,160}

– –  
 d_model – – – – – – – – {128,192, 

256,320}
–  

 nhead – – – – – – – – {4,8,16} –  
 num_layers – – – – – – {1,2,3,4} {1,2,3,4} {2,3,4,6} –  
 n_estimators – – – – – – – – – [1e2,1e3]  
 STDGN hidden dim – – – – – – – – – –

 Parameters Model

 STDGN BPNN C-ResNet  
 Learning rate [1e−4,1e−3] [1e−4,1e−3] [1e−4,1e−3]  
 Weight decay [1e−4,5e−3] [1e−4,5e−3] [1e−4,5e−3]  
 Dropout rate [1e−1,4e−1] [1e−1,4e−1] [1e−1,4e−1]  
 ResNet hidden dim – – {32,48,56,64,128} 
 LTCs hidden dim – – –  
 LSTM hidden dim – – –  
 CBAM reduction – – {8,12,16,20,24}  
 Batch size {8,16,24} {8,16,24} {8,16,24}  
 Early stopping round [3,8] [3,8] [3,8]  
 Accumulation steps {1,2,4} {1,2,4} {1,2,4}  
 LSTM hidden dim – – –  
 GRU hidden dim – – –  
 d_model – – –  
 nhead – – –  
 num_layers – – –  
 n_estimators – – –  
 STDGN hidden dim {64,96,128,160} – –  
steps, corresponding to 24 h of historical data. The prediction hori-
zon was configured as 1 time step, which equals a 6-hour advance 
prediction. The time step interval was 6 h, aligning with the four 
daily observation times (06:00, 12:00, 18:00, and 24:00 UTC). The 
specific search ranges of hyperparameters for each model are detailed 
in Table  2. After conducting 75 rounds of experiments, the optimal 
hyperparameter combinations for each model are finally determined 
and are presented in Table  3. It should be noted that, as the baseline 
model selected for this study, the Pangu model directly adopts the 
default parameter configuration publicly implemented in its paper [43]; 
while for the other comparison model, Statistical regression, due to its 
simple model structure, its core parameters are conventional settings 
recognized within the field, and thus are not listed separately. The 
AdamW optimizer is employed for parameter updates, in conjunction 
with a cosine annealing learning rate scheduler to ensure smooth 
convergence. The loss function is SmoothL1Loss. Additionally, gradient 
accumulation techniques are employed to accommodate limited video 
memory, ensuring efficient utilization of computational resources.

2.2.5. Evaluation metric
The accuracy of wind speed forecasts is assessed through a com-

prehensive set of evaluation metrics. This study employs the Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), Correlation 
Coefficient (R), Relative Root Mean Square Error (rRMSE), Relative 
Mean Absolute Error (rMAE), Mean Absolute Percentage Error (MAPE), 
and the Fraction of Absolute Error (FA), which represents the percent-
age of samples where the absolute wind speed error does not exceed 
1 m/s. These indicators collectively provide a robust framework for 
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evaluating the predictive performance of the forecasting models [44]. 
The calculation formulas for these indicators are as follows: 

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑘=1
(𝑉𝑃 ,𝑘 − 𝑉𝑀,𝑘)2 (14)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑘=1

|

|

𝑉𝑃 ,𝑘 − 𝑉𝑀,𝑘
|

|

(15)

𝑅 =

∑𝑁
𝑘=1

[

(𝑉𝑃 ,𝑘 − 𝑉𝑃 )(𝑉𝑀,𝑘 − 𝑉𝑀 )
]

√

∑𝑁
𝑘=1(𝑉𝑃 ,𝑘 − 𝑉𝑃 )2

∑𝑁
𝑘=1(𝑉𝑀,𝑘 − 𝑉𝑀 )2

(16)

𝑟𝑅𝑀𝑆𝐸 =

√

1
𝑁

∑𝑁
𝑘=1(𝑉𝑃 ,𝑘 − 𝑉𝑀,𝑘)2

(

1
𝑁

∑𝑁
𝑘=1 𝑉𝑀,𝑘

) × 100% (17)

𝑟𝑀𝐴𝐸 =
1
𝑁

∑𝑁
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× 100% (20)

In the formulas mentioned above, 𝑉𝑀  represents the measured wind 
speed, 𝑉𝑀,𝑘 represents the measured wind speed at time 𝑘 after trans-
formation, 𝑉𝑀  represents the average value of the measured wind speed 
within the assessment period after transformation, 𝑉𝑃  represents the 
predicted wind speed, 𝑉𝑃 ,𝑘 represents the predicted wind speed at time 
𝑘 after transformation, 𝑉  represents the average value of the predicted 
𝑃
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Table 3
List of the selected parameters for each model.
 Parameters Model

