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Abstract— Blocking bugs, a type of bugs that prevents other 
bugs from being fixed, significantly increase the fixed time of 
both themself and the blocked bugs. Thus, these blocking bugs 
bring a considerable negative impact on software evolution. 
Therefore, the timely identification of blocking bugs is essential 
for software maintenance. This paper proposes an approach 
based on Binary Relevance(BR) and Logistic Regression(LR) 
analysis, called BR-LR, to predict bugs’ blocking and blocked 
labels. We first filter and build a dataset consisting of two sets 
with a specific type of blocking relationship based on the ideas 
of BR. Then, we extract several fields from the bug reports and 
train the model by applying the logistic regression analysis 
with the constructed dataset in the first step, resulting in 
two prediction models for bug blocked and blocking labels. 
Finally, our approach combines the two prediction results 
to identify whether the bug is blocking or blocked. We also 
conduct empirical studies on seven open-source projects to 
verify the effectiveness of our approach. The final experimental 
results show that our model performs better from a partially 
correct perspective and can accurately predict bug labels than 
benchmarks. Specifically, the average accuracy of our model is 
54.86%, and the average F1-measure is 50.61%.

Keywords— Blocking bugs, Prediction, Binary Relevance, 
Logistic Regression.

I. Introduction
Software bugs are prevalent at every stage of the soft-

ware life cycle. Numerous software bugs bring high costs.
Studies have shown that the cost of fixing software bugs
accounts for 50% to 80% of the cost of software system
development and maintenance [1]. Many bug tracking
systems for managing software bugs and bug reports have
been deployed to maintain the software better. Studies
indicate that Mining Software Repositories (MSR) is a
growing area of Software Engineering (SE) research [2].
Thus, exploring the features and relationships of bugs is
beneficial for optimal software maintenance by mining bug
reports.

There are multiple relationships between bugs in com-
plex software ecosystems, one of which is blocking software
bugs. Blocking bugs are software bugs that prevent other
bugs from being fixed until they have been fixed. Due
to the existence of blocking bugs, the maintenance and
repair process of the downstream software system cannot
be carried out [3]. This blocking relationship makes it
di icult for downstream developers to fix these blocked
bugs even if they have the ability and resources. To address
the harmful effects of blocking bugs, many developers have
conducted empirical research on them, seeking to predict

the existence of blocking bugs earlier. Garcia and Shihab
were the first to study blocking bugs. Their experiments
found that the repair time of blocking bugs is 15-40 days
longer than that of non-blocking bugs. In other words,
the repair time of blocking bugs is about 2-3 times that
of non-blocking bugs [3]. Their further research showed
that fixing blocking bugs requires more lines of code than
fixing non-blocking bugs [4].

Therefore, an automated forecast of whether a bug is a
blocking bug can help reduce the negative impact of this
phenomenon. Various techniques aroused for identifying
whether one bug will block another. Garcia et al. applied
random forest strategies to build a classifier for classifying
blocking bugs [3]. Later, Xia et al. constructed the EL-
Blocker approach for the identification and classification
of blocking bugs [5]. ELBlocker adopts the ensemble
learning approach to build classifiers on multiple disjoint
datasets and combine them to automatically determine
an appropriate imbalanced decision boundary to judge
whether a bug is a blocking bug. These studies show
that machine learning methods can effectively predict and
classify blocking bugs.

Previous work focused on predicting whether blocking
relationships existed between pairs of software bugs. There
is no further determination of whether a bug is a blocking
bug or a blocked bug. To better predict the relationship
of bugs, we use two kinds of relationships as two labels of
bugs. Predicting bug blocking and blocked relationships is
achieved by predicting bug labels. However, the traditional
single-label classification technology cannot achieve the
accuracy and comprehensiveness of prediction. Therefore,
we need a multi-label classification approach to help us
predict different labels of bugs. There are many new
machine learning techniques and approaches that have
been applied to multi-label classification problems [6]–[11].
The two most common solutions are problem conversion
and multi-label technology. In the work of Feng et al., the
effectiveness of multi-label and question transformation
techniques in software bug classification is empirically
investigated [12]. After conducting comparative experi-
ments in multiple projects, Binary Relevance, one of the
approaches for problem transformation, achieves excellent
results in single-label and multi-label classification. In-
spired by this, we adopt the idea of Binary Relevance
to achieve multi-label prediction of bugs. The Binary
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Relevance approach constructs independent classification
prediction models for the blocking and blocked labels of
the bugs and then combines the prediction results of all
classifiers. The final output of BR contains the prediction
results of the two labels of the bug.

