
Computers & Security 157 (2025) 104548

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full length article

HGAN4VD: Leveraging Heterogeneous Graph Attention Networks for
enhanced Vulnerability Detection
Yucheng Zhang a, Xiaolin Ju a ,∗, Xiang Chen a,b ,∗, Misbahul Amin a , Zilong Ren a
a School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
b State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, China

A R T I C L E I N F O

Keywords:
Vulnerability detection
Code features
Graph simplification
Graph Attention Network

 A B S T R A C T

Detecting vulnerabilities is crucial for mitigating inherent risks in software systems. In recent years, there
has been a significant increase in developing effective vulnerability detection approaches, many of which
leverage deep learning technologies. These methods provide notable advantages, including automated feature
extraction and the ability to train models autonomously, thereby improving the efficiency and accuracy of the
detection process. However, existing methods encounter two significant limitations. Firstly, code analysis lacks
granularity and does not fully leverage semantic and syntactic information within code structures, resulting in
suboptimal performance. Secondly, approaches based on Graph Neural Networks (GNNs) inherently struggle
to capture long-distance relationships between nodes in code structures. In this paper, we propose HGAN4VD,
a novel vulnerability detection method that utilizes heterogeneous intermediate source code representations
to address these limitations. HGAN4VD comprises two components: a heterogeneous code representation
graph, which is constructed by creating diverse code representations and simplifying the graph to reduce
node distances, and a Heterogeneous Graph Attention Network, which incorporates two attention layers to
calculate node-level and semantic-level attention. Experiments on three widely used datasets demonstrate
that HGAN4VD outperforms state-of-the-art methods by 1.5% to 7.7% in accuracy and 3.8% to 12.2% in F1
score metrics, affirming its effectiveness in learning global information for code graphs used in vulnerability
detection. Furthermore, we demonstrate the generalization capability of our method on Java and Python
datasets, suggesting its potential for broader applicability.
1. Introduction

Software vulnerabilities, known as bugs or weaknesses, present
substantial risks to confidentiality, integrity, and data availability. We
calculate the number of vulnerabilities over the past decade using data
from the National Vulnerability Database (NVD) of the United States.
As shown in Fig. 1, 37197 new Common Vulnerabilities and Exposures
(CVEs) were recorded in 2024. This represents a 28% improvement
compared to the 29066 vulnerabilities reported in 2023. For example,
Apple disclosed a critical zero-day vulnerability (CVE-2023-41064) in
ImageIO,1 affecting millions of applications. Exploited through a zero-
click method, this vulnerability enables attackers to install Pegasus
spyware without requiring any user interaction, thus posing a sig-
nificant threat. With the rapid evolution of information technology,
vulnerability detection has become critical for safeguarding the security
of software systems.

∗ Corresponding authors at: School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China.
E-mail addresses: yc.zhang@stmail.ntu.edu.cn (Y. Zhang), ju.xl@ntu.edu.cn (X. Ju), xchencs@ntu.edu.cn (X. Chen), misbahul.amin.ai@gmail.com

(M. Amin), Zilongren23@gmail.com (Z. Ren).
1 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2023-41064

Traditional vulnerability detection methods mainly rely on static
analysis (Yamaguchi et al., 2013; Du et al., 2019; Xu et al., 2017)
and dynamic analysis (Li et al., 2017) techniques to identify potential
vulnerabilities in software systems. The static analysis method relies
on predetermined rules to detect vulnerabilities, effectively identifying
vulnerabilities that conform to these established criteria. However,
they often struggle with accuracy when dealing with highly complex
code, particularly in cases of obfuscation or polymorphism, and may
generate false positives or negatives due to their reliance on predefined
patterns (Landman et al., 2017; Yamaguchi, 2017).

For languages such as C/C++, where the syntax and structure
of code are well-defined, static analysis is particularly effective in
identifying vulnerabilities. Nevertheless, its applicability to other pro-
gramming languages, such as Python or Java, may be restricted by dis-
parities in language features (e.g., dynamic typing, garbage collection).
https://doi.org/10.1016/j.cose.2025.104548
Received 7 December 2024; Received in revised form 9 April 2025; Accepted 25 M
vailable online 14 June 2025
167-4048/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
ay 2025

data mining, AI training, and similar technologies.

Y. Zhang et al.

Computers & Security 157 (2025) 104548
Fig. 1. Annual Distribution of CVEs.

Our method will be expanded to accommodate future multi-language
projects, focusing on overcoming language-specific obstacles in feature
extraction and graph construction.

Dynamic analysis method allows for real-time detection of vul-
nerabilities. However, they often have strict real-time performance
requirements and may miss vulnerabilities that do not manifest during
execution or depend on specific execution paths (Aggarwal and Jalote,
2006). A potent method for minimizing false positives and negatives
has emerged: hybrid analysis, which integrates static and dynamic
techniques. Hybrid analysis can offer a more comprehensive and pre-
cise vulnerability detection by capitalizing on the advantages of both
methodologies. Although our current methodology emphasizes static
analysis, future research will explore integrating hybrid techniques to
enhance detection accuracy.

Previous studies have attempted to overcome these limitations
through using machine learning and deep learning based methods
(Backes et al., 2009; Shankar et al., 2001; Shar et al., 2014; Li et al.,
2018; Russell et al., 2018; Li et al., 2021c; Dam et al., 2017; Wu et al.,
2022, 2017; Guo et al., 2020a; Zhao et al., 2021; Li et al., 2021b;
Tang et al., 2023b,a; Wang et al., 2023b; Tang et al., 2024). Machine
learning-based methods (Backes et al., 2009; Shankar et al., 2001; Shar
et al., 2014) learn the features of vulnerabilities using custom metrics,
often performing poorly on complex datasets. Deep learning-based
methods (Li et al., 2021a, 2018; Lin et al., 2017; Russell et al., 2018; Li
et al., 2021c; Dam et al., 2017; Wu et al., 2022, 2017; Guo et al., 2020a;
Zhao et al., 2021; Li et al., 2021b; Tang et al., 2023b,a; Wang et al.,
2023b; Tang et al., 2024) train models by automatically evaluating
metrics. Research has shown that deep learning-based methods, such
as Bi-directional Long Short-Term Memory (BiLSTM) (Li et al., 2018),
Convolutional Neural Network (CNN) (Guo et al., 2020a), Bi-directional
Gated Recurrent Unit (BiGRU) (Li et al., 2021b), Bidirectional Recur-
rent Neural Networks (BiRNN) (Li et al., 2021b), can achieve better
results in function-level vulnerability detection (Steenhoek et al., 2023;
Cao et al., 2022). These algorithms rely on sequence mining of code fea-
tures, demonstrating the feasibility of deep learning for code sequence
learning. However, they ignore the syntax and semantic information in
the code (Feng et al., 2020).

Recent research has primarily concentrated on the automatic learn-
ing of code representation, especially Graph deep learning, which
can perfectly match graph learning by representing source code as
intermediate graph structures. By parsing source code into Abstract
Syntax Trees (AST), Control Flow Graphs (CFG), and Data Flow Graphs
(DFG), complex hierarchical information in the source code can be
captured more effectively (Wang et al., 2020; Wen et al., 2023; Wang
et al., 2023a). Subsequently, widely adopted deep learning models are
employed to detect vulnerabilities based on the node tokens derived
2
from these graphs. Despite the promising results of these graph-based
deep-learning approaches, several limitations remain.

(1) Limited representation of the code. Traditional methods typ-
ically parse code into graph structures and then utilize word2vec
(Mikolov et al., 2013) to initialize node embeddings. However, these
methods primarily focus on the shallow semantics of nodes, failing to
distinguish between their semantic and syntactic information.

(2) Learning features unrelated to vulnerabilities. Function-
level vulnerability detection encompasses the entire function, offering
the advantage of capturing comprehensive vulnerability information.
However, it also introduces numerous extraneous statements unrelated
to vulnerabilities, which can lead to reduced detection accuracy.

(3) Inadequate models. Simply merging information from different
edges results in a homograph in which all edges and nodes can only
be treated as the same type, which causes the semantic and syntactic
structures of various graphs to become entangled, making it difficult
for models to distinguish between them.

To address the deficiencies above of the existing work, we propose
HGAN4VD, a new source-oriented vulnerability detection framework
based on heterogeneous graphs. The primary innovation of our method
lies in the integration of heterogeneous information and meta-paths to
construct a novel data structure, the Semantic Heterogeneous Informa-
tion Network (SHIN). This structure employs graph attention networks
to capture semantic relationships between graph nodes and their neigh-
bors. Precisely, given a code snippet, we first extract multiple code
structure graphs that contain features from different forms of code, in-
cluding Abstract Syntax Trees (AST), Data Flow Graphs (DFG), Control
Flow Graphs (CFG) and Program Dependency Graphs (PDG) (Ferrante
et al., 1987). These graphs are integrated into heterogeneous graphs
with multiple node types and edge types and then pruned according to
certain rules. The purpose of this approach is twofold: to eliminate the
influence of irrelevant factors on vulnerability detection efficiency and
to reduce the distance between non-adjacent nodes. This addresses the
long-distance dependency problem inherent in the GNN model (Zhou
et al., 2020). Then, a semantic heterogeneous information network
is constructed based on meta-paths and input into a Graph Attention
Network to predict vulnerabilities in code fragments. Thus, HGAN4VD
not only integrates rich code syntax and semantic information into a
graph representation but also establishes a comprehensive semantic
heterogeneous information network, allowing the model to understand
deeper semantic information.

We evaluated the effectiveness of HGAN4VD on three datasets,
the Devign (Zhou et al., 2019), Reveal (Chakraborty et al., 2022)
and Schmidt et al. (2007), We compared HGAN4VD with five existing
deep learning-based methods. The accuracy of HGAN4VD improved by
1.5% to 7.7%, and F1 score increased by 3.8% to 12.2%.

In summary, the main contributions of our work can be summarized
as follows:

• We propose a novel vulnerability detection framework HGAN4VD,
which employs an innovative method to obtain the fine-grained
semantic information of code. This approach constructs a seman-
tic heterogeneous information network, a multi-graph generated
based on meta-paths, by aggregating the code information of
multiple structure graphs.

• We design an encoder based on a two-layer heterogeneous graph
attention network. This method encodes heterogeneous graphs
using multi-faceted semantic contexts, enabling the generated
code representation to capture more structural, syntactic, and
semantic features of the code.

• We also implemented prototypes of HGAN4VD and evaluated its
effectiveness using three widely recognized standard datasets. The
experimental results demonstrate the efficacy of HGAN4VD in
vulnerability detection. The code is available in the published
repository.2

2 https://github.com/VDHGANcode/VDHGAN

Y. Zhang et al. Computers & Security 157 (2025) 104548
The rest of this paper is organized as follows. Section 2 provides
background on code representation in vulnerability detection and deep
learning models for vulnerability detection. Section 3 details the frame-
work and specifics of our proposed method. Section 4 shows our
empirical settings. Section 5 analyzes the findings related to the re-
search questions. Section 6 discusses key aspects of our model beyond
the main experiments, including hyper-parameter sensitivity, overfit-
ting risks, cross-language generalization, method limitations, and its
scalability and applicability. Section 7 summarizes related studies to
our work and emphasizes the novelty of our research. Finally, Section 8
summarizes our work and shows potential future directions.