 MTRCL Conv 
LSTM

TE- 
LTCs

ResNet TE- 
ResNet

TC- 
ResNet

LSTM GRU Trans 
former

XG-
Boost

STDGN BPNN C- 
ResNet

 

 Learning rate 3.9e−4 2e−4 3e−4 1e−4 2e−4 4e−4 1e−4 1e−4 5e−5 0.1 5e−4 5e−4 4e−4  
 Weight decay 1e−4 1e−3 1e−4 1e−3 8e−3 1e−3 1e−3 1e−3 1e−3 – 1e−3 1e−3 1e−3  
 Dropout rate 0.25 0.4 0.2 0.3 0.3 0.3 0.4 0.4 0.4 – 0.3 0.3 0.3  
 ResNet hidden 
dim

56 – – 56 56 56 – – – – – – 56  

 LTCs hidden 
dim

216 – 216 – – – – – – – – – –  

 ConvLSTM 
hidden dim

– 64 – – – – – – – – – – –  

 CBAM 
reduction

16 – – – – 16 – – – – – – 16  

 Batch size 16 16 16 8 28 24 8 8 4 – 8 16 24  
 Early stopping 
round

5 5 5 3 5 5 5 5 5 – 5 5 5  

 Accumulation 
steps

1 1 1 1 1 1 2 2 4 – 2 1 1  

 LSTM hidden 
dim

– – – – – – 128 – – – – – –  

 GRU hidden 
dim

– – – – – – – 128 – – – – –  

 d_model – – – – – – – – 256 – – – –  
 nhead – – – – – – – – 8 – – – –  
 num_layers – – – – – – 2 2 4 – – – –  
 n_estimators – – – – – – – – – 500 – – –  
 STDGN hidden 
dim

– – – – – – – – – – 128 – –  
wind speed within the assessment period after transformation, 𝑁 refers 
to the sample size, 𝑁𝑟 represents the number of samples with an 
absolute wind-speed error no greater than 1 m/s, and 𝑁𝑓  represents 
the number of predicted samples.

3. Results

3.1. Feature selection

Feature selection methods are generally classified into three cat-
egories: filter selection, wrapper selection, and embedded selection. 
To verify the effectiveness of different feature selection methods, this 
study selected typical algorithms for each of the three categories to 
conduct comparative experiments. Among them, for filter selection, 
the Pearson correlation coefficient and mutual information methods 
were used together for screening, and ultimately, 8 meteorological 
parameters (TIGGE_wind_speed, u10, lsm, sund, sm, ssr, str, sshf) and 3 
terrain parameters (relief, slope, elevation) were selected. For wrapper 
selection, the recursive feature elimination (RFE) method was adopted, 
and all selected parameters were: TIGGE_wind_speed, mn2t6, u10, t2m, 
msl, lsm, skt, orog, slope, aspect, and relief. For embedded selection, 
the random forest algorithm was used, and all selected parameters 
were: TIGGE_wind_speed, u10, v10, lsm, sm, orog, sund, ssr, elevation, 
relief, and slope. After feature selection by different methods, dedicated 
datasets were constructed, and the performance was evaluated based on 
various indicators in the testing phase.

Categorical Boosting(CatBoost), a gradient-boosting decision tree 
model, can compute the importance scores of each feature during the 
model training process. The comparison results show (see Table  4) that 
its performance in all indicators in the final testing phase was superior 
to other feature selection methods, fully demonstrating the advantages 
of CatBoost in feature selection tasks. Similarly, Zeng et al. [44] em-
ployed the CatBoost selection method to screen key meteorological 
features in their research on short-term wind speed prediction, and 
verified the effectiveness of this method in identifying critical variables 
9 
for meteorological prediction. Building on the comparative experiment 
results of this study and research foundation, we employ the CatBoost 
algorithm to conduct feature importance assessment and selection.

Fig.  3(a) illustrates the significance of TIGGE features obtained 
through CatBoost training, highlighting several meteorological param-
eters that strongly influence wind speed. Terrain influences airflow 
speed via altitude differences, thereby affecting wind speed; variations 
in land cover roughness directly regulate near-surface wind speed [35]. 
Soil moisture changes can modify energy exchange between the sur-
face and atmosphere [45], while the level of mean sea level pressure 
determines airflow rate. Collectively, these factors impact the accuracy 
of wind speed predictions, confirming the validity of feature selection 
using the embedded CatBoost method.