In our experiments, the Logistic Regression method is
adopted as the implementation method of the BR method.
Logistic regression is a widely used tool in social statistical
analysis and data mining to explain the internal relation-
ship between a set of independent variables and dependent
variables. Basili et al. first applied it to bug prediction of
object-oriented programs [13]. Furthermore, Briand et al.
also empirically studied the Accuracy of bug prediction of
the Logistic Regression model and MARS model across
versions based on object-oriented metrics [14], [15]. In the
work of Armah et al., the Logistic Regression method
was used to improve the VVRLR algorithm for predicting
software bugs and achieved good results [16]. Inspired by
these works, we choose the Logistic Regression method
as the base method to implement the BR method for
label prediction of bugs and construct an approach named
BR-LR. Specifically, we apply the approach of Logistic
Regression to build different prediction models for the
blocked and blocking labels of bugs. First, we filter out
two types of specific bugs as a training set based on the
bug’s ’Blocks’ and ’Depends on’ fields. Subsequently, we
collected several fields from the bug report to construct
training features, including comments, cc lists, etc. Then,
we train on two specific bug sets and build models for
blocking label prediction and blocked label prediction
by the Logistic Regression method. Finally, we employ
multiple metrics to evaluate the effectiveness of our model.

We conduct an empirical study on seven large-scale
open-source projects to evaluate whether we can effec-
tively predict attribute labels for bugs. Meanwhile, six
evaluation metrics from two aspects are used to measure
the predictive performance of our approach. The main
contributions of our research are summarized as follows:

• We combine Binary Relevance and Logistic Regres-
sion method to predict bug blocking and blocked
labels.

• We use the number of ’Blocks’ and ’Depends on’ to
investigate whether the severity of blocking and being
blocked affects the model’s predictive performance.

• We conducted empirical research on seven open-
source projects. Our model was trained using bug
reports from these projects and achieved good pre-
diction results and model performance.

The rest of this paper is organized as follows. Section II
describes the dataset categories we adopted, Binary Rele-
vance method and Logistic Regression method. Section III
describes the steps and details of our approach. Section IV
shows empirical settings. Section V presents the results
of our analysis of several research questions. Section VI
shows effective threat analysis. Section VII documents

some research related to our work. Finally, Section VIII
summarizes our work and gives an outlook on future work.

II. Background and Preliminary
A. Binary Relevance Method

Our research desires to predict whether bugs will block
other bugs and whether other bugs will block them. This
goal is a multi-label prediction problem in which the
customarily used solutions are problem transformation
approaches [9] and multi-label techniques [7], [17]. These
approaches can assign multiple labels to bugs. Among
them, problem transformation approaches include Label
Powerset (LP) and Binary Relevance (BR). These two
problem transformation approaches and two multi-label
techniques are evaluated in accuracy and efficiency [12].
It is confirmed that the Binary Relevance approach has
satisfactory accuracy, and Binary Relevance is more effec-
tive than Label Powerset when the algorithm is the same.
Inspired by this, we apply Binary Relevance’s approach to
achieve multi-label prediction of bugs in our experiments.

Binary Relevance (BR) processes each label separately,
building an independent classifier for it. Then, the predic-
tions produced by the individual classifiers are combined
as the final output. In our experiments, we transformed
the multi-label classification of bugs into two binary
classification problems: does it contain blocking labels, and
does it contain blocked labels. We build training datasets
and prediction models separately for these two problems.
Finally, we combine the results of the two classifiers as
the bug label prediction result.

B. Typologies of Blocking and Blocked Bugs
There are various blocking relationships among many

software bugs. However, overly complex relations are not
conducive to our application in relational research and
training in subsequent experiments. Therefore, we select
a subset of specific types of bugs from many bugs as our
training dataset. The Fig. 1 illustrates examples of six
types of typologies among blocking relationships between
bugs within Eclipse.

Fig. 1: Typical typologies of blocking bugs within
Eclipse.
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As shown in Fig. 1, each circle represents a bug, and
the number in the circle represents the bug number in
the Eclipse Bug Manager. Arrows indicate that one bug
is blocking another. For example, the first group indicates
that Bug 41440 is blocking Bug 40145. The figure shows
a variety of existing relationship types for blocking bugs.

In the bug report, the ’Blocks’ and ’Depends on’ fields
are used to record the bugs blocked by this bug and the
bugs blocking this bug. We denote the number of bugs
in ’Blocks’ and ’Depends on’ as B and D. We will divide
specific training sets according to the size of B and D
(greater than a certain value M and N, respectively). In
the third paragraph, we describe the specific partitioning
of the training datasets.