2. Research background

This section mainly introduces the background of advanced tech-
nologies exploited by HGAN4VD.

2.1. Graphical representation of source code

Graphical representation of code refers to transforming source code
into visual representations that facilitate human or machine analysis,
understanding, and manipulation. In our research, we extracted the
Code Property Graph (CPG) (Yamaguchi et al., 2014) of a function, a
multiple graph containing attributes such as AST, CFG, and PDG. We
extract information on the following graph structures from CPG:

Abstract Syntax Tree (AST) (Cai et al., 2019) is an ordered tree rep-
resentation of the abstract syntax of code. In the AST, each node repre-
sents the smallest lexical unit, and each edge signifies the parent–child
relationship between nodes.

Control Flow Graph (CFG) is a graphical representation of code that
illustrates all possible paths during execution. Nodes in CFG represent
basic blocks, which can be statements or conditions. Edges in CFG
represent control flow transitions through directed connections.

Program Dependence Graph (PDG) (Ferrante et al., 1987) is a
program representation that generates data dependency relationships
and explicitly controls dependencies. It includes two types of rela-
tionships: Data Dependency (DD) and Control Dependency (CD). Data
dependency edges represent the def-use relationships, each labeled with
a variable that is defined in the source node and used in the target node.
Control dependency edges represent essential control flow relationships
between predicates and statements.

Natural Code Sequence (NCS) (Wang et al., 2020) connects all leaf
nodes of AST in natural order according to the source code’s natural
sequence. It reflects the programming logic of functions based on the
order in which code appears in the function code. This solves the
problem that information between leaf nodes in the AST cannot flow in
the graph. However, this approach may also link semantically unrelated
nodes, making the representation less ideal.

While our current implementation focuses on C/C++ code, the
graphical representations used in our method (AST, CFG, PDG, etc.)
are language-agnostic. They can be adapted to programming languages
like Java and Python. However, language-specific features (e.g., dy-
namic typing in Python or garbage collection in Java) may require
graph-construction adjustment. Future work will explore extending our
method to multi-language projects, addressing these language-specific
challenges.

Following previous studies (Wu et al., 2022; Zhou et al., 2019), we
utilize the Joern tool (Yamaguchi et al., 2014) to extract various types
of graphs and construct a heterogeneous graph with nodes representing
statements in the code. In addition, we considered the type information
of each node after parsing to enhance the graph’s node representation.
A visual example of a heterogeneous graph is shown in Fig. 2.
3
Fig. 2. Heterogeneous Graph representation of an Example Function.

2.2. Vulnerability detection based on graph

Early Machine Learning-based vulnerability detection methods used
code features as input for vulnerability detection, such as sequence
codes of different lengths (Shin and Williams, 2013; Wen et al., 2014).
Deep Learning-based methods have been proven to generate features
automatically (Guo et al., 2020b; Yu et al., 2020), so more and more
Deep Learning-based methods (Russell et al., 2018; Li et al., 2018;
Lin et al., 2019) are being applied in vulnerability detection. Due to
the ability of graph structures to effectively represent the semantic
information of code, several studies (Zhou et al., 2019; Cao et al.,
2021; Wu et al., 2021) have begun to utilizing GNN to detect vul-
nerabilities. Graph Neural Networks (GNNs) (Zhou et al., 2020) are a
class of neural networks aimed at solving graph-related tasks end-to-
end. Unlike traditional neural networks that process data in a tabular
or sequential format, GNNs can effectively capture and exploit the
relational information encoded in graph structures.

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016) are
among the earliest and most well-known types of GNNs. They extend
the concept of convolutional neural networks to graphs, enabling the
aggregation of information from neighboring nodes. The core concept
involves aggregating a node’s features with its neighbors by learn-
ing a functional map to update the node’s representation. However,
GCN primarily focuses on learning local features of nodes through
neighborhood aggregation. Therefore, when the graph structure is too
large, GCNs often struggle to capture long-range dependencies between
nodes (Fu and Tantithamthavorn, 2022).

Graph attention network (GAT) (Veličković et al., 2017) combines
the self-attention mechanism with a graph convolutional neural net-
work for the first time, by calculating the attention coefficient be-
tween nodes as the weight of neighbor information aggregation, the
importance of neighboring nodes can be distinguished. In addition,
multiple independent attention mechanisms (i.e. multi-head attention
mechanisms) are applied to calculate implicit states, and output repre-
sentations are obtained through concatenation or averaging to stabilize
the learning process.

Gated graph neural network(GGNN) (Li et al., 2015) has added a
gated recurrent unit (GRU), which takes the information of neighboring
nodes as input and the state of the nodes themselves as hidden states.
This allows the model to selectively remember the hidden information
of nodes and their neighbors, improving the long-term propagation
ability of graph structure information.

Y. Zhang et al. Computers & Security 157 (2025) 104548
2.3. Attention mechanism

Attention mechanism (Vaswani et al., 2017) is a powerful tool in
machine learning, enabling models to focus on different parts of the in-
put data selectively. There are two main types of attention mechanisms:
self-attention and multi-head attention.

Self-attention, also known as intra-attention or internal attention,
allows a model to attend to different positions of the input sequence to
compute a representation of each position. It calculates the importance
of each element in the sequence concerning the other elements, en-
abling the model to capture long-range dependencies and relationships
within the input data.

Multi-head attention extends the idea of self-attention by perform-
ing multiple attention operations in parallel. In this mechanism, the
input is transformed into multiple representations by applying differ-
ent linear projections, and self-attention is applied independently to
each of these representations. The results are then concatenated and
linearly transformed to produce the final output. Multi-head attention
allows the model to attend to different parts of the input differently,
facilitating more prosperous and diverse representations.

Attention mechanism has been widely used in various machine
learning tasks, including natural language processing (Bahdanau et al.,
2014), computer vision (Yang, 2020), and graph-based learning (Wen
et al., 2023; Wang et al., 2023a). They have demonstrated effectiveness
in capturing complex patterns and dependencies in the data, leading to
state-of-the-art performance in many applications.

2.4. Static vs. Dynamic analysis in vulnerability detection

In the context of software vulnerability detection, static and dy-
namic analyses are two widely used paradigms, each with distinct
advantages and limitations.

Static analysis techniques analyze the source code without exe-
cuting the program. These approaches are efficient and scalable for
large codebases and can detect potential vulnerabilities before software
deployment. However, static methods often suffer from false positives
due to their limited ability to reason about runtime behavior, such as
execution paths dependent on input values or runtime environments.

Dynamic analysis, in contrast, inspects the behavior of software dur-
ing execution. It is more effective at detecting vulnerabilities manifest
only at runtime, such as memory corruption, race conditions, or logic
flaws dependent on specific inputs. However, dynamic methods face
challenges such as path explosion, high performance overhead, and
incomplete coverage due to limited test cases or execution traces.

Hybrid analysis combines static and dynamic techniques to leverage
their complementary strengths. While hybrid approaches can signifi-
cantly reduce false positives and negatives, they usually have higher
implementation complexity and resource demands.

In this work, HGAN4VD primarily focuses on static analysis to
ensure scalability and efficiency in processing large-scale open-source
C/C++ codebases. By leveraging static representations like AST, CFG,
DFG, and PDG, our model captures syntactic and semantic patterns
in source code for vulnerability prediction. However, we acknowledge
that static analysis alone may miss vulnerabilities dependent on dy-
namic execution contexts. Addressing this gap is part of our planned
future research, which will explore integrating runtime and hybrid
analysis techniques to improve detection accuracy further.

3. Our approach

In this section, we introduce the detailed architecture of HGAN4VD.
As shown in Fig. 3, HGAN4VD consists of three parts: Generate Graph-
ical representation of code, Heterogeneous graph attention network
module, and Vulnerability Detection module. Next, we will provide
detailed explanations for each part.
4
3.1. Constructing heterogeneous graph

Data Preprocessing. Specifically, for a source code dataset 𝐷 =
{

𝑓1, 𝑓2,… , 𝑓𝑛
}

, we perform vulnerability detection on each function-
level code snippet 𝑓𝑖.

Graph Generation. In our study, we processed each code snippet
𝑓𝑖 in the following steps: (1) Extraction of the code structure graph,
which obtains the structural representation of the function through a
code parser. (2) The initialization encoding of nodes, which obtains
the features of each statement through a pre-trained Word2Vec model.
Currently, functional vulnerability detection methods based on deep
learning mostly use Abstract Syntax Trees(AST) as code representation.
AST is a tree representation used to describe the syntax structure of
program code. However, AST lacks program control information and
data dependency information, which can be filled by the Data Flow
Graphs(DFG) and the Control Flow Graphs(CFG). Following previous
works (Wu et al., 2022; Siow et al., 2022), all types of graphs were
extracted using the Joern tool (Yamaguchi et al., 2014).

Specifically, utilizing the Joern parsing function allows us to ex-
tract a set of nodes and edges 𝐺 = {𝑉 ,𝐸}, where each node 𝑣 =
{𝑖𝑑, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, 𝑛𝑡𝑦𝑝𝑒} ∈ 𝑉 represents a statement and records its ID,
statement, and type of that node, each edge 𝑒 = {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑒𝑡𝑦𝑝𝑒} ∈ 𝐸
records the starting node, destination node, and edge type of that
edge. Referring to the Devign’s method (Zhou et al., 2019), we stored
code statements corresponding to node attributes through dictionary
data types and recorded node types corresponding to node information
through node mapping tables, constructing a comprehensive hetero-
geneous graph that includes different node types and edge types.
Following the steps above, the graph is simplified to eliminate re-
dundant information. Subsequently, the graph is transformed into an
adjacency matrix based on the starting nodes of the edges within the
graph.

The node set 𝑉 =
{

𝑣1, 𝑣2,… , 𝑣𝑛
} contains a set of type nodes. Each

node 𝑣 ∈ 𝑉 has the attribute 𝑛𝑡𝑦𝑝𝑒 ∈ {𝑆𝑖𝑧𝑒𝑜𝑓 ,
𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟, 𝑅𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡⋯} indicating its type. According to

statistics, 69 types of 𝑛𝑡𝑦𝑝𝑒 are in the parsed node set 𝑉 . We categorize
these node types into four parent types based on their syntax. For
the type of each node, we consider parent types 𝑆𝑣 ∈ {𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟,
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 𝑂𝑡ℎ𝑒𝑟}. For each directed edge 𝑒 = (𝑠𝑟𝑐, 𝑑𝑠𝑡,
𝑒𝑡𝑦𝑝𝑒) ∈ 𝐸, it and 𝑇 𝑒 ⊂ {𝐴𝑆𝑇 , 𝐶𝐹𝐺,𝐷𝐹𝐺, 𝑃𝐷𝐺} represent the origin
of the connection from node 𝑣𝑠𝑟𝑐 to node 𝑣𝑑𝑠𝑡. Specifically, we replace
the 𝑛𝑡𝑦𝑝𝑒 of each node 𝑣 with its parent type and retain its original
𝑛𝑡𝑦𝑝𝑒 with a string 𝑆𝑣for subsequent node vectorization.