To identify the optimal number of features for wind speed pre-
diction, we further analyzed the relationship between feature count 
and model performance. This analysis involved gradually increasing 
the number of features and evaluating the model using error metrics, 
specifically the RMSE and the MAE, for each subset of features. As 
illustrated in Fig.  3(b), both RMSE and MAE decrease as the number 
of features increases. Notably, when the number of meteorological 
parameters reaches eight, the error metrics plateau, indicating that 
these eight parameters sufficiently improve the ECMWF model’s predic-
tions. Beyond this threshold, the inclusion of additional features yields 
negligible improvement in model performance. Consequently, the eight 
most influential meteorological parameters were selected as the final 
feature set, ensuring an optimal balance between model complexity and 
predictive accuracy.

Fig.  4(a) illustrates the importance of the ASTER GDEM V3 ter-
rain features derived from CatBoost training. These terrain parameters 
exhibit a strong correlation with ERA5_wind_speed, highlighting their 
influence on atmospheric dynamics. As altitude increases, atmospheric 
pressure and air density decrease, leading to increased wind speeds. 
Additionally, terrain relief is closely related to wind speed. In regions 
with extensive topographic variations, such as mountainous areas, air-
flow is influenced by terrain-forced effects, resulting in complex wind 
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Table 4
Evaluation of forecast results of different feature selection methods.
 Method FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%) 
 Filter selection 80.63 0.83 0.62 23.14 17.14 0.91 20.57  
 Wrapper selection 81.38 0.82 0.61 22.94 17.01 0.92 20.41  
 Embedded selection 83.04 0.80 0.60 21.78 16.54 0.92 19.94  
 CatBoost 86.64 0.70 0.52 19.57 14.55 0.94 14.85  
Fig. 3.  Feature selection of ECMWF-TIGGE based on the CatBoost model: (a) the importance of different characteristics, (b) the MAE and RMSE between 
ERA5_wind_speed and the wind speed predicted by the MTRCL model after training with different numbers of input features.
patterns. Additionally, the slope of the terrain impacts airflow velocity; 
steep slopes tend to accelerate airflow, while gentle slopes exert a com-
paratively minor influence. These findings underscore the importance 
of terrain features in determining the magnitude and direction of wind 
speed, thereby validating the effectiveness of feature selection using the 
embedded methods within CatBoost  [46].

To determine the optimal number of terrain features for wind speed 
prediction, we utilized the same approach as for TIGGE features. As 
illustrated in Fig.  4(b), the error metrics exhibit stabilization when the 
number of terrain parameters reaches three. This finding suggests that 
three parameters—elevation, relief, and slope—significantly enhance 
the predictive accuracy of the ECMWF model. Consequently, the top 
three-ranked terrain features were selected for further analysis.

Meanwhile, to further verify the advantages of the multivariate 
wind speed prediction model proposed in this study, we also conducted 
additional comparative experiments to compare its performance with 
scenarios of univariate and single-category feature inputs. Specifically, 
we constructed four different input configurations for performance 
evaluation, namely the complete multivariate feature set (integrat-
ing all 8 meteorological parameters and 3 terrain parameters), the 
meteorological feature set (using only the 8 selected meteorological 
parameters), the terrain feature set (using only the 3 selected terrain 
parameters), and the univariate input (using only the core bench-
mark parameter TIGGE_wind_speed directly related to wind speed). 
To eliminate the interference caused by differences in model settings 
or evaluation criteria, the same prediction model and indicators were 
used for evaluation in all four groups of experiments. As shown in 
Table  5, the multivariate wind speed prediction model proposed in this 
study performed optimally in all indicators, fully demonstrating the 
advantages of multivariate fusion.

Furthermore, this study also conducted sensitivity experiments on 
the 11 selected parameters to clarify the impact of individual input 
parameters on the model’s predictive performance. We sequentially 
removed one parameter from the complete multivariate input set, used 
the remaining 10 parameters as the model input, and evaluated the 
10 
model’s performance using the same metrics in the testing phase. 
This approach was adopted to determine the variation patterns of 
prediction accuracy and error levels after removing each feature. As 
shown in Table  6, the removal of core features had the most signifi-
cant impact on the model’s performance. For instance, removing the 
TIGGE_wind_speed parameter resulted in a 25.17% decrease in FA and 
a 0.73 m/s increase in RMSE.

3.2. Model performance comparisons

The final prediction performance of the model was evaluated using 
the 2024 dataset as the test set, ensuring that it did not overlap 
with the training and validation sets. Furthermore, the model’s per-
formance was compared with that of various representative models in 
the current field, specifically including the Pangu-Weather model [43], 
Convolutional Long Short-Term Memory Network (ConvLSTM), Long 
Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU), 
Transformer, STDGN [47], Back Propagation Neural Network (BPNN), 
eXtreme Gradient Boosting (XGBoost), and traditional statistical meth-
ods (Statistical regression). The comparative prediction results of all the 
aforementioned models are presented in Table  7.