III. Our Approach

Our work aims to provide a more efficient way to
distinguish between blocking labels, blocked labels, and
regular labels of bugs. We instantiate learning tasks with
Binary Relevance and Logistic Regression models. We
filter specific types of software bugs as the data set for
model training, which can better strengthen the charac-
teristics of the two types of bugs. Then, various feature
fields significantly related to the prediction target are
selected via correlation analysis. Subsequently, we build
prediction models separately for these two labels. Finally,
we combine the prediction results of the two models as
our final prediction result for the bug. As shown in Fig. 2,
our approach mainly includes the following stages: Dataset
Construction, Word Embedding, Correlation test and BR-
LR analysis.

Fig. 2: The framework of our approach.

Next, we will introduce the framework of our approach
in the following subsections.

Algorithm 1 Dataset Classification
Input: B(Blocks),D(Depends on)
Output: category
1: if len(B)==0 and len(D)>=N then   
2: category = ’depend-only bug’
3: else if len(B)>=M and len(D)==0 then   
4: category = ’blocking-only bug’
5: else if len(B)==0 and len(D)==0 then
6: category = ’normal bug’
7: else
8: category = ’other bugs’
9: return category

A. Dataset Construction
It is essential to clean and divide the dataset to improve

prediction accuracy, construct the model faster, achieve
lower consumption, and better interpret the model. There-
fore, we filter out bugs that satisfy the two classification
criteria to construct training data set to achieve the above
goals.

Algorithm 1 presents the partitioning criteria by which
we filter for the separate training set. We crawl numerous
bug reports from various software bug repositories and
store them in the database. In particular, two fields in
the bug report, ’Blocks’ and ’Depends on’, were utilized
to divide the former dataset. ”Blocks” records the bugs
that are blocked by this bug, and ”Depends on” records
the bugs that block this bug.

Where N and M are the numbers of blocking and
blocked bugs. In our further research, we will explore
whether the size of N and M affects the learning of features
and the accuracy of the model prediction.

B. Word Embedding
Garcia et al. summarize the critical factors for identify-

ing blocking bugs, such as the comment text, comment
size, the number of developers in the CC list of the
bug report, and the reporter’s experience [3]. Inspired
by Garcia’s work, we obtain multiple features, including
these factors, from bug reports for subsequent research
and model training. All these features can be roughly
divided into text features and numerical features. The
main content of our work is to discover the correct vector
representation for text features.

As we know, LSA, Word2Vec, GloVe, and One-Hot
Encoding are several commonly used word vector rep-
resentation approaches. For instance, Nellie et al. used
LSA, Word2Vec, and GloVe at the same time in their
experiments and compared the results of these three
approaches [18]. Experiments show that the language used
will affect the effect of the three approaches to a certain
extent, but Word2Vec can provide a better representation
of word vectors. Another encoding approach, One-Hot
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Encoding, encodes text information through random algo-
rithms. This leads to the loss of relationship information
between words. As the text content expands, the word
vector matrix it creates will become more extensive and
sparse, which will lead to matrix dimension disaster. In
contrast, Word2Vec maps each word into a shorter word
vector, which can well solve the problems caused by One-
Hot Encoding. So in our work, we adopt Word2Vec to
convert text features into word vector representations.

C. Correlation Testing
There are many bug-related features in bug reports.

According to our research content, these characteristics
can be roughly divided into three categories. Related
features. It helps predict whether the bug is a blocking
bug, which can improve the effectiveness of the regres-
sion model and improve the accuracy of the prediction
results. Irrelevant features. They do not contribute to
the prediction of blocking bugs and cannot improve the
model’s performance. Redundant features. They do not
improve the performance of the regression model or can
be derived from other features. For our experiments, we
want to obtain relevant features from all features for
model training and prediction while excluding redundant
irrelevant and redundant features. The existence of irrel-
evant features and redundant features often leads to the
problem of dimension disaster, especially when there are
text features; word vectorization of text features often
produces a large number of dimensions. Feature screening
can solve such problems to a certain extent, simplify
the model’s input, effectively reduce the time required
in the model training process, and improve the accuracy
of the subsequent prediction of the model. Therefore, we
combined the work of Garcia et al. to analyze fields in bug
reports that are more helpful for blocking bug predictions
and perform correlation analysis to screen out more helpful
fields for prediction work.