Initialize node representation. In addition to the structural in-
formation of functions, the semantic information of code statements
is also important. Since the attributes of nodes are textual represen-
tations of code, and text belongs to the character type, it cannot be
directly used as node attributes for model computation. Therefore, it is
necessary to prioritize converting textual information into node feature
vectors. Encoding statements in a function using pre-trained models
is a standard method in the programming language domain (Zhou
et al., 2019; Wen et al., 2023). We convert the statement of nodes into
quantifiable vectors and utilize them as the initial features for nodes.
Initially, HGAN4VD employs a lexical analyzer to acquire basic tokens
from the code of nodes. After obtaining the vulnerability heterogeneity
graph, considering that the cause of the vulnerability is incorrect code
logic or incomplete consideration of the impact of data before and
after, it is not significantly related to the naming of variables and
functions (Li et al., 2019). The function and variable names in the token
are mapped to the form of symbol names 𝐹𝑈𝑁𝑥 and 𝑉 𝐴𝑅𝑥, where 𝑥
represents the order in which the functions and variables appear. The
purpose of doing this is to prevent them from interfering with the initial
functionality of nodes, as different programmers defining function and
variable names can bring some text noise, and symbolic processing
can improve the ability to obtain common features of vulnerabilities.
Subsequently, HGAN4VD uses a pre-trained Word2Vec model (Mikolov

Y. Zhang et al. Computers & Security 157 (2025) 104548
Fig. 3. Overall Framework of Proposed Method HGAN4VD.
et al., 2013) to obtain the primary embedding for each node. The
corpus for the pre-trained word embedding model is constructed using
mapped tokens from all training samples, with the token dimensions
constrained to fewer than 100 to reduce computational costs. Finally, to
capture hidden information about the feature types of nodes, we encode
each type as an integer and concatenate the encoding of the node type
with the obtained node embedding as the feature representation for
the node. We represent the statement of each node as 𝑥𝑖, and the
representation of that node ℎ𝑖 = 𝑚𝑜𝑑𝑒𝑙(𝑥𝑖), where 𝑚𝑜𝑑𝑒𝑙 represents
the mathematical expression of the pre-trained model. The final node
embedding of the graph can be represented as 𝐻𝑛𝑜𝑑𝑒 = {ℎ1, ℎ2,… , ℎ𝑁}.

3.2. Simplification of heterogeneous graphs

The initial code structure graph extracted via the Joern (Yamaguchi
et al., 2014) contains a significant amount of redundant information,
increasing the number of nodes and edges. In heterogeneous graph
neural networks (HGNNs), redundant or noisy nodes and edges can
negatively impact model efficiency and accuracy. Prior studies (Liang
et al., 2022; Liu et al., 2022) have shown that excessive structural
complexity in graphs can lead to several issues: (1) increasing the
distance between semantically related nodes, making it harder for
message-passing mechanisms to capture meaningful relationships; (2)
introducing noise in message propagation, thereby diluting important
vulnerability-related patterns; and (3) unnecessarily increasing com-
putational complexity, which hinders scalability in large codebases.
To address these challenges, we designed two graph simplification
strategies, HGS1 and HGS2, to systematically reduce redundancy in
the fused heterogeneous graph while preserving critical structural and
semantic information.

Firstly, we consider merging nodes with duplicate information.
When constructing the code structure graph, Joern (Yamaguchi et al.,
2014) categorizes nodes into various types. For example, Expression-
type nodes are classified into subtypes like 𝐴𝑛𝑑𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,
𝑆𝑖𝑧𝑒𝑜𝑓𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, and 𝑜𝑡ℎ𝑒𝑟𝑠. Although this
5
approach enhances semantic information, it also increases the size of
the graph. As shown in Fig. 2, the variable ‘‘𝑖’’ appears redundantly
in the child nodes of both ‘‘int 𝑖 = 0’’ and ‘‘𝑖 = 0’’, with ‘‘int 𝑖 = 0’’
serving as the parent node for ‘‘𝑖 = 0’’. Consequently, in such cases, we
retain the node ‘‘𝑖’’ closer to the parent node and eliminate the node
‘‘𝑖’’ farther away.

Secondly, if node 𝑖 is the only parent node of node 𝑗 and their values
are the same, this will result in a longer distance between node 𝑖 and
the child nodes of node 𝑗. Since the values of nodes 𝑣 and 𝑗 are the
same, they can be merged to shorten the distance between nodes.

The simplification process is outlined in Algorithm 1 and Algorithm
2, where the simplification processing in two strategies, respectively.
For HGS1, the algorithm performs breadth-first traversal on the input
graph. Whenever two nodes 𝑣 and 𝑗 have the same value and share a
common parent node, the edges between 𝑣 and 𝑗 and node 𝑗 are deleted,
and the type of 𝑣 is changed to the parent node type(lines 10–12).
Similarly, for HGS2, when nodes 𝑣 and 𝑗 share the same value and 𝑣 is
the sole parent node of 𝑗, the two nodes are merged (lines 9–10). HGS1
removes isolated nodes and prunes weakly connected structures that
contribute minimally to vulnerability detection, ensuring that retained
subgraphs focus on relevant code semantics. HGS2 further refines the
graph by reducing edge redundancy and optimizing node connectiv-
ity, enhancing the effectiveness of subsequent graph-based learning.
Similar graph simplification techniques have been explored in recent
studies (Xu et al., 2020; Wen et al., 2023; Ba et al., 2025), demon-
strating their potential to improve model robustness and computational
efficiency in deep learning-based vulnerability detection tasks.

3.3. Meta-graph generation

In vulnerability detection, generating code structure graphs is es-
sential for capturing key structures and dependencies in source code
to identify potential security vulnerabilities. To enhance this process,
we propose meta-graph generation based on meta-paths (Wang et al.,
2019) to better represent the complexity of code structures.

Y. Zhang et al. Computers & Security 157 (2025) 104548
Algorithm 1 Heterogeneous Graph Simplification Strategy 1 (HGS1)
 Input: Original Code Structure Graphs: 𝐺 = {𝑔1, 𝑔2,⋯ , 𝑔n}
 Output: Simplified Code Structure Graphs: 𝐺1
 Function: 𝐻𝐺𝑆1
1: 𝐺1 ← ∅
2: for each 𝑔𝑖 in 𝐺 do
3: //do breadth-first traversal
4: 𝑆𝑡𝑎𝑐𝑘 ← ∅
5: Push 𝑔𝑖.𝑟𝑜𝑜𝑡 into 𝑆𝑡𝑎𝑐𝑘;
6: while 𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
7: 𝑣 ← Pop Stack
8: for 𝑗 ∈ 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9: if 𝑣.𝑣𝑎𝑙𝑢𝑒 = 𝑗.𝑣𝑎𝑙𝑢𝑒 and 𝑣.𝑡𝑦𝑝𝑒, 𝑗.𝑡𝑦𝑝𝑒 have the same parent

𝑁𝑜𝑑𝑒𝑇 𝑦𝑝𝑒 then
10: Remove edge < 𝑣, 𝑗 > from 𝑔𝑖;
11: Remove node 𝑗 from 𝑔𝑖;
12: 𝑣.𝑡𝑦𝑝𝑒 ← 𝑣.𝑡𝑦𝑝𝑒.𝑃 𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑇 𝑦𝑝𝑒
13: Push 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 into 𝑆𝑡𝑎𝑐𝑘;
14: else
15: Push 𝑗 into 𝑆𝑡𝑎𝑐𝑘;
16: end if
17: end for
18: end while
19: 𝐺1 ← 𝑔𝑖;
20: end for
21: return 𝐺1

Algorithm 2 Heterogeneous Graph Simplification Strategy 2 (HGS2)
 Input: Original Code Structure Graphs: 𝐺 = {𝑔1, 𝑔2,⋯ , 𝑔n}
 Output: Simplified Code Structure Graphs: 𝐺2
 Function: 𝐻𝐺𝑆2
1: 𝐺2 ← ∅
2: for each 𝑔𝑖 in 𝐺 do
3: 𝑆𝑡𝑎𝑐𝑘 ← ∅
4: Push 𝑔𝑖.𝑟𝑜𝑜𝑡 into 𝑆𝑡𝑎𝑐𝑘;
5: while 𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
6: 𝑣 ← Pop Stack
7: for 𝑗 ∈ 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
8: if 𝑣.𝑣𝑎𝑙𝑢𝑒 = 𝑗.𝑣𝑎𝑙𝑢𝑒 and 𝑗.𝑛𝑢𝑚_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 1 then
9: Remove edge < 𝑣, 𝑗 > from 𝑔𝑖;
10: Remove node 𝑗 from 𝑔𝑖;
11: Push 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 into 𝑆𝑡𝑎𝑐𝑘;
12: else
13: Push 𝑗 into 𝑆𝑡𝑎𝑐𝑘;
14: end if
15: end for
16: end while
17: 𝐺2 ← 𝑔𝑖;
18: end for
19: return 𝐺2

In our approach, a meta-path is defined as an ordered sequence
of different types of nodes, illustrating their semantic relationships.
A meta-path 𝜃 is a sequence in the form of 𝜃 = 𝑁1

𝑅1
←←←←←←←←←←←←→ 𝑁2

𝑅2
←←←←←←←←←←←←→

⋯
𝑅𝑛
←←←←←←←←←←←←→ 𝑁𝑛+1, where 𝑁𝑖 represents a state and 𝑅𝑖 embodies a composite

relationship between 𝑁𝑖 and 𝑁𝑖+1 (Liu et al., 2021). Therefore, the
composite relationship between 𝑁1 and 𝑁𝑖+1 can be expressed as 𝑅 =
𝑅1◦𝑅2◦⋯◦𝑅𝑖, where 𝑅 represents the composite operator of different
relationships. The meta-graph is a sub-graph pattern that describes the
relationship between a target node and contextual nodes. We construct
a meta-graph structure by defining a meta-path, such as 𝐸 → 𝐼 → 𝐸
representing a fixed semantic meta-path and 𝐸 → 𝐷 → 𝐸 representing
6
another fixed semantic meta-path, where 𝐸, 𝐼 , and 𝐷 represent three
different parent types of nodes (Expression, Identifier, Declaration). The
auxiliary node 𝐼 and 𝐷 illustrate the sharing relationship between the
target node 𝐸1 and the context node 𝐸2, where 𝐸1 and 𝐸2 represent two
types of nodes with the Expression type. Each meta-path represents a
distinct pattern of structure and dependency relationships, aiding in the
more precise capture of semantic information within the code.

We define the set of all meta-graphs generated based on meta-
paths as Semantic Heterogeneous Information Networks (SHINs). We
formally define the SHIN as follows: A Semantic Heterogeneous in-
formation network SHIN = {𝐺1, 𝐺2,… , 𝐺𝑛} is a set of meta-graphs
generated based on predefined meta-paths, where 𝑛 represents the
number of meta-paths. Each meta-graph 𝐺 = (𝑉 ,𝐸,𝐻) with node type
mapping: 𝑉 ∶ 𝑡 ↦  where 𝑉 = 𝑣1,… , 𝑣𝑁 is the set of 𝑁 nodes, 𝐸
is the set of edges,  is the set of node types, and 𝐻 ∈ R𝑁×𝐷 is the
feature matrix describing all nodes, where 𝑁 represents the number
of nodes, and 𝐷 represents the node feature dimension initialized by
the pre-trained model. A meta-graph is a sub-graph pattern describing
the relationship between a pair of target and context nodes In contrast
to existing meta-graph definitions (Wang et al., 2019), we explicitly
specify four parent types of nodes to connect auxiliary nodes, and on
this basis, up to 12 meta-paths (EDE, ECE, EOE, etc.) can be formed.