Ablation experiments were also conducted to evaluate the effective-
ness of each branch and component within the MTRCL model. In this 
study, several configurations were tested. TE-LTCs refer to introducing 
TE into the traditional LTCs architecture, ResNet denotes the traditional 
model without adding any components, TE-ResNet refers to introducing 
TE into the ResNet architecture, C-ResNet refers to introducing CBAM 
into the ResNet architecture, and TC-ResNet refers to introducing TE 
and CBAM into the ResNet architecture. As detailed in Table  7, the 
MTRCL model demonstrated significant improvements across all evalu-
ation metrics compared to alternative models. Specifically, the  MTRCL 
model achieved an FA value of 86.64%, RMSE of 0.70, MAE of 0.52, 
rRMSE of 19.57%, rMAE of 14.55%, MAPE of 14.85%, and an R-value 
of 0.94.
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Fig. 4.  Feature selection of ASTER GDEM V3 based on the CatBoost model: (a) the importance of different characteristics, (b) the MAE and RMSE between 
ERA5_wind_speed and the wind speed predicted by the MTRCL model after training with different numbers of input features.
Table 5
Evaluation of forecast results of different input feature types.
 Input feature type FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%) 
 Meteorological features 76.81 0.95 0.72 25.12 18.21 0.91 21.85  
 Terrain features 45.10 1.81 1.42 49.18 37.26 0.52 44.71  
 Univariate 70.78 1.12 0.83 29.24 21.87 0.88 24.06  
 Multivariate 86.64 0.70 0.52 19.57 14.55 0.94 14.85  
Table 6
Results of sensitivity analysis of input parameters.
 Sensitivity analysis group FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%) 
 Without TIGGE_wind_speed 61.47 1.43 1.05 39.13 28.28 0.74 33.94  
 Without orog 73.68 1.01 0.76 26.93 20.26 0.89 23.09  
 Without sm 74.94 0.98 0.74 26.13 20.14 0.90 22.45  
 Without lsm 75.22 0.96 0.73 25.66 19.76 0.91 22.07  
 Without v10 78.86 0.89 0.66 23.93 17.99 0.92 21.38  
 Without u10 77.45 0.94 0.69 25.07 18.11 0.91 21.63  
 Without ssr 81.61 0.82 0.60 22.38 16.87 0.92 20.34  
 Without msl 79.32 0.86 0.65 23.57 17.90 0.92 20.86  
 Without elevation 68.91 1.17 0.92 29.36 22.61 0.82 24.87  
 Without relief 69.04 1.15 0.87 29.34 22.55 0.83 24.81  
 Without slope 71.36 1.03 0.79 27.67 21.56 0.88 23.72  
 Full parameters 86.64 0.70 0.52 19.57 14.55 0.94 14.85  
w
p
s

To further confirm the statistical significance of the forecasting 
results, we perform Diebold–Mariano (DM) tests [48] to assess whether 
the MTRCL model shows statistically superior forecasting performance 
compared to baseline models. The DM test results across different 
seasons and the whole year are shown in Table  8. At a 1% signif-
icance level, the results reveal that the MTRCL model significantly 
outperforms all baseline models during each seasonal period and for 
the entire year. The lowest annual DM value observed is 4.77, which 
substantially exceeds the critical threshold at the 1% significance level, 
indicating notable performance differences even with the strongest 
baseline model. These DM test results provide statistical evidence that 
the MTRCL model outperforms baseline models in forecasting accuracy 
across different time periods.

Fig.  5 presents a radar chart of the performance of different models 
in key evaluation dimensions for wind energy prediction, including 
four core indicators: mean consistency, distribution consistency, sea-
sonal consistency, and high-energy capture. These indicators are all 
t

11 
calculated based on the following wind power density formula [49]: 

𝑊𝑃𝐷 = 1
2
𝜌𝑉 3 (21)

where 𝑊𝑃𝐷 is the wind power density (unit: W m−2), 𝑉  is the wind 
speed (unit: m s−1), and 𝜌 is the air density (unit: kg m−3). The wind 
speed data of each model at four time points every day (06:00, 12:00, 
18:00, and 24:00 UTC) are used for calculation.