D. BR-LR Analysis
Based on the ideas of Binary Relevance and the ap-

proach of Logistic Regression, we classify the class label
to which the bug belongs. Our predictive models were
trained separately with the two labels of the bug in the
previously constructed dataset. We use the class labels of
bugs as the dependent variable in the Logistic Regression
Analysis. Then, we use the significantly correlated features
that we have done correlation analysis in the bug report as
independent variables, establish a mathematical model of
the quantitative relationship between multiple variables,
and conduct analysis and statistics through the obtained
data set. Finally, a prediction model that can complete
the classification of bug categories is constructed.

A bug might have a blocking label, a blocked label, or
just a regular bug in our experiments. To facilitate the
construction and analysis of the model, we divide it into
two parts, predicting whether the bug will block other

bugs and whether other bugs will block this bug. We
transform the multi-label problem of predicting blocking
relations and blocked relations of bugs into two binary
classification problems. Therefore, we adopt the Logistic
Regression method as the implementation approach of our
prediction model.

We employ the Logistic Regression method to construct
our predictive model. The Logistic Regression method
is a supervised learning approach and is very effective
in binary classification tasks. The Logistic Regression
method has the following advantages: 1. The Logistic
Regression method has a low computational cost and is
easy to understand and implement. 2. The calculation
amount is small, and more bug types can be predicted in
a shorter time. Therefore, we adopt the Logistic Regression
method as the implementation approach of our prediction
model.

IV. Empirical Setup
The primary goal of our work is to predict whether a

bug contains blocking labels, blocked labels, or does not
contain either kind of label by applying Binary Relevance
and Logistic Regression analysis. Therefore, we apply it
to bugs corresponding to seven open-source projects to
evaluate the effectiveness and efficiency of the proposed
model. In our empirical study, we wish to investigate the
following research questions:

RQ1: How well does the BR-LR model perform?
RQ2: Does M and N in the training set affect the model’s

predictions?
RQ3: Can the trained regression model achieve better

prediction results in other software projects?

A. Experimental Subjects
We obtain a total of 436,047 bug reports from seven

open-source projects (such as Eclipse1, Mozilla2, Net-
Beans3, Chromium4, OpenOffice5, RedHat6, Gentoo7 ).
These projects are mature and long-standing open-source
projects with numerous bug reports. Six of these projects
(i.e., Eclipse, Mozilla, NetBeans, OpenOffice, RedHat, and
Gentoo) use Bugzilla as their issue tracking system. In
Bugzilla, there is a ’Blocks’ field in the bug report, which
displays bugs blocked by this bug. A ’Depends on’ field
shows the bugs that blocked this bug. Therefore, we use
these two fields in bug reports to determine whether there
is a blocking relationship between bug pairs. In its bug
reports, Google’s issue tracking system, Chromium, also
has a ’Blocks’ field and a ’Depends on’ field. These fields
have the same semantics as the fields in Bugzilla. We use

1http://bugs.eclipse.org/bugs
2https://bugzilla.mozilla.org
3https://netbeans.apache.org
4https://bugs.chromium.org
5https://bz.apache.org/ooo
6https://bugzilla.redhat.com
7https://bugs.gentoo.org/
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these fields to determine the blocking relationship between
bug pairs.

We extracted multiple fields from each bug report,
including summary, description, reviews, CC list, etc.,
as factors we used to predict the mislabels. TABLE I
summarizes the characteristics of the seven open-source
projects used in our empirical study. There are enough
bug reports in these open-source projects containing many
types of bugs that compose the training set.

TABLE I: The statistic of three categories of bugs in
seven subjects.

Projects Depend-only Block-only Normal+other
Eclipse 6735 6128 52337
Mozilla 5832 5348 58491
NetBeans 5189 5206 48921
Chromium 8757 6039 52231
OpenOffice 6958 5541 75628
RedHat 3892 3148 27744
Gentoo 2569 3746 45607
Total 39932 35156 360959

B. Performance Measures

Our approach will employ two trained models to classify
bugs and predict whether a bug contains blocking labels
or blocked labels. We use an encoding of the form (1,0) to
record predictions about bugs. The first digit represents
whether the bug blocks other bugs, the second digit
represents whether other bugs block this bug, 1 means
yes, 0 means no. The example means that the bug is
a bug that blocks other bugs without being blocked by
other bugs. We will use the following metrics to evaluate
our model’s predictions and model performance.