Unlike traditional GNN-based methods that primarily focus on local
node information, meta-paths enable the capture of higher-order rela-
tionships between nodes. A meta-graph generated by the meta-path of
length 2 can account for multiple node relationships to capture rela-
tionships between more distant nodes. This enables the deep learning
model to capture more complex, higher-order relationships, thereby
improving the performance of vulnerability detection tasks. Further-
more, using custom meta-paths provides scalability and adaptability,
making them suitable for large graphs by focusing on specific, user-
defined node relationships. By employing meta-path rules of length 2,
we mitigate the vanishing gradient problem, improve the structural
integrity of the graph, and reduce computational costs compared to
methods that consider all possible paths within the graph.

3.4. Heterogeneous graph convolution module

For the heterogeneous graph representation SHIN of each code
snippet, we introduce a graph neural network with two attention layers
to learn the semantic and structural information of the code from
SHIN. Firstly, there is a node-level attention layer where nodes in each
meta-graph aggregate information from their neighboring nodes along
the edges and utilize it to update the feature representation of nodes.
HGAN4VD performs the node learning process based on meta-graphs
extracted under different meta-paths. Subsequently, a vector attention-
weighted aggregation is conducted on the vectors aggregated from each
meta-path, followed by a downstream propagation.

We represent the initial representation of node 𝑉𝑖 in meta-graph
𝐺𝑟 as ℎ0𝑖,𝑟. Therefore, the representation of node 𝑉𝑖 in 𝑡 state is ℎ𝑡𝑖,𝑟,
while ℎ𝑡+1𝑖,𝑟 represents the process of clustering along the edges in the
meta-graph 𝐺𝑟 in 𝑡 + 1 state.

ℎ𝑡+1𝑖,𝑟 = aggregator
(

ℎ𝑡𝑗,𝑟
)

,∀𝜈𝑗 ∈ 𝑁𝑖,𝑟 (1)

where 𝑁𝑖,𝑟 refers to the neighbors of node 𝑣𝑖 in meta-graph 𝐺𝑟.
Node-level Attention layer. Given a meta-path, each node is as-

sociated with multiple neighbors determined by the meta-path. Dis-
tinguishing the differences among these neighbors and selecting the
most informative ones is a challenge. Node-level attention measures the
importance of these neighbors and allocates different levels of attention
to them.

In updating the feature representation of nodes in each meta-graph,
we employs attention mechanisms to distinguish the influence of neigh-
boring nodes. Precisely, the correlation coefficient 𝑒 is first calculated

Y. Zhang et al. Computers & Security 157 (2025) 104548
between the nodes in graph 𝐺 and their immediate neighbors. Sub-
sequently, the attention coefficient 𝑎𝑖 is computed for each neighbor
relative to target node 𝑣𝑖.

𝑒𝑟𝑖,𝑗 = 𝑚
([

𝑊 ℎ𝑡𝑖,𝑟
‖

‖

‖

𝑊 ℎ𝑡𝑗,𝑟
])

, 𝑗 ∈ 𝑁𝑖,𝑟 , (2)

𝑎𝑟i,j = sof tmaxj
(

e𝑟i,j
)

=
exp

(

𝜎
(

𝐚T𝑟 ⋅
[

𝐡′i ∥ 𝐡′j
]))

∑

k∈ 𝑟
i
exp

(

𝜎
(

𝐚T𝑟 ⋅ [𝐡′i ∥ 𝐡′k]
)) , (3)

where 𝑚 represents the transformation matrix operation, which can
map different types of node features to the same feature space, ∥
represent cascading operation, 𝜎(⋅) represents the activation function,
𝑒𝑟𝑖,𝑗 represents the importance of node 𝑣𝑗 to node 𝑣𝑖 in the meta-graph
𝑟.

After obtaining the attention coefficients, a linear transformation is
applied to the initial node representations, and the node representations
are then updated by combining the attention coefficients. Given the
scale-free properties of heterogeneous graphs, the graph data exhibits
significant variability. To improve the stability of the training process,
we extend node-level attention to multi-head attention.

ℎ𝑡+1𝑖,𝑟 =∥𝐾𝑘=1 𝜎

(

∑

𝑗∈𝑁𝑖,𝑟

𝑎𝑟
𝑘
𝑖𝑗 𝑊

𝑘ℎ𝑡𝑗,𝑟

)

, (4)

where 𝑎𝑘𝑖,𝑗 denotes the 𝑘th head of 𝑁𝑖,𝑟. 𝑊 𝑘 corresponds to the 𝑘th head
of 𝑊 , ∥𝐾𝑘=1 represents the concatenation of results from 𝐾 different
attention heads.

Semantic-level Attention layer. In heterogeneous graphs, different
meta-paths convey distinct semantic information. The primary chal-
lenge lies in selecting the most meaningful meta-paths and integrating
these diverse semantic details. To address this, semantic-level attention
is employed to evaluate the significance of various meta-paths and
assign appropriate attention weights to each. The weight of each meta-
path is computed by first applying a non-linear transformation to the
node-level embeddings, followed by calculating the weight using the
formula provided.

wr =
1
|V|

∑

i∈V
qT ⋅ tanh

(

W ⋅ hi,r + b
)

, (5)

where 𝑉 represents the set of all nodes, and 𝑞, 𝑊 , and 𝑏 are train-
able model parameters. Softmax normalization is applied to the above
results as semantic-level attention. After obtaining the weight coef-
ficients, all node-level embeddings can be fused to obtain the final
embedding ℎ𝑟𝑖 .

𝛽𝑟 =
exp

(

w𝑟
)

∑𝑅
𝑘=1 exp

(

w𝑘
)
, (6)

ℎ′𝑖 =
𝑅
∑

𝑟=1
𝛽𝑟 ⋅ ℎ𝑖,𝑟, (7)

where 𝛽𝑟 represents the weight of the generated meta-graph 𝐺𝑟 under
the meta-path 𝑟, 𝑅 represents the number of meta-paths. A more sig-
nificant value of 𝛽𝑟 indicates a higher importance of the corresponding
meta-path.

Classifier layer. In this stage, HGAN4VD extracts node features
from the graph to obtain a feature representation of the function.
Each node in the graph represents a basic block that encapsulates
syntactic and semantic information. Therefore, HGAN4VD retrieves the
function’s feature by computing the average of all nodes’ features in the
graph.

𝐻 = 1
|𝑉 |

∑

𝑖∈𝑉
ℎ′𝑖 , (8)

where 𝐻 represents the feature representation of the sample function.
HGAN4VD conducts graph-level classification to ascertain the vul-

nerability of a function. It accepts the function’s feature representation
as input and teaches a classifier to indicate whether the function is
7
vulnerable. The classifier extracts additional abstract features at the
function level by utilizing a linear transformation on the feature rep-
resentation. To improve the extraction of function-level features, the
proposed approach uses a multilayer perceptron (MLP) and applies the
sigmoid function for classification.

𝑦 = Sigmod(MLP(𝐻)), (9)

where 𝑦 is the final binary classification result of two dimensions.
The first dimension represents the probability of non-vulnerability in
the result, and the second represents the probability of vulnerability.
Finally, the model takes the higher probability of both as the final
output of vulnerability classification.

4. Experimental setup

This section provides a comprehensive examination of the evalu-
ation process for HGAN4VD. The evaluation is structured to ensure
a thorough and transparent analysis of the tool’s performance and
contributions to the field. Firstly, we outlined the research questions
along with their underlying motivation. Next, we introduce the dataset
used in the experiment and outline the data preprocessing steps. Sub-
sequently, we describe the latest state-of-the-art baseline methods and
compare their performance against our proposed model. Finally, we
present a comprehensive overview of the experimental setup used for
the evaluation. This includes a detailed description of the hardware and
software configurations, parameter settings, evaluation metrics, and
any other relevant experimental details.

4.1. Research questions

Our empirical study aims to answer the following research ques-
tions.

• RQ1: How efficient is our proposed method, HGAN4VD, in
detecting vulnerabilities?
This research question aims to assess the performance of
HGAN4VD by conducting a comparative analysis against five
baseline methods.

• RQ2: How does each module contribute to the performance
of HGAN4VD?
We proposed two graph simplification algorithms, HGS1 and
HGS2, to eliminate redundant nodes from code structure graphs.
In addition, we effectively capture semantic and syntactic in-
formation in heterogeneous graphs using a two-layer attention
network (HGAN). Therefore, the research question was raised to
investigate the impact of the graph simplification module and
HGAN module on the performance of HGAN4VD.

• RQ3: How does the selection of different meta-paths influ-
ence the performance of HGAN4VD?
The choice of meta-paths plays a crucial role in shaping the
performance of HGAN4VD, as they define the semantic relation-
ships captured within the heterogeneous graph representation
of the code. Therefore, this research question set out to assess
how different selections of meta-paths impact the effectiveness of
HGAN4VD.

• RQ4: How robust is HGAN4VD when trained on small or
imbalanced datasets?
This research question investigates whether HGAN4VD is prone
to overfitting when trained on limited or imbalanced data, by
evaluating its performance under varying training set sizes and
class distributions.

Y. Zhang et al. Computers & Security 157 (2025) 104548
Table 1
Datasets statistics.
 Dataset Samples #Vul #Non-Vul Vul Ratio
 Devgin 22361 10067 12294 45.02%
 Reveal 18 169 1664 16505 9.16%
 Fan et al. 179 299 10547 168752 5.88%

4.2. Experimental subject

To investigate the effectiveness of HGAN4VD, we adopt three vul-
nerability datasets in our study, including Devign (Zhou et al., 2019),
Reveal (Wei et al., 2020), and Schmidt et al. (2007). However, in the
field of vulnerability detection, other publicly available datasets can
also serve as alternative solutions, such as SARD (Li et al., 2021b),
Juliet C/C++ (Black and Black, 2018), CodeXGLUE (Lu et al., 2021),
etc. Given our focus on analyzing real-world project datasets, we opted
not to use the three previously mentioned datasets containing ar-
tificially synthesized data. However, we acknowledge the existence
of other datasets and encourage their exploration in future research
endeavors.

The FFmpeg + QEMU dataset, provided by Devign, is manually
labeled and derived from two open-source C projects. It comprises
approximately 10,000 vulnerable entries and 12,000 non-vulnerable
entries. On the other hand, the Reveal dataset is collected from two
open-source projects: the Linux Debian Kernel and Chromium. This
dataset includes around 2,000 vulnerable entries and 20,000 non-
vulnerable entries. Additionally, Fan et al. curated a dataset from over
300 open-source C/C++ GitHub projects, encompassing 91 distinct
vulnerability types recorded in the Common Vulnerabilities and Ex-
posures (CVE) database from 2002 to 2019. The dataset consists of
approximately 10k vulnerable entries and 177k non-vulnerable entries.
We also performed three filtering steps on the above three datasets:
(1) deleting functions with abnormal truncation; (2) deleting functions
that failed to be parsed by the Joern tool (Yamaguchi et al., 2014);
(3) deleting functions with more than 500 nodes after parsing to avoid
noise. The statistical data of each experimental dataset after processing
are shown in Table 1.