Mean Consistency is evaluated by comparing the mean difference 
between the predicted wind energy of each model and the observed 
wind energy. Its formula is as follows: 

𝑀𝐶 = 1 −
|𝑊𝑃𝐷𝑝𝑟𝑒𝑑 −𝑊𝑃𝐷𝑜𝑏𝑠|

𝑊𝑃𝐷𝑜𝑏𝑠

(22)

here 𝑊𝑃𝐷𝑝𝑟𝑒𝑑 is the spatiotemporal average of the predicted wind 
ower density, and 𝑊𝑃𝐷𝑜𝑏𝑠 is the spatiotemporal average of the ob-
erved wind power density. Distribution Consistency is quantified by 
he KL divergence, which measures the similarity between the predicted 
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Table 7
Evaluation of forecast results of each method.
 Method FA (%) RMSE (m/s) MAE (m/s) rRMSE (%) rMAE (%) R MAPE (%) 
 ECMWF-TIGGE 68.36 1.06 0.82 29.42 22.74 0.89 27.29  
 TE-LTCs 75.05 0.96 0.72 26.66 20.10 0.91 22.11  
 ResNet 64.44 1.28 0.95 35.54 26.28 0.87 31.64  
 TE-ResNet 76.54 1.07 0.73 29.64 20.38 0.88 22.41  
 TC-ResNet 79.14 0.86 0.65 23.87 17.95 0.92 26.44  
 ConvLSTM 71.11 1.02 0.78 28.24 21.60 0.89 25.92  
 LSTM 70.29 1.11 0.82 30.95 22.68 0.89 28.28  
 GRU 77.49 0.98 0.65 27.30 18.28 0.90 25.49  
 Transformer 78.61 0.94 0.69 26.14 19.19 0.91 26.03  
 Statistical regression 74.65 1.02 0.71 28.25 20.58 0.89 25.84  
 XGBoost 81.77 0.81 0.59 21.99 15.78 0.90 19.75  
 Pangu 85.41 0.85 0.64 21.03 17.95 0.94 15.19  
 STDGN 81.16 0.82 0.62 22.01 15.83 0.90 19.79  
 BPNN 67.31 1.12 0.85 31.15 23.68 0.84 27.93  
 C-ResNet 74.51 1.01 0.72 27.98 21.56 0.89 25.86  
 MTRCL 86.64 0.70 0.52 19.57 14.55 0.94 14.85  
Table 8
The result of DM test.
 Method All year Spring Summer Autumn Winter 
 ECMWF-TIGGE 11.79* 5.62* 6.08* 5.81* 5.70*  
 TE-LTCs 6.47* 3.30* 3.32* 3.03* 3.66*  
 ResNet 14.44* 7.45* 7.04* 7.20* 7.37*  
 TE-ResNet 8.72* 4.80* 4.05* 4.28* 4.35*  
 TC-ResNet 6.70* 3.37* 3.55* 3.19* 3.47*  
 ConvLSTM 10.87* 6.11* 6.44* 5.68* 4.84*  
 LSTM 12.86* 6.55* 5.90* 6.58* 6.80*  
 GRU 6.74* 3.79* 2.67* 3.25* 3.78*  
 Transformer 9.98* 5.14* 4.95* 4.87* 5.08*  
 Statistical regression 7.44* 4.96* 5.35* 4.25* 4.25*  
 XGBoost 6.59* 3.26* 3.25* 2.59* 3.21*  
 Pangu 4.77* 2.59* 2.63* 2.35** 2.33** 
 STDGN 7.18* 4.55* 4.11* 3.87* 3.36*  
 BPNN 13.76* 7.99* 6.81* 6.64* 6.04*  
 C-ResNet 9.53* 3.62* 4.08* 3.81* 3.70*  
Note:
* 1% significance level.
** 5% significance level.

wind energy distribution and the actual distribution. Its formula is as 
follows: 
𝐷𝐶 = 1 −𝐾𝐿(𝑃𝑜𝑏𝑠 ∥ 𝑃𝑝𝑟𝑒𝑑 ) (23)

where 𝑃𝑜𝑏𝑠 and 𝑃𝑝𝑟𝑒𝑑 are the probability distributions of the observed 
and predicted wind power densities, respectively. Seasonal Consistency 
is calculated by grouping wind energy data by season to assess the 
prediction accuracy of each season. Its formula is as follows: 

𝑆𝐶 = 1
4

4
∑

𝑠=1

(

1 −
|𝑊𝑃𝐷𝑝𝑟𝑒𝑑,𝑠 −𝑊𝑃𝐷𝑜𝑏𝑠,𝑠|

𝑊𝑃𝐷𝑜𝑏𝑠,𝑠

)

(24)

where 𝑊𝑃𝐷𝑝𝑟𝑒𝑑,𝑠 and 𝑊𝑃𝐷𝑜𝑏𝑠,𝑠 are the average wind power densities 
of the predicted and observed values for the 𝑠th season. High Energy 
Capture categorizes wind energy into 7 grades based on a threshold 
and assesses the model’s predictive ability for high wind energy grade 
events. Its formula is as follows: 
𝐻𝐸𝐶 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(25)

where 𝑇𝑃  is the number of grid points where both the prediction 
and observation indicate high wind energy, and 𝐹𝑁 is the number of 
grid points where the observation indicates high wind energy but the 
prediction indicates low wind energy.