1) Partially correct evaluation methods are not consid-
ered: Exact Match Ratio(MR): The Exact Match Ratio
means that the prediction is correct for each bug only when
the predicted value is precisely the same as the actual
value. It can be calculated as follows.

MR =
1

m

m∑
i=1

I
(
y(i) == ŷ(i)

)
. (1)

Where m represents the number of bugs, I() is the
indicator function. y(i) represents the true label set of the
bug, and ŷ(i) represents the predicted label set of the bug.
When the y(i) is completely equivalent to the ŷ(i), the 1 is
taken, otherwise it is the 0. It can be seen that the larger
the MR value, the higher the classification Accuracy. The
same symbols in the following formulas represent the same
meaning.

Zero-One Loss(L0−1): The Zero-One loss is calculated as
the proportion of bugs that are completely mispredicted to
the total number of bugs. It can be calculated as follows.

L0−1 =
1

m

m∑
i=1

I
(
y(i) ̸= ŷ(i)

)
. (2)

2) Consider a partially correct assessment method: It
can be seen from the above two evaluation indicators that
whether it is the Exact Match Ratio or the Zero-One
loss, both of them do not consider the partially correct
situation when calculating the result, which is inaccurate
for the evaluation of the model.

Therefore, it is advisable to take into account the
results that are partially predicted correctly [19]. To
realize this idea, the literature proposed the calculation of
Accuracy, Precision, Recall, and F1-measure in the multi-
label classification scenario [20].

Accuracy: Accuracy is calculated as the average Accu-
racy of all bugs identification. The Accuracy rate is the
proportion of the predicted correct labels for each bug in
the total predicted correct or true correct labels. It can
be calculated as follows.

Accuracy =
1

m

m∑
i=1

∣∣y(i) ∩ ŷ(i)
∣∣∣∣y(i) ∪ ŷ(i)
∣∣ (3)

Precision: Precision is calculated as the average Pre-
cision of all bugs. For each bug, the Precision rate is the
ratio of correctly predicted labels to the total number of
predicted correct labels. It can be calculated as follows.

Precision =
1

m

m∑
i=1

∣∣y(i) ∩ ŷ(i)
∣∣∣∣ŷ(i)∣∣ (4)

Recall: Recall is calculated as the average Recall of all
bugs. The Recall rate is the ratio of the number of correct
labels predicted to the total number of correct labels for
each bug. It can be calculated as follows.

Recall =
1

m

m∑
i=1

∣∣y(i) ∩ ŷ(i)
∣∣∣∣y(i)∣∣ (5)

F1-measure: The F1-measure is calculated as the
average F1-measure of all bugs. The F1-measure is the
weighted harmonic mean of Precision and Recall for each
bug. It can be calculated as follows.

F1measure =
1

m

m∑
i=1

2
∣∣y(i) ∩ ŷ(i)

∣∣∣∣y(i)∣∣+ ∣∣ŷ(i)∣∣ (6)

The higher the Accuracy, the more accurately our model
can give labels that bugs have. Again, the higher the values
of Precision and Recall, the better the performance of our
model, but these two metrics cannot be optimal at the
same time. Combining the above two metrics, a higher
F1-measure means that the model is more effective in
predicting bug labels.

C. Implementation Details
We construct different training sets by picking out bugs

that meet our requirements from numerous bugs. Subse-
quently, we extracted multiple fields, including summary,
description, comment, etc., from the bug reports for model
training. These fields are transformed into more suitable
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arrangements for machine learning by pre-processing.
Different training sets will separately train models for
different label predictions during the training process. The
models are trained iteratively to optimize the training
loss. During the testing process, input new bug reports
into multiple trained models. The corresponding models
will give the prediction results on this label (whether
the bug contains a blocking label or a blocked label).
We will combine these predictions and compute specific
calculations to calculate the overall performance metric of
the model on these labels to evaluate the performance of
our prediction model.

We tested our proposed method on a computer running
Windows 10, 64-bit, Intel(R) Core(TM) i5-9300H CPU @
2.40GHz and NVIDIA GeForce GTX 1650.

V. Result Analysis
A. Result Analysis for RQ1

We utilize Binary Relevance and Logistic Regression
method to build a predictive model named BR-LR, which
can automatically predict whether bugs contain blocking
labels or blocked labels. We hope that the new predic-
tion model constructed can help developers achieve good
results in prediction work. To this end, we performed
repeated ten-fold cross-validation on seven open-source
projects and then calculated the model’s average perfor-
mances on each evaluation metric.

TABLE II: The value of the BR-LR result on each
indicator.