In our empirical study, we used a random sampling method to
divide the corpus into three sets: a training set, a validation set, and
a test set. The split ratio was 80% for training, 10% for validation,
and 10% for testing. This ratio is consistent with the settings used in a
previous study (Yu et al., 2022) to ensure a fair comparison.

4.3. Performance metrics

We employ four widely-used performance metrics to evaluate the
performance of HGAN4VD and explain their relevance in vulnerability
detection scenarios.

• Precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 . In vulnerability detection, Preci-

sion refers to the proportion of samples identified as vulnerabili-
ties that are truly vulnerabilities. TP is the number of true positive
samples, and FP is the number of false positive samples.

• Recall: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . In the context of vulnerability detection,

this metric represents the proportion of actual vulnerabilities
correctly identified by the system. It measures the number of valid
vulnerabilities detected relative to the total number of actual
vulnerabilities. Here, FN refers to the number of false negative
samples.

• Accuracy: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 . In vulnerability detection,

accuracy denotes the proportion of all samples that are correctly
classified, regardless of whether they represent vulnerabilities or
non-vulnerabilities. Here, FP refers to the number of false positive
samples.
8
• F1 score: 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . The F1 Score is the har-

monic mean of Precision and Recall. It provides a balanced mea-
sure between Precision and Recall, especially crucial in vulnera-
bility detection, that balances the aspects of detection accuracy
and completeness.

4.4. Baselines

To evaluate the competitiveness of HGAN4VD, we conducted a
comparative analysis against five state-of-the-art graph-based baseline
methods. Specifically, we select SySeVR, Devign, Reveal, IVDetect, and
AMPLE as baselines to ensure direct comparison with mainstream deep
learning-based vulnerability detection methods. Among these, SySeVR
represents an advanced token-based method, while the remaining four
are advanced graph-based methods. Although these baselines primar-
ily utilize deep learning techniques, they differ from our proposed
heterogeneous graph neural network in structure and methodology.
By benchmarking against these established methods, we aim to more
accurately assess and highlight the advantages and effectiveness of
our heterogeneous graph neural network in addressing vulnerability
detection tasks.

• SySeVR (Li et al., 2021c) is a deep learning method that utilizes
program slicing to generate four types of slices from suspicious
points in the target program. It then learns vector features for
each slice and performs classification and recognition based on
these features.

• Devign (Zhou et al., 2019) builds a joint graph containing AST,
CFG, DFG, and NCS, then uses GGNN for vulnerability detection.

• Reveal (Haiduc et al., 2010) divides code vulnerability detection
into feature extraction and training phases. It leverages GGNN to
extract features.

• IVDetect (Zhang et al., 2020) constructs PDG and utilizes GCN to
learn the graph representation for vulnerability detection.

• AMPLE (Wen et al., 2023) uses the multi-head attention mech-
anism to calculate the weights of different edge types and then
enhances the node representation by aggregating the attention
scores of node edges.

For these baseline methods, we reproduced their models based
on the descriptions provided in the original research and achieved
performance results consistent with those reported. However, as the
source code for the Devign model was not made available, we utilized
the reproduced results reported by Wen et al. (2023).

4.5. Experimental settings

Our proposed method and baselines are implemented using the
PyTorch framework. All experiments were implemented on a server
composed of a multi-core CPU(Intel i7-13600K) and a GPU(NVIDIA
GeForce RTX 4090). Following the work (Wen et al., 2023), we ran-
domly divide the overall dataset into training, validation, and testing
sets in a ratio of 8:1:1.

We utilized the open-source tool Joern (Yamaguchi et al., 2014)
to build the original code structure diagram of the function, which is
widely used in graph neural network-related works (Yamaguchi et al.,
2014; Chakraborty et al., 2021; Wang et al., 2023a). The DGLv0.7.2
package is used to store and process graph-based data. Following the
work (Wen et al., 2023), the dimension of the code text feature vector
for each node in the vulnerability heterogeneity graph is 100. Although
higher dimensions may lead to better results, we did not conduct
experiments with higher dimensions due to hardware limitations. Our
two-layer attention network consists of 8 attention heads and 12 meta-
paths, with parameter complexity mainly determined by 𝑂(𝐾 × 𝑑2)
per meta-path for node-level attention and 𝑂(𝑅 × 𝑑) for semantic-level
attention. To prevent overfitting, we apply parameter sharing across

Y. Zhang et al. Computers & Security 157 (2025) 104548
Table 2
Hyper-parameters settings for experiments.
 Category Hyper-parameter Value
 Word2Vec embedding_size 100
 epochs 50

HGAN4VD

num_metapath 12
 feature_size 100
 batch_size 64
 num_heads 8
 dropout 0.1
 epochs 100

meta-paths to reduce redundant weights, dropout (rate = 0.1) to pre-
vent over-reliance on specific attention paths, and early stopping with
a patience of 20 epochs. Additionally, L2 regularization is implicitly
enforced through the RAdam (Liu et al., 2019) optimizer. The model
is trained using the RAdam (Liu et al., 2019) optimizer for 100 epochs,
with a learning rate of 1×10−3. We did not use Adam (Kingma and Ba,
2014) because although Adam converges quickly, it is easy to converge
to local solutions. At the same time, Adam can control the variance of
the adaptive rate, resulting in better training performance (Liu et al.,
2019). These measures ensure that model complexity grows linearly
with the number of meta-paths rather than exponentially, maintaining
efficiency even for smaller datasets.

Table 2 illustrates the specific hyperparameter setting of HGAN4VD.

5. Experimental results

5.1. RQ1: How efficient is our proposed method, HGAN4VD, in detecting
vulnerabilities?

RQ1 aims to compare the HGAN4VD with five state-of-the-art base-
lines, which are illustrated in Section 4.4. Table 3 shows the overall
results of the different methods concerning four evaluation measures
as shown in Section 4.3, and we mark the best one of each metric in
bold.

As presented in Table 3, our proposed method HGAN4VD out-
performs all considered baselines. We observe that, across the three
datasets, HGAN4VD exhibits superior accuracy and F1 scores compared
to all baseline methods. Specifically, compared to AMPLE, HGAN4VD
has improved accuracy by 7.7%, 1.5%, 2%, and F1 scores by 3.8%,
12.2%, 2.01% on the Devign, Reveal, and Fan et al. datasets, respec-
tively. Moreover, the improvement in vulnerability detection perfor-
mance of HGAN4VD compared to the Devign method is even more
pronounced. Our method employs a heterogeneous graph to gather
diverse semantic information and applies a two-layer attention mech-
anism to capture subtle code details within each semantic subgraph.
In contrast, other GNN-based methods generate code representations
directly from the original graph, lacking the capability to distinguish
fine-grained heterogeneous features of the code effectively.

Our findings indicate that the vulnerability detection performance
of the token-based method, SySeVR, is significantly inferior to that of
the graph-based techniques. This performance gap can be attributed
to SySeVR’s loss of syntactic and semantic information during the
source code transformation into token sequences. The experimental
results further demonstrate that graph-based methods are highly effec-
tive in capturing both syntactic and semantic information from source
code, leading to improved performance in vulnerability detection tasks.
Therefore, the following observation can be made: HGAN4VD is more
effective than state-of-the-art vulnerability detection methods.

Summary for RQ1: HGAN4VD outperforms state-of-the-
art vulnerability detection methods in terms of F1 score
and accuracy, enabling more effective identification of
vulnerabilities.
9
5.2. RQ2: How does each module contribute to the performance of
HGAN4VD?

To answer this research question, we separately investigated the
effects of graph simplification and heterogeneous graph attention net-
works on HGAN4VD.

(1) Graph simplification. Based on breadth-first traversal, we pro-
pose two heterogeneous graph simplification algorithms, HGS1 and
HGS2, for dynamically removing redundant nodes from code structure
graphs. Considering the impact of redundant control dependencies
on vulnerability detection results, this section evaluates the perfor-
mance of these two algorithms by comparing the code structure graphs
processed by each algorithm with the original code structure graph
without algorithmic processing and conducting ablation research on
three datasets.

Table 4 presents the performance of the vulnerability detection
models under different processing methods. From Table 4, it can be
observed that the graph neural network trained on code structure
graphs processed by Algorithm 1 and Algorithm 2 outperforms those
trained on the initial code structure graphs without graph simplification
algorithms. This indicates that both algorithms can remove redundant
information from the code structure graphs without negatively impact-
ing the model, as they ensure the removal of duplicate nodes without
disrupting the original control dependencies. When both algorithms are
used simultaneously, our approach achieves an average improvement
of 7.2% in F1 score compared to not using any algorithms.

(2) HGAN Module. To evaluate the effectiveness of the two-layer
attention network, we replaced it with several commonly used graph
neural networks, including GCN, GGNN, and GAT, and conducted
a comparative analysis with HGAN4VD. Additionally, we examined
models utilizing only a single-layer attention network by removing the
semantic-level attention layer and averaging the outputs obtained from
the node-level attention layer.

As presented in Table 4, the two-layer attention network outper-
formed all other compared methods, demonstrating its superior ef-
fectiveness. This indicates that effectively utilizing the semantic and
syntactic information in the heterogeneous graph can significantly
improve the effectiveness of vulnerability detection. Furthermore, the
two-layer attention network achieved better results than the single-
layer attention network, underscoring the effectiveness of our subgraph
partitioning approach. This method successfully distinguishes between
different semantics by organizing them into separate meta-graphs and
calculating their weights through the semantic-level attention layer.

Summary for RQ2: The graph simplification algorithm and
the two-layer attention network significantly contribute to
the performance of HGAN4VD. Using the graph simplification
algorithm resulted in an average improvement of 7.2% in F1
score across the three datasets, while employing the two-layer
attention network led to an average increase of 9.39% in F1
score compared to the best baseline models across the three
datasets.