The MTRCL model significantly outperforms other benchmark mod-
els in all evaluation dimensions, especially in high energy capture and 
12 
mean consistency. In terms of distribution consistency, MTRCL achieves 
0.92, indicating that it can more accurately characterize the probability 
distribution of wind speed, providing a reliable basis for risk assessment 
and grid dispatch. Additionally, MTRCL achieves a score of 0.90 in 
seasonal consistency, significantly exceeding the 0.65 of the numerical 
weather prediction model ECMWF-TIGGE, demonstrating its superior 
ability to capture seasonal wind energy variations. Compared with 
other models with varying biases, MTRCL provides more comprehen-
sive and reliable technical support for wind energy resource assessment 
based on ERA5 wind speed data.

3.3. The result of space correction by mtrcl model

Fig.  6 illustrates the spatial distribution of evaluation indicators for 
grid points within the study area, both before and after correction. 
The difference in land–sea thermal conditions affects atmospheric cir-
culation and wind speed, making it challenging to accurately capture 
the resulting complex wind field changes. Due to this limitation, the 
ECMWF model exhibits significant prediction errors. In addition, the 
intricate terrain in coastal regions introduces effects such as wind block-
ing and acceleration, which the ECMWF model does not fully account 
for. In contrast, the MTRCL model leverages multi-source data and 
captures spatio-temporal features through an innovative architecture. 
This approach mitigates the impact of terrain-induced interference on 
wind speed predictions, thereby enhancing the model’s accuracy and 
reliability in complex environments.

The gray histograms on the left side of each subplot in Fig.  6 
represent the quantitative frequency distribution characteristics of each 
evaluation index within the study area. For the FA index, the histogram 
of the MTRCL model indicates that the false alarm rates of most grid 
points are concentrated in the lower value interval. In contrast, the 
ECMWF model exhibits a more dispersed distribution, with notably 
higher frequencies in regions characterized by elevated false alarm 
rates. Regarding RMSE and MAE indices, the histogram peaks of the 
MTRCL model are located within a narrower error range, indicat-
ing that the prediction errors are more concentrated and of lower 
magnitude. Conversely, the ECMWF model exhibits a broader error dis-
tribution, with higher frequencies in intervals corresponding to larger 
errors. For the MAPE index, the histogram of the MTRCL model shows 
that most grid points are concentrated in the lower-value interval. In 
contrast, the ECMWF model exhibits a more dispersed distribution, 
with higher frequencies in regions characterized by elevated MAPE 
values. The spatial distribution of various evaluation indicators reveals 
that the MTRCL model is markedly superior to the ECMWF model. This 
superiority is particularly evident in its ability to deliver more accurate 
and stable wind speed predictions.
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Fig. 5. Radar chart of wind energy prediction performance metrics across each model.
Fig.  7 illustrates the corrected grid wind speed forecast produced 
by the MTRCL model, alongside the grid wind speed forecast from the 
ECMWF model, and the grid wind speed data from ERA5. Generally, the 
corrected wind speed values are always lower than the forecast values 
before correction and are closer to the observed values. This indicates 
the improved accuracy and reliability of the MTRCL model in refining 
wind speed predictions.

The gray histograms on the left side of each subplot in Fig.  7 provide 
a quantitative display of the frequency distribution characteristics of 
wind speed values within the study area. The histogram corresponding 
to the MTRCL model indicates that wind speeds exhibit a relatively 
narrow distribution and a distinct peak. This suggests that the corrected 
wind speed forecasts generated by the MTRCL model exhibit strong 
consistency. In contrast, the histogram of ECMWF-TIGGE presents a 
more dispersed distribution, with relatively higher frequencies in the 
higher wind speed interval. The histogram distribution of ERA5 wind 
speed data is intermediate between the two but closer to the distribu-
tion pattern of the MTRCL model, further verifying the effectiveness of 
the MTRCL model’s correction. As shown in Fig.  7, notable variations in 
wind speed are observed across various geographical locations within 
the two datasets. This figure effectively highlights the spatial distribu-
tion of wind speed predictions, showcasing both the similarities and 
differences between the two models. It provides valuable insights into 
the geographical variability of wind speed and the associated sample-
related information, contributing to a comprehensive evaluation of the 
models’ predictive capabilities.