Projects MR L0−1 Acc Pre Rec F1
Eclipse 0.335 0.665 0.536 0.448 0.447 0.447
Mozilla 0.316 0.684 0.589 0.496 0.514 0.505

NetBeans 0.379 0.621 0.518 0.579 0.462 0.514
Chromium 0.349 0.651 0.497 0.413 0.533 0.465
OpenOffice 0.298 0.702 0.593 0.549 0.526 0.537

RedHat 0.326 0.674 0.558 0.595 0.466 0.523
Gentoo 0.289 0.711 0.549 0.622 0.496 0.552

TABLE II shows the experimental results of the BR-
LR model we built in different open-source projects, using
multiple fields in the bug reports (for example, summary,
comment, cc list, etc.) to predict the label of the bug
(whether it contains blocking labels, whether it contains
blocked labels).

From TABLE II, it can be found that the performance
of the BR-LR model on the two indicators of MR (Ex-
act Match Ratio) and L0−1 is relatively general. This
is a perfectly correct case for evaluating the predicted
outcome. Better values are obtained only when both
labels are successfully predicted. On average, the BR-LR
model had an MR of 0.327, which means that bugs that
were accurately predicted on both labels accounted for
32.7% of all bugs. From another evaluation point of view,
considering the partial correctness, it can be seen from
the two indicators of Accuracy and F1-measure that the
BR-LR model has better performance. The Accuracy and
F1-measure of this model are 0.549 and 0.506, respectively.

By looking at each label individually, the model can get
good predictions.

Summary for RQ1:Summary for RQ1:Summary for RQ1: From a complete correctness per-
spective, our model has an MR of 32.7%, which means
that our model can predict all labels for correct
bugs completely. From the perspective of partial
correctness, our model also has better performance.
On average, our model has an F1-measure of 50.6%
and can more accurately predict each label of bugs.

B. Result Analysis for RQ2

TABLE III: The number of bugs of various types under
different M and N.

Projects N=1 N=2 N=3 M=1 M=2 M=3
Eclipse 6735 3284 1117 6128 2966 1026
Mozilla 5832 2816 967 5348 2574 870
NetBeans 5189 2495 839 5206 2603 1042
Chromium 8757 4279 1752 6039 3020 1309
OpenOffice 6958 3279 1292 5541 2891 1171
RedHat 3892 2146 879 3148 1374 532
Gentoo 2569 1285 494 3746 2003 890

We want to investigate whether the number of bugs
(M, N) that block a bug simultaneously or are blocked
by a bug at the same time affects the performance of the
model. In our assumption, larger M and N means that
the bug has more and more accurate features to represent
blocking and blocked bugs. More and more detailed
features help model learning and training in machine
learning, enabling it to get more accurate predictions.We
reconstructed the training set according to the size of M
and N (original datasets M and N are 1 by default), as
shown in TABLE III.

TABLE III Shows the size of the dataset when the
number of bugs blocking the bug and the number of bugs
blocked by the bug are greater than or equal to 1, 2,
and 3. The more the size of M and N increased, the less
the number of bugs contained in the dataset. We will
test and compare the training sets constructed by M and
N of different sizes in this problem. In this way, it can
be judged whether the size of M and N will affect the
prediction result. If there is an impact, what value can
be taken to make the indicators of the model reach the
optimal value?

As shown in Fig. 3, the F1-measure value of the
predictive model trained on the constructed datasets when
our M and N take different values. As can be seen from
the figure, when M and N are 1 and 2, there is not
much difference in the model’s prediction performance.
When the value of M and N is 3, the F1-measure value
of the model decreases significantly. We performed paired
Wilcoxon Tests on data from multiple trials for each group.
When M and N are 1 and 2, the p-value of the significance
test results is more significant than 0.05. When compared
with the value of 3, the p-value of the two is much less
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Fig. 3: The value of F1-measure of each model when M
and N take different values.

than 0.05. It can also be seen from the significance test
results that the results are better when M and N are 1
and 2, and there is no significant difference. Moreover, the
two are better than the case where M and N are 3.

Summary for RQ2:Summary for RQ2:Summary for RQ2: Our model predicts the best re-
sults when M and N are 1 and 2, respectively.
However, when M and N become more extensive,
the model’s prediction performance decreases signifi-
cantly.