5.3. RQ3: How does the selection of different meta-paths influence the
performance of HGAN4VD?

We analyze the impact of meta-graphs derived from different meta-
paths on the model’s performance. In our approach, we classify 69 node
types into four parent categories based on their functionality. With a
meta-path length of 2, up to 12 unique meta-path combinations can be
generated, resulting in 12 corresponding meta-graphs. While extending
the meta-path length was considered, it was observed that increasing
the length leads to a rapid and exponential growth in the number
of meta-graphs, making it less practical. This will result in a small
number of nodes in each meta-graph. Z. Wu et al. (2020) highlighted

Y. Zhang et al. Computers & Security 157 (2025) 104548
Table 3
Comparison of HGAN4VD and baselines in terms of Accuracy, Precision, Recall, and F1 score Metrics.
 Metrics

Dataset Devign Reveal Fan et al.
 Baseline Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
 SySeVR 47.88 46.06 58.81 51.66 74.33 40.70 24.95 30.75 90.04 30.91 14.11 18.88
 Devign 56.89 52.50 64.67 57.95 87.49 31.55 36.65 33.91 92.78 30.61 15.96 20.98
 Reveal 61.08 55.60 69.70 62.20 81.77 31.55 61.21 41.24 87.10 17.22 33.04 22.87
 IVDetect 57.26 52.33 57.30 54.84 – – – - – – – –
 AMPLE 62.16 55.64 83.99 66.94 92.71 51.06 46.15 48.48 93.14 29.92 34.58 32.11
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12
Table 4
Ablation study results for various methods.
 Metrics

Dataset Devign Reveal Fan et al.
 Setting Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
 w/o HGS 64.53 59.68 71.41 65.02 92.52 45.10 63.23 52.65 87.39 16.76 59.91 26.20
 w/o HGS1 67.94 62.26 77.60 69.09 92.58 45.55 65.09 53.59 87.61 18.30 66.89 28.74
 w/o HGS2 65.39 59.73 76.81 67.20 92.67 46.06 66.95 54.57 94.34 18.96 64.22 29.27
 w/o SAL 61.80 57.70 64.69 60.99 91.74 41.42 61.80 49.60 93.85 15.93 55.33 24.73
 GCN 61.08 55.60 69.70 62.20 92.46 44.78 62.66 52.24 87.10 17.22 33.04 22.87
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12
Table 5
Comparison of results across different meta-path selections.
 Metrics

Dataset Devign Reveal Fan et al.
 nums Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
 0 61.80 57.70 64.69 60.99 91.74 41.42 61.80 49.60 92.78 30.61 15.96 20.98
 3 63.26 58.36 71.28 64.17 92.00 43.05 66.95 52.40 87.10 17.22 33.04 22.87
 6 65.75 60.02 77.34 67.59 92.52 45.10 63.23 52.65 94.59 18.28 56.70 27.65
 9 68.67 63.14 77.21 69.47 93.55 50.66 71.39 59.26 94.87 21.28 67.15 32.32
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12
that insufficient nodes can result in limited information propagation
and inadequate model training. Based on this observation, we opted
not to consider more meta-paths. To further evaluate meta-graphs’
impact, we trained the model using a two-layer attention network. We
randomly removed three meta-graphs simultaneously, retraining the
model to observe the resulting performance degradation. Given the
randomness of meta-graph removal, we repeated the experiment 10
times and averaged the results to obtain the outcome.

Table 5 presents the relative decrease in four performance metrics
corresponding to removing a given number of meta-graphs. The re-
sults demonstrate a positive correlation between the average attention
weights assigned to the meta-graphs and the extent of performance
degradation upon removal. This finding indicates that the model ef-
fectively assigns attention weights to meta-graphs, thereby enhancing
the overall efficiency of vulnerability detection.

Summary for RQ3: Our model can assign higher attention
weights to more important meta-graphs, thus better utilizing
the complex information of the code structure graph.

5.4. RQ4: How robust is HGAN4VD when trained on small or imbalanced
datasets?

To assess the model’s robustness against overfitting, we evaluate
HGAN4VD on different training sizes (100%, 50%, 25%, and 10%)
while keeping the test set unchanged. As shown in Fig. 4, reducing the
training size leads to a gradual decline in both F1-score and Recall,
confirming the expected impact of reduced training data on model
generalization.
10
(1)Ablation Study on Dataset Sizes. For the Devign dataset, F1-
score and Recall decrease by 15.0% and 18.9%, respectively, when
using only 10% of the training data. The Reveal dataset experiences
a larger drop, with F1-score and Recall decreasing by 20.4% and
27.1%, respectively. The most significant decline is observed in the Fan
et al. dataset, where F1-score and Recall drop by 30.6% and 37.4%,
highlighting the challenges posed by data scarcity in highly imbalanced
settings.

Despite these declines, the model does not exhibit extreme fluctu-
ations or abrupt drops, suggesting that HGAN4VD is not overfitting to
the full training set. The controlled degradation in performance val-
idates the effectiveness of dropout regularization, parameter sharing,
and early stopping, which prevent the model from over-relying on large
training data and promote stable feature extraction across different
dataset sizes.

(2)Class Imbalance Analysis. Given the inherent class imbalance
in vulnerability detection tasks, we further analyzed the model’s recall
on the minority class (vulnerable samples). As training data decreases,
Recall drops across all datasets, with Reveal and Fan et al. experiencing
the most significant reductions due to their more skewed label distribu-
tions. In the Fan et al. dataset, Recall declines by 37.4%, emphasizing
the difficulty in learning vulnerability patterns from limited positive
samples. Devign, which has a more balanced sample distribution, shows
a smaller Recall drop of 18.9%, indicating better resilience against class
imbalance.

These results reaffirm that while HGAN4VD generalizes well across
different dataset sizes, class imbalance remains a key challenge, par-
ticularly when training data is scarce. Future work could explore cost-
sensitive learning, data augmentation, or adaptive loss functions tai-
lored for highly imbalanced scenarios to mitigate overfitting risks and
improve detection of rare vulnerabilities.

Y. Zhang et al. Computers & Security 157 (2025) 104548
Fig. 4. F1 scores and Recall achieved under different Training Data Sizes.
Summary for RQ4: HGAN4VD maintains stable performance
across varying training sizes and class distributions, show-
ing resilience against overfitting and demonstrating good
generalization even on limited or imbalanced datasets.

6. Discussion

6.1. Analysis of hyper-parameter settings

We perform a sensitivity analysis on the key hyperparameters of
HGAN4VD, explicitly examining the learning rate and batch size. The
F1 score was selected as the evaluation metric, as it offers a balanced
measure of precision and recall, both critical for vulnerability detection
tasks. The results, obtained across three datasets, are presented in Fig.
5, with all other hyperparameters fixed at their optimal values.

We can observe that for the Design and Reveal dataset, a learning
rate of 1 × 10−4 and a batch size of 64 achieved the highest F1 scores.
This suggests that these two datasets’ code structure and semantic
information have certain similarities, possibly due to their shared focus
on widely used open-source C projects. These datasets may exhibit less
code variation, making it easier for the model to converge to an optimal
solution at a relatively higher learning rate and smaller batch size. In
contrast, for the dataset of Fan et al. a learning rate of 1 × 10−5 and a
batch size of 128 are the most effective. This dataset contains a more
diverse range of code structures and vulnerabilities, which could lead to
a more complex optimization process. Therefore, a lower learning rate
and larger batch size are better suited to stabilizing the training process
and avoiding potential overfitting. This highlights how the model’s
sensitivity to hyperparameters varies depending on the complexity and
diversity of the data.

6.2. Cross-language generalization

To evaluate the generalization capability of HGAN4VD across pro-
gramming languages, we conducted supplementary experiments on
two widely used vulnerability detection datasets written in Java and
Python. Specifically, we selected the Juliet Test Suite v1.3 (Java ver-
sion) (National Institute of Standards and Technology, 2017) and the
VUDENC dataset (Wartschinski et al., 2022). The Juliet Java dataset
contains approximately 28,881 labeled code samples with diverse vul-
nerability types, synthesized under standardized CWE categories. The
11
VUDENC dataset, on the other hand, consists of over 1,000 vulnerable
functions labeled with different CWE categories.

Due to the lack of publicly reported baseline results from previous
neural vulnerability detection methods on these datasets, we adopted
the detection methods proposed in the original dataset papers as base-
lines. In Java, we refer to deep learning methods used in related
research (Pang et al., 2015; Ma et al., 2017; Hovsepyan et al., 2012).
In Python, we adopted the baseline results of the original VUDENC
benchmark (Wartschinski et al., 2022), which reported performance
for several static and neural vulnerability detectors. Our experimen-
tal setup, including model hyperparameters, training protocols, and
evaluation metrics, remained consistent with the settings described in
Section 4. This cross-language evaluation aims not to claim superiority
over existing baselines but to demonstrate that our model architecture
can be extended to other programming languages with reasonable
performance, indicating its potential for broader applicability.

As presented in Table 6, HGAN4VD demonstrated competitive per-
formance on both datasets, achieving better F1 scores than the re-
spective baselines. These results provide preliminary evidence that the
proposed heterogeneous graph representation and two-tier attention
mechanism generalize well to other programming languages. However,
we acknowledge the limited scale and coverage of these additional
experiments. We plan to conduct more extensive cross-language and
multi-language evaluations in future work.

Although HGAN4VD’s metrics are slightly lower than the best re-
sults reported in each data set, they still achieve between 85% and
90% of the performance of the respective baselines on Java and Python.
We further attribute the performance gap on the Python dataset to
methodological differences. Specifically, the baseline method in VU-
DENC adopts a per-CWE training strategy, training a separate model
for each vulnerability type. In contrast, HGAN4VD employs a uni-
fied model to detect all types of vulnerabilities, which, while more
scalable, may perform poorly in highly imbalanced or specialized vul-
nerability settings. Similarly, differences in language semantics, such
as dynamic typing and looser syntax in Python, may also pose chal-
lenges to generalization. However, these findings provide encouraging
evidence that our graph-based representation and attention mechanism
can be adapted to the Java and Python codebases, which shows promise
for broader applicability across languages.

6.3. Threats and Limitations of HGAN4VD

Internal threats. The first internal threat to validity lies in the
potential implementation errors of HGAN4VD. To address this, we

Y. Zhang et al. Computers & Security 157 (2025) 104548
Fig. 5. F1 scores achieved under various Learning Rates and Batch Size configurations.
Table 6
Comparison of results across different programming languages.
 Language Baseline Accuracy Precision Recall F1 score
 Java Pang et al. (2015) 63 67 63 65
 VuRLE (Ma et al., 2017) – 65 66 65
 Hovsepyan et al. (2012) 87 85 88 85
 HGAN4VD 74.5 73.1 73.8 76.9
 Python VUDENC (Wartschinski et al., 2022) 92.5 82.2 78.0 80.1
 HGAN4VD 68.9 67.5 68.2 70.8
utilized well-established libraries, such as PyTorch and DGL, to en-
sure robustness and minimize the likelihood of errors during imple-
mentation. The second internal threat arises from the use of Joern
tool (Yamaguchi et al., 2014) to generate the Code Property Graph,
which has known limitations. Specifically, Joern relies heavily on static
analysis, which may fail to capture the code’s dynamic behavior and
complex logic. Additionally, due to the diversity of code structures,
Joern might not cover all edge cases, potentially leading to incomplete
or incorrect graph generation. Despite these limitations, Joern remains
one of the most advanced tools for program dependency analysis and
is widely used in the vulnerability detection community (Cao et al.,
2022; Chakraborty et al., 2021; Zhou et al., 2019; Wen et al., 2023).
Our evaluation shows that incorporating program dependencies signif-
icantly improves HGAN4VD’s performance, making Joern’s limitations
not detrimental to the overall conclusions. The third internal threat is
the baselines considered in RQ1. For these baselines, we replicated their
baseline models based on the original research and achieved similar
performance. However, since the Devign model did not provide source
code, we relied on results reproduced by Wen et al. (2023), which
might introduce slight variations.