3.4. The result of time correction by mtrcl model

To evaluate the correction effects of different models on wind speed 
across various time dimensions, we conducted a systematic experimen-
tal analysis, which primarily involved comparisons by season, month, 
and at four specific time points each day (06:00, 12:00, 18:00, and 
24:00 UTC). Fig.  8 presents the seasonal comparisons of the predicted 
wind speeds from various models for the year 2024. Fig.  9 provides 
a comprehensive assessment of the monthly predicted wind speeds of 
each model in the year 2024. These results demonstrate that the MTRCL 
model has significant advantages over other models in wind speed 
prediction across different seasons and months.
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To demonstrate the model’s correction more effectively, Fig.  10 
presents time-series plots and scatter plots of the forecast results of the 
ECMWF model with the correction results generated by the MTRCL 
model for four specific time points each day throughout 2024. The 
time-series plots demonstrate that the corrected forecast results of the 
MTRCL model closely align with the ERA5 wind speed data, main-
taining a consistent trend of change. Additionally, the scatter plots 
indicate that the wind speeds forecasted after correction by the MTRCL 
model are more concentrated and distributed along the 1:1 diagonal 
line. In contrast, the ECMWF model exhibits relatively large wind speed 
forecast errors at various times, with notable deviations in predicting 
wind speed change trends.

4. Discussion

4.1. Advantages of the mtrcl model

Accurate short-term wind speed prediction is essential for the de-
ployment, operation, and maintenance of wind power facilities, as well 
as ensuring the safety of low-altitude aircraft. In this work, we intro-
duce an innovative end-to-end model architecture called MTRCL. The 
model constructs a dual-branch architecture that decouples and fuses 
spatiotemporal features, combining a multi-source data framework to 
demonstrate excellent capabilities in spatiotemporal collaborative mod-
eling. With an improved CBAM integrated into the TC-ResNet module, 
the model emphasizes key features relevant to wind speed prediction. 
Meanwhile, in the TE-LTCs module, its adaptive mechanism effectively 
minimizes the influence of data noise on temporal modeling, leading to 
more stable predictions.

Furthermore, the MTRCL model excels in dynamic temporal model-
ing due to the deep integration of the time embedding (TE) technique 
within the dual-branch structure. In the TC-ResNet module, TE enables 
the model to detect differences in the temporal background while 
extracting terrain and meteorological correlations, thereby preventing 
deviations that result from neglecting the temporal dimension. In the 
TE-LTCs module, TE adjusts the parameters of ODEs and the RK4 
integration step size via a gating mechanism, allowing the model 
to adaptively modulate the granularity of its forecasts according to 
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Fig. 6. Comparison of the ERA5_wind_speed in 2024 with spatial distribution maps for wind speed forecasts by the ECMWF-TIGGE model and the MTRCL model: 
(a–b) FA index difference maps, (c–d) RMSE index difference maps, (e–f) MAE index difference maps, (g–h) rRMSE index difference maps, (i–j) rMAE index 
difference maps, (k–l) R index difference maps, (m–n) MAPE index difference maps.
wind speed variations at different time scales, thereby improving the 
accuracy of capturing wind speed evolution over time.

Additionally, the MTRCL model demonstrates strong adaptability 
and robustness. In the face of the complex terrain within the study 
14 
area, which features alternating highlands, canyons, and plains, the 
model can successfully analyze the terrain dynamic phenomena that 
are difficult for NWP models to represent. At the same time, this 
adaptability and robustness extend to the temporal dimension, enabling 
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Fig. 7. Spatial distribution of the annual average wind speed in the study area in 2024: (a) the MTRCL model, (b) the ECMWF-TIGGE model, (c) the 
ERA5_wind_speed.

Fig. 8. (a–g) Seasonal comparison of wind speed forecasts in terms of FA, RMSE, MAE, rRMSE, rMAE, R, and MAPE indicators for each method in the year 2024.
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Fig. 9. (a–f) Monthly comparison of wind speed forecasts in terms of FA, RMSE, MAE, rRMSE, rMAE, R, and MAPE indicators for each method in 2024.
the model to stably cope with the dynamic changes in wind speed 
across different seasons and time periods.

4.2. Limitations and future directions

The proposed model has certain limitations, which can be addressed 
in future research. Currently, the MTRCL model mainly focuses on 
deterministic (point) wind speed prediction, providing specific wind 
speed values. However, in practical wind power generation planning 
and operation scenarios, assessing prediction uncertainty is equally 
essential. Probabilistic prediction can quantify the uncertainty of the 
prediction and provide more comprehensive information. Therefore, 
future research can explore the realization of probabilistic wind speed 
prediction. By combining methods such as confidence intervals for pre-
diction results and quantile regression, the model can provide a more 
comprehensive basis for decision-making in wind power operations.