C. Result Analysis for RQ3
We train a set of predictive models on datasets built

by each open-source project and perform the model
evaluation in this open-source project. However, there
are often significant differences between different open-
source projects. Can a model be trained on one project
to get better predictions on other projects? At the same
time, some projects do not have enough bugs to build a
dataset on which the model can be trained. If the training
set is too small, it is impossible to get a model that
can accurately predict whether a bug contains blocking
labels or blocked labels. How do these projects achieve
anticipation of blocking bugs? To address this type of
problem, we propose a new research question: whether the
model we build can achieve cross-project prediction. We
conduct an empirical study on the model’s cross-project
prediction performance.

We analyze and judge whether the model can achieve
cross-project prediction by comparing the prediction per-
formance of a model in this project with that in other
projects. We use several evaluation metrics when evaluat-
ing our models. Since F1-measure is the balance between
Precision and Recall, it can better represent the pros and
cons of a model. Therefore, we evaluate the cross-project
forecasting ability of the forecasting model by comparing
the F1-measure of the forecasting model. We have per-
formed multiple ten-fold cross-validation on each project

to ensure the stability and accuracy of the experimental
results.

Fig. 4: F1-measure of Eclipse project model in other
projects.

Fig. 5: F1-measure of Mozilla project model in other
projects.

These figures (Fig. 4 to Fig. 10) demonstrate the
boxplots of F1-measure when each prediction model on
the seven open-source projects we built is used for the
prediction of the other six projects. We note that each
model achieves a high F1-measure on the related project,
usually between 0.5 and 0.6. Moreover, relatively stable
results can be obtained in multiple cross-validations. The
boxplot shows that the difference between the upper and
lower edges is insignificant, with no abnormal points.
When the model is applied to other projects, the F1-
measure of the model will decrease to a certain extent,
and the overall boxplot is lower than the original project.

Moreover, the prediction effect is not as stable as in the
original project, shown in the boxplot. The gap between
the upper and lower edges is significant, and several
projects have abnormal points. For example, the model
trained by the Eclipse project is applied to the Mozilla
project. In the experiment, the overall F1-measure of
Mozilla is lower than that of Eclipse, and many outliers
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Fig. 6: F1-measure of NetBeans project model in other
projects.

Fig. 7: F1-measure of Chromium project model in other
projects.

Fig. 8: F1-measure of OpenOffice project model in other
projects.

Fig. 9: F1-measure of RedHat project model in other
projects.

Fig. 10: F1-measure of Gentoo project model in other
projects.

are generated. It shows that when the prediction model
of the Eclipse project is applied to Mozilla, the prediction
effect becomes worse and more unstable.

Summary for RQ3:Summary for RQ3:Summary for RQ3: The trained models have the best
and most stable prediction performance on their
projects, respectively. When the model is applied to
other projects, it can also predict blocking labels and
blocked labels of bugs to a certain extent accuracy.
However, their effectiveness will be weaker than the
prediction model specially trained by the project, and
the prediction effect is prone to fluctuation.

VI. Threats to Validity
This section will discuss potential threats to our re-

search’s validity, including internal validity, and external
validity.
Internal Validity. Blocking and blocked bugs tend to
occupy only a tiny part of the software life cycle compared
to other software bugs. This phenomenon is called the class
imbalance problem in classification tasks. Class imbalance
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problems often lead to biased predictions for minority
classes. We expanded the training dataset using bug
reports from seven open-source projects to address these
issues and reduce bias. In addition, we also conducted
10-fold cross-validations to reduce the randomness and
unreliability of a single experiment.
External Validity. After conducting cross-item exper-
imental comparisons, it is concluded that the model
cannot predict projects outside the training set well. This
means that already trained models are challenging to
scale. However, we conduct empirical studies on several
different open-source projects to verify the scalability of
our model by training on projects. Acceptable prediction
results are obtained on seven open-source projects, which
confirms the generality of our experiments. In the future,
we will consider using more projects and more directions
to research the validity of our experiments. This further
enhances the external validity.

VII. Related Work

A. Blocking Bug Research
Bug detection and repair are an essential part of the

software life cycle. Many researchers conducted a broad
study on software bugs. Garcia and Shihab sponsored
an earlier work about blocking bugs, a specific type of
software bug which prevent other bugs from being fixed
until they have been fixed. Blocking bugs yielded a series
of maintenance difficulties. Their empirical study on six
open-source projects discovered that fixing blocking bugs
takes about two to three times as long as fixing non-
blocking bugs [3]. Subsequently, in more empirical studies,
sets of characteristics of blocking bugs, such as number,
distribution, repair resources, etc., were found [4], [21]. For
example, in the latest work, Gar et al. found that fixing
blocking bugs involves 1.2 to 4.7 times more lines of code
than fixing non-blocking bugs [4].