External threats. The main external threat to this study is the cor-
pus. We consider three datasets to evaluate HGAN4VD: FFMPeg+Qemu,
Reveal, and Fan et al. These datasets, widely employed in prior vul-
nerability detection research (Wen et al., 2023; Zhou et al., 2019;
Chakraborty et al., 2022), provide a comprehensive evaluation of our
method. However, their focus on C-family languages may not fully re-
flect the diversity of code syntax and structure found in other program-
ming paradigms. To mitigate this threat, we conducted preliminary
cross-language experiments on the Juliet Test Suite v1.3 (Java) (Na-
tional Institute of Standards and Technology, 2017) and VUDENC
(Python) (Wartschinski et al., 2022), demonstrating the potential of
our model to generalize to other languages. While these initial results
are promising, we acknowledge their limited scale, and leave more
extensive multi-language evaluation as future work.

Limitations. While the findings of this study highlight the effec-
tiveness of HGAN4VD in vulnerability detection, several limitations
remain. Firstly, the model generically treats vulnerabilities without ac-
counting for the distinct characteristics of different vulnerability types.
This generalized approach may result in suboptimal performance in
cases where specific vulnerabilities exhibit unique patterns or behaviors
12
not captured by the current feature representation. Future research
will address this limitation by incorporating features specific to dif-
ferent types of vulnerabilities. Secondly, HGAN4VD relies heavily on
static analysis and program dependency graphs. Although effective,
this approach may not fully account for runtime vulnerabilities or
dynamic execution patterns. To overcome this limitation, future work
will explore integrating dynamic analysis techniques to complement
the static analysis approach, enabling better detection of vulnerabilities
that manifest only during program execution. Thirdly, the current
evaluation has primarily focused on open-source C/C++ projects. To
ensure the robustness and scalability of HGAN4VD across diverse en-
vironments, we plan to extend our evaluation to a broader range of
software systems, including commercial projects developed in other
programming languages. Moreover, HGAN4VD is designed to operate
at the function level, and as such, it may not capture vulnerabilities that
arise from interactions between multiple functions or modules. These
include issues such as improper use of global variables, cross-function
data flows, or module-level resource conflicts, which often require
inter-procedural or inter-modular analysis to be detected. This limits
the ability of HGAN4VD to handle system-wide or application-wide
security assessments.

6.4. Complexity, Scalability and Applicability of HGAN4VD

HGAN4VD utilizes a heterogeneous graph attention network com-
posed of two main modules: node-level attention and semantic-level
attention layers. The overall time complexity of the node-level attention
layer is O(K|E|d), where 𝐾 is the number of attention heads, |𝐸| is
the number of edges in the meta-graph, and 𝑑 is the feature dimension
of each node. For semantic-level attention, the complexity is O(R|V|d),
where 𝑅 is the number of meta-paths and |𝑉 | is the number of nodes.
Thanks to the graph simplification (HGS1, HGS2), the model reduces
redundant nodes and edges, improving scalability on large datasets.

In practice, the preprocessing stage, which includes parsing code
and constructing heterogeneous graphs, takes approximately 8 h and
50 min on the Devign dataset, 8 h on Reveal, and 82 h and 20 min
on the Fan et al. dataset. The proposed framework benefits from stable
convergence and performs well on large, imbalanced datasets thanks to
regularization techniques such as dropout and early stopping.

Y. Zhang et al. Computers & Security 157 (2025) 104548
HGAN4VD is suitable for large-scale C/C++ projects, including
system software, embedded systems, industrial control, and security-
critical open-source projects. Future work will extend the model to
cross-module and multi-language scenarios.

7. Related work

Significant advancements have been made in integrating deep learn-
ing into various domains in recent years. This progress has led to the
widespread adoption of deep learning techniques for feature extrac-
tion and the automated detection of code vulnerabilities and defects.
Early research mainly involved advanced neural network architec-
tures to process and understand code for defect prediction. Li et al.
(2018) proposed VulDeePecker, a deep learning-based vulnerability
detection framework for vulnerability detection. The framework pro-
cesses C/C++ source code by slicing code segments involving func-
tion calls into ‘‘code gadgets’’. VulDeePecker employs a Recurrent
Neural Network (RNN) for feature extraction and uses Bidirectional
Long Short-Term Memory to address the issues of gradient vanishing
and dependencies between preceding and subsequent directions. This
approach reduces the false negative rate in vulnerability detection.
However, the method treats code as natural language text, which
results in the loss of rich semantic information, such as data flow
and control flow in source code. Allamanis (Allamanis et al., 2017)
pioneered graph neural networks to address the challenge of obtaining
deep semantic features in code. Their method addresses two types of
software problems: variable renaming and variable misuse. However,
this approach does not attempt to solve the issue of vulnerability
detection. Additionally, the model in the paper cannot handle inter-
procedural code analysis. Given the complexity and abstraction of
modern software, inter-procedural function calls are both common and
critical, making this a notable limitation.

Recent studies (Steenhoek et al., 2023; Cao et al., 2022; Feng et al.,
2020) focusing on code as text often treat source code as natural
language, which results in the loss of unstructured semantic informa-
tion inherent in code, such as control flow and data flow. Conversely,
approaches employing graph neural networks (Wen et al., 2023; Wang
et al., 2023a), extract unstructured features from code through compi-
lation analysis, enabling the capture of potential semantic information.
Compared to text-based methods, graph-based approaches are better
equipped to represent the structural properties of code. However, ex-
isting graph-based methods predominantly utilize homogeneous graphs
to represent code. These approaches fail to distinguish between edge
types and do not support multiple edges. As a result, they treat data
flow and control flow within code as the same type of edge, limiting
the model’s ability to deeply extract and represent the distinct features
of these two types of semantic information. This limitation highlights
the need for more sophisticated graph representations to capture the
complex relationships within code better.

Recent research has investigated applying advanced machine learn-
ing techniques and attack graphs to mitigate the increasing complexity
of cybersecurity threats. Liu et al. (2020) suggest a game theory-based
method for defense decision-making in multistep attack scenarios. They
employ game theory and attack graphs to model network vulnera-
bilities to optimize defense strategies. This method considers direct
and indirect payoffs, including legal responsibility and counterattacks.
This method is particularly effective in dynamic attack-defense en-
vironments, where attackers perpetually modify their strategies. To
identify emerging threats, Nia et al. (2019) employ attribute-based
attack graphs and self-avoiding random walks (SARW). By matching
unknown network traffic to known threat patterns, their method ob-
tains high sensitivity (up to 98%), rendering it suitable for real-time
detection in intrusion detection systems (IDS). Liang et al. (2020)
introduce FIT, a neural network-based tool for detecting vulnerabilities
in firmware across various architectures in the context of IoT security.
Ineffectiveness and efficiency, FIT surpasses state-of-the-art tools such
13
as Gemini and Discover by employing a three-level ascribed control
flow graph (3LACFG) and bipartite graph matching to compare binary
functions. These studies highlight the effectiveness of integrating graph-
based models with advanced learning methods to tackle system-level
vulnerabilities and attack paths. While our work focuses on static
vulnerability detection at the code level, future work could incorpo-
rate insights from attack graph modeling to capture cross-function or
cross-module vulnerabilities better.

Our approach differs significantly from existing methods by ad-
dressing the limitations of text- and graph-based approaches. Unlike
text-based methods (Steenhoek et al., 2023; Cao et al., 2022; Feng
et al., 2020), which treat code as natural language and lose critical
unstructured semantic information, our method leverages graph repre-
sentations to preserve the structural and semantic relationships within
code. Furthermore, unlike existing graph-based methods (Wen et al.,
2023; Wang et al., 2023a), which predominantly use homogeneous
graphs, our approach employs a heterogeneous graph representation
to capture the complexity of code semantics better.

Specifically, our method distinguishes between edge types, such as
data flow and control flow, and supports multiple edges between nodes.
This allows the model to more accurately represent the relationships be-
tween code components, enabling deeper feature extraction and a more
comprehensive understanding of the code’s behavior. Additionally, our
approach incorporates inter-procedural analysis, addressing the lim-
itation of existing GNN-based methods that cannot handle function
calls across procedures. By combining these innovations, our approach
provides a more robust and effective framework for vulnerability detec-
tion, capable of capturing both the structural and semantic intricacies
of modern software systems.

8. Conclusion

To address the issue of syntax and semantic information loss in
existing deep learning-based software vulnerability detection, this pa-
per proposes a new vulnerability detection method, HGAN4VD, based
on heterogeneous intermediate representations of the source code.
HGAN4VD utilizes Joern (Yamaguchi et al., 2014) to generate code
structure graphs at the function level, constructs heterogeneous graphs
for the code, proposes two simplification algorithms for heteroge-
neous graphs to remove redundant information, and then utilizes
Word2Vec (Mikolov et al., 2013) to generate vectorized representations
of heterogeneous graphs. Finally, a two-layer attention network is
used to implement software vulnerability detection. Experiments on
three benchmark datasets show HGAN4VD outperforms state-of-the-
art baselines. These results highlight the effectiveness of HGAN4VD
in leveraging global information from code graphs for vulnerability
detection.

In the future, we aim to extend this model in several directions.
First, we plan to extend our evaluation to more programming languages
further and explore transfer learning techniques to enhance language
adaptability. We also plan to extend the framework to support cross-
function and cross-module analysis by incorporating inter-procedural
dependency graphs or global resource graphs, which could further
enhance the model’s capability to detect system-level vulnerabilities.
Furthermore, exploring more effective methods for classifying nodes
in code graphs based on their functional roles will be another key
direction of our research.

CRediT authorship contribution statement

Yucheng Zhang: Writing – review & editing, Writing – original
draft, Visualization, Software, Methodology, Data curation, Conceptu-
alization. Xiaolin Ju: Writing – review & editing, Validation, Super-
vision, Methodology, Formal analysis, Data curation, Conceptualiza-
tion. Xiang Chen: Writing – review & editing, Supervision, Method-
ology, Investigation. Misbahul Amin: Writing – review & editing,
Visualization. Zilong Ren: Writing – review & editing, Methodology,
Conceptualization.

Y. Zhang et al. Computers & Security 157 (2025) 104548
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

References

Aggarwal, A., Jalote, P., 2006. Integrating static and dynamic analysis for detecting
vulnerabilities. COMPSAC’06, In: 30th Annual International Computer Software and
Applications Conference, vol. 1, IEEE, pp. 343–350.

Allamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to represent programs
with graphs. CoRR, abs/1711.00740 arXiv:1711.00740. URL http://arxiv.org/abs/
1711.00740.

Ba, C.T., Interdonato, R., Ienco, D., Gaito, S., 2025. MARA: A deep learning based
framework for multilayer graph simplification. Neurocomputing 612, 128712.

Backes, M., Köpf, B., Rybalchenko, A., 2009. Automatic discovery and quantification of
information leaks. In: 2009 30th IEEE Symposium on Security and Privacy. IEEE,
pp. 141–153.

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning
to align and translate. ArXiv preprint arXiv:1409.0473.

Black, P.E., Black, P.E., 2018. Juliet 1.3 Test Suite: Changes from 1.2. US Department
of Commerce, National Institute of Standards and Technology

Cai, Z., Lu, L., Qiu, S., 2019. An abstract syntax tree encoding method for cross-project
defect prediction. IEEE Access 7, 170844–170853.