Meanwhile, the MTRCL model may face challenges in terms of 
stability and accuracy when dealing with extreme weather events. In 
such scenarios, the proportion of sample data in the training set is 
low, leading to insufficient learning of these meteorological features 
by the model and an increased risk of prediction bias. To address this 
16 
limitation, future research could design new loss functions to enhance 
the model’s focus on extreme events, while also exploring data augmen-
tation techniques to simulate and generate sample data that conform to 
the characteristics of real extreme weather events. Additionally, when 
applying the model to other regions, scenarios, or data of different 
resolutions, fine-tuning or re-training may be necessary.

4.3. Analysis of computational complexity and training time

The computational complexity and training time of a model are 
key factors influencing its practical deployment. To comprehensively 
evaluate the computational efficiency of the proposed MTRCL model, 
we compare it with the baseline models discussed in this paper, fo-
cusing on four leading indicators: Gflops, forecast time, training time, 
and parameters. As shown in Table  9, the MTRCL model has high 
prediction accuracy but requires more computing resources. Its Gflops 
is 109, which exceeds most baselines, but its forecast time is only 19 ms. 
Regarding training time, the total training duration for the MTRCL 
model is 72 min, less than that of most baseline models. In terms 
of model size, the MTRCL model contains 1.68 M parameters, which 
is lower than several baseline models, demonstrating its parameter 
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Fig. 10. (a–h) Time-series plots and scatter plots of the prediction results of the ECMWF-TIGGE model and the MTRCL model at 06:00, 12:00, 18:00, and 24:00 
(i.e., 00:00) UTC each day in 2024.
efficiency. Overall, the MTRCL model strikes a good balance between 
computational resource needs and performance, demonstrating strong 
potential for practical deployment.

5. Conclusion

This study proposes an innovative method designed to enhance the 
accuracy of short-term wind speed predictions. The proposed model 
was evaluated using multi-source meteorological data from the study 
area from January 1, 2021, to December 31, 2024. Furthermore, com-
parative analyses involving multiple models, along with ablation stud-
ies, were conducted to evaluate the performance and robustness of the 
proposed approach. The key findings of this study are summarized as 
follows:

(1) The proposed MTRCL model adopts a dual-branch spatiotem-
poral feature fusion architecture. Specifically, the TC-ResNet module 
combines ResNet with the improved Convolutional Block Attention 
Module (CBAM) and time embedding (TE) to extract spatial features 
while enhancing sensitivity to temporal dimensions. Additionally, the 
17 
TE-LTCs module, built upon the Liquid Time-Constant networks (LTCs), 
incorporates time embedding (TE) and utilizes a gating mechanism 
alongside meta-learning to dynamically modulate the parameters of 
differential equations, thereby uncovering intricate dynamic patterns 
in time series. This innovative design offers a robust framework for 
modeling and predicting complex temporal phenomena.

(2) When compared with all the baseline models in this paper, the 
proposed MTRCL model achieved more outstanding and consistently 
stable short-term wind speed predictions. The FA, RMSE, MAE, rRMSE, 
rMAE, R, and MAPE values obtained by the proposed method were 
86.64%, 0.70, 0.52, 19.57%, 14.55%, 0.94, and 14.85%, respectively. 
These results indicate that the proposed model can reduce errors and 
more accurately capture the trends of wind speed changes.

(3) A series of ablation studies and comparative experiments were 
conducted to assess the contributions of individual components within 
the MTRCL model to its overall performance. The results demonstrate 
that incorporating the improved Convolutional Block Attention Module 
(CBAM) and the time embedding (TE) technique significantly improves 
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Table 9
Comparison of the computational complexity and training time of each method.
 Method Gflops Forecast time (ms) Training time (min) Parameters (M) 
 TC-ResNet 83 36 69 0.46  
 TE-ResNet 74 23 70 0.44  
 ResNet 68 20 51 0.43  
 ConvLSTM 101 66 104 10.80  
 TE-LTCs 81 29 64 1.02  
 LSTM 94 58 98 0.31  
 GRU 105 93 111 6.58  
 Transformer 114 108 122 18.98  
 Statistical regression 47 19 73 0.003  
 XGBoost 77 46 119 5.47  
 STDGN 78 50 85 8.82  
 BPNN 91 37 71 1.12  
 C-ResNet 79 24 80 0.45  
 MTRCL 109 19 72 1.68  
model accuracy and stability, with their combined integration yielding 
superior performance compared to variants lacking these components.

The proposed MTRCL model represents a promising advancement 
in correcting short-term wind speed forecasts. With more accurate 
wind speed forecast results, meteorological researchers and relevant 
departments can optimize meteorological service plans in advance. In 
the energy sector, wind power dispatch strategies can be adjusted ac-
cording to the forecast results, allowing for planned power output when 
the predicted wind speed is high, thereby enhancing the efficiency of 
wind energy utilization.
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