The researchers also applied bug reports to design
automated approaches to do the predictive work to address
the problems caused by blocking bugs. Garcia et al.
constructed a predictive model based on a decision tree to
predict whether a bug is a blocking bug. They analyzed
various fields in the bug report. They found that the
most critical factors for blocking bug predictions consisted
of comment content (including comment content and
comment size), the number of developers in the cc list,
and the experience of the reporter [3], [4]. Taking it a
step further, Xia et al. employ ensemble learning to build
an approach called ELBlocker [5]. The approach divides
the dataset into multiple disjoint subsets, builds separate
classifiers for these subsets, and then uses ensemble
learning to combine these sub-classifiers. They conducted
empirical research across six open-source projects, and
the results showed the reliability of ELBlocker. ELBlocker
also solves the class imbalance problem of blocking bugs
to a certain extent. Following the work of Xia et al.,

Cheng et al. also adopted ensemble learning technology to
build an approach named XGBlocker, which includes two
stages of feature extraction and model construction [22].
They introduced the XGBoost advanced algorithm and
extracted enhancements from bug reports to enable the
prediction of a bug blocking relationships. Wu et al.
propose hbrPredictor, which combines interactive machine
learning and active learning for the high-impact bug report
(HBR) prediction [23]. Illuminated by Wu et al., work [23],
Chen et al. predicted whether there is a blocking relation-
ship between pairs of bugs through a hybrid deep learning
model approach. The reliability of the model is verified by
comparison with two baseline approaches [24]. Similarly,
Brown et al. introduce a framework that leverages a deep
learning model, DeepLaBB, to learn semantic features
using token vectors automatically and then applies the
features to build and train a model that predicts whether
a bug is considered blocking or non-blocking [25]. More
and more deep learning techniques are applied to blocking
bug detection.

Different from the above work, there is also some work
on specific blocking relationship research. For example,
Ren et al. studied bugs that blocked at least two bugs.
They call these bugs critical blocking bugs (CBBs) [21].
CBBs are well-studied with normal blocking bugs and
other types of bugs in terms of importance, fix time,
fix size, developer experience in fixing CBBs, and how
well CBBs block multiple bugs. Their experimental results
better illustrate the threat and importance of CBBs.

Meanwhile, Ding et al. conducted an empirical study
on the destructibility of blocking bugss [26]. Their work
expects to predict whether the blocking relationship
between bugs can be cut off, thereby alleviating the
repair pressure caused by blocking bugs. They built a
discontinuity prediction model on two large open-source
projects and achieved 78.5% and 71.7% Precision.

B. Novelty of Our Study
Illuminated by previous works, we reinforce the features

of blocking bugs and blocked bugs through screening
datasets. We incorporate the Binary Relevance approach
to transforming the blocking bug identification task into
two binary classification problems: does a bug contain
blocking labels, and does it contain blocked labels. At the
same time, we use multiple fields in the bug report to train
a regression prediction model and make predictions on the
two labels of the bug (blocking labels, blocked labels).

VIII. Conclusion
We adopt the idea of multi-label problem conversion

to realize the prediction of the two labels of ’Blocks’ and
’Depends on’ of bugs and build a prediction model named
BR-LR. Specifically, we segment a specific dataset by the
number of bugs in the ’Blocks’ and ’Depends on’ fields in
the bug reports. These two types of datasets are considered
to have enhanced features that can better enable label
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prediction. Then, we build prediction models for the two
datasets to predict this type of label. We extract multiple
fields from bug reports and analyze the correlation of
these fields. Furthermore, we apply the filtered fields to
a Logistic Regression method to construct a predictive
model. We conduct empirical research on 436,047 bug
reports across seven open-source projects. From a partially
correct perspective, the results show that our model has
good predictive performance and can better predict both
blocked and blocked labels for bugs.

We also conduct empirical studies on the number of bugs
(M and N) contained in the fields (Blocks, Depends on)
of the partitioned datasets and the cross-item predictive
ability of each predictive model. The results show that
the constructed datasets can achieve a better training
effect when M and N are 1 and 2, respectively. However,
the predictive performance of the model decreases as
the number increases. Meanwhile, when cross-item label
prediction is performed using a trained model built from
different items, the effect is weaker than when applied to
this item.

In the future, we will consider acquiring and construct-
ing datasets from a broader range of bug sources as our
research objects. Moreover, we will further consider the
approach of multi-label prediction, increase the selection
of approaches, and compare experimental results.
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