Cao, S., Sun, X., Bo, L., Wei, Y., Li, B., 2021. Bgnn4vd: Constructing bidirectional graph
neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576.

Cao, S., Sun, X., Bo, L., Wu, R., Li, B., Tao, C., 2022. MVD: memory-related vulnerability
detection based on flow-sensitive graph neural networks. In: Proceedings of the
44th International Conference on Software Engineering. pp. 1456–1468.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2021. Deep learning based vulnerability
detection: Are we there yet. IEEE Trans. Softw. Eng..

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2022. Deep learning based vulnerability
detection: Are we there yet? IEEE Trans. Softw. Eng. 48 (9), 3280–3296. http:
//dx.doi.org/10.1109/TSE.2021.3087402.

Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A., 2017. Automatic feature
learning for vulnerability prediction. ArXiv preprint arXiv:1708.02368.

Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y., Jiang, Y., 2019. Leopard: Identifying
vulnerable code for vulnerability assessment through program metrics. In: 2019
IEEE/ACM 41st International Conference on Software Engineering. ICSE, IEEE, pp.
60–71.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al., 2020. Codebert: A pre-trained model for programming and natural
languages. ArXiv preprint arXiv:2002.08155.

Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9 (3), 319–349.

Fu, M., Tantithamthavorn, C., 2022. Linevul: A transformer-based line-level vulnera-
bility prediction. In: Proceedings of the 19th International Conference on Mining
Software Repositories. pp. 608–620.

Guo, N., Li, X., Yin, H., Gao, Y., 2020a. Vulhunter: An automated vulnerability detection
system based on deep learning and bytecode. In: Information and Communications
Security: 21st International Conference, ICICS 2019, Beijing, China, December
15–17, 2019, Revised Selected Papers 21. Springer, pp. 199–218.

Guo, Z., Shen, Y., Bashir, A.K., Imran, M., Kumar, N., Zhang, D., Yu, K., 2020b.
Robust spammer detection using collaborative neural network in internet-of-things
applications. IEEE Internet Things J. 8 (12), 9549–9558.

Haiduc, S., Aponte, J., Moreno, L., Marcus, A., 2010. On the use of automated text
summarization techniques for summarizing source code. In: 2010 17th Working
Conference on Reverse Engineering. IEEE, pp. 35–44.

Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J., 2012. Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th International
Workshop on Security Measurements and Metrics. pp. 7–10.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. ArXiv preprint
arXiv:1412.6980.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional
networks. ArXiv preprint arXiv:1609.02907.

Landman, D., Serebrenik, A., Vinju, J.J., 2017. Challenges for static analysis of
java reflection-literature review and empirical study. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering. ICSE, IEEE, pp. 507–518.

Li, Y., Chen, B., Chandramohan, M., Lin, S.-W., Liu, Y., Tiu, A., 2017. Steelix: program-
state based binary fuzzing. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. pp. 627–637.
14
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph sequence neural
networks. ArXiv preprint arXiv:1511.05493.

Li, Y., Wang, S., Nguyen, T.N., 2021a. Vulnerability detection with fine-grained
interpretations. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 292–303.

Li, Z., Zou, D., Wang, Z., Jin, H., 2019. Survey on static software vulnerability detection
for source code. Chin. J. Netw. Inf. Secur. 5 (1), 1–14.

Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H., 2021b. Vuldeelocator: a deep learning-
based fine-grained vulnerability detector. IEEE Trans. Dependable Secur. Comput.
19 (4), 2821–2837.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2021c. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secur.
Comput. 19 (4), 2244–2258.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018. Vuldeepecker:
A deep learning-based system for vulnerability detection. ArXiv preprint arXiv:
1801.01681.

Liang, F., Qian, C., Yu, W., Griffith, D., Golmie, N., 2022. Survey of graph neural
networks and applications. Wirel. Commun. Mob. Comput. 2022 (1), 9261537.

Liang, H., Xie, Z., Chen, Y., Ning, H., Wang, J., 2020. FIT: Inspect vulnerabilities
in cross-architecture firmware by deep learning and bipartite matching. Comput.
Secur. 95, 101823. http://dx.doi.org/10.1016/j.cose.2020.101823.

Lin, G., Zhang, J., Luo, W., Pan, L., De Vel, O., Montague, P., Xiang, Y., 2019. Software
vulnerability discovery via learning multi-domain knowledge bases. IEEE Trans.
Dependable Secur. Comput. 18 (5), 2469–2485.

Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., 2017. POSTER: Vulnerability discovery
with function representation learning from unlabeled projects. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
2539–2541.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J., 2019. On the variance of
the adaptive learning rate and beyond. ArXiv preprint arXiv:1908.03265.

Liu, Z., Qian, P., Wang, X., Zhu, L., He, Q., Ji, S., 2021. Smart contract vulnerability
detection: from pure neural network to interpretable graph feature and expert
pattern fusion. ArXiv preprint arXiv:2106.09282.

Liu, X., Yan, M., Deng, L., Li, G., Ye, X., Fan, D., Pan, S., Xie, Y., 2022. Survey
on graph neural network acceleration: An algorithmic perspective. ArXiv preprint
arXiv:2202.04822.

Liu, J., Zhang, Y., Hu, H., Tan, J., Leng, Q., Chang, C., 2020. Efficient defense decision-
making approach for multistep attacks based on the attack graph and game theory.
Math. Probl. Eng. 2020, 1–12. http://dx.doi.org/10.1155/2020/9302619.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D.,
Jiang, D., Tang, D., et al., 2021. Codexglue: A machine learning benchmark dataset
for code understanding and generation. ArXiv preprint arXiv:2102.04664.

Ma, S., Thung, F., Lo, D., Sun, C., Deng, R.H., 2017. Vurle: Automatic vulnerability
detection and repair by learning from examples. In: Computer Security–ESORICS
2017: 22nd European Symposium on Research in Computer Security, Oslo, Norway,
September 11-15, 2017, Proceedings, Part II 22. Springer, pp. 229–246.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word
representations in vector space. ArXiv preprint arXiv:1301.3781.

National Institute of Standards and Technology, 2017. Juliet java 1.3 test suite.
(Accessed 01 April 2025). https://samate.nist.gov/SARD/test-suites/111.

Nia, M.A., Bahrak, B., Kargahi, M., Fabian, B., 2019. Detecting new generations
of threats using attribute-based attack graphs. IET Inf. Secur. 13 (4), 293–303.
http://dx.doi.org/10.1049/iet-ifs.2018.5409.

Pang, Y., Xue, X., Namin, A.S., 2015. Predicting vulnerable software components
through n-gram analysis and statistical feature selection. In: 2015 IEEE 14th
International Conference on Machine Learning and Applications. ICMLA, IEEE, pp.
543–548.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P.,
McConley, M., 2018. Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications. ICMLA, IEEE, pp. 757–762.

Schmidt, M., Fung, G., Rosales, R., 2007. Fast optimization methods for l1 regulariza-
tion: A comparative study and two new approaches. In: Machine Learning: ECML
2007: 18th European Conference on Machine Learning, Warsaw, Poland, September
17-21, 2007. Proceedings 18. Springer, pp. 286–297.

Shankar, U., Talwar, K., Foster, J.S., Wagner, D., 2001. Detecting format string
vulnerabilities with type qualifiers. In: 10th USENIX Security Symposium. USENIX
Security 01.

Shar, L.K., Briand, L.C., Tan, H.B.K., 2014. Web application vulnerability prediction
using hybrid program analysis and machine learning. IEEE Trans. Dependable
Secur. Comput. 12 (6), 688–707.

Shin, Y., Williams, L., 2013. Can traditional fault prediction models be used for
vulnerability prediction? Empir. Softw. Eng. 18, 25–59.

Siow, J.K., Liu, S., Xie, X., Meng, G., Liu, Y., 2022. Learning program semantics with
code representations: An empirical study. In: 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering. SANER, IEEE, pp. 554–565.

Steenhoek, B., Rahman, M.M., Jiles, R., Le, W., 2023. An empirical study of deep
learning models for vulnerability detection. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering. ICSE, pp. 2237–2248. http://dx.doi.org/10.
1109/ICSE48619.2023.00188.

Y. Zhang et al. Computers & Security 157 (2025) 104548
Tang, W., Tang, M., Ban, M., Zhao, Z., Feng, M., 2023a. CSGVD: A deep learning
approach combining sequence and graph embedding for source code vulnerability
detection. J. Syst. Softw. 199, 111623.

Tang, M., Tang, W., Gui, Q., Hu, J., Zhao, M., 2024. A vulnerability detection algorithm
based on residual graph attention networks for source code imbalance (RGAN).
Expert Syst. Appl. 238, 122216.

Tang, G., Yang, L., Zhang, L., Cao, W., Meng, L., He, H., Kuang, H., Yang, F., Wang, H.,
2023b. An attention-based automatic vulnerability detection approach with GGNN.
Int. J. Mach. Learn. Cybern. 14 (9), 3113–3127.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017. Graph
attention networks. ArXiv preprint arXiv:1710.10903.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S., 2019. Heterogeneous graph
attention network. In: The World Wide Web Conference. pp. 2022–2032.

Wang, W., Nguyen, T.N., Wang, S., Li, Y., Zhang, J., Yadavally, A., 2023a. DeepVD:
Toward class-separation features for neural network vulnerability detection. In:
2023 IEEE/ACM 45th International Conference on Software Engineering. ICSE,
IEEE, pp. 2249–2261.

Wang, J., Xiao, H., Zhong, S., Xiao, Y., 2023b. DeepVulSeeker: A novel vulnerability
identification framework via code graph structure and pre-training mechanism.
Future Gener. Comput. Syst. 148, 15–26.

Wang, H., Ye, G., Tang, Z., Tan, S.H., Huang, S., Fang, D., Feng, Y., Bian, L., Wang, Z.,
2020. Combining graph-based learning with automated data collection for code
vulnerability detection. IEEE Trans. Inf. Forensics Secur. 16, 1943–1958.

Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T., Grunske, L., 2022. VUDENC:
vulnerability detection with deep learning on a natural codebase for python. Inf.
Softw. Technol. 144, 106809.

Wei, B., Li, Y., Li, G., Xia, X., Jin, Z., 2020. Retrieve and refine: exemplar-based
neural comment generation. In: 2020 35th IEEE/ACM International Conference on
Automated Software Engineering. ASE, IEEE, pp. 349–360.

Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q., 2023. Vulnerability
detection with graph simplification and enhanced graph representation learning.
ArXiv preprint arXiv:2302.04675.

Wen, S., Haghighi, M.S., Chen, C., Xiang, Y., Zhou, W., Jia, W., 2014. A sword with
two edges: Propagation studies on both positive and negative information in online
social networks. IEEE Trans. Comput. 64 (3), 640–653.

Wu, Y., Lu, J., Zhang, Y., Jin, S., 2021. Vulnerability detection in c/c++ source code
with graph representation learning. In: 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference. CCWC, IEEE, pp. 1519–1524.
15
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1),
4–24.

Wu, F., Wang, J., Liu, J., Wang, W., 2017. Vulnerability detection with deep learning.
In: 2017 3rd IEEE International Conference on Computer and Communications.
ICCC, IEEE, pp. 1298–1302.

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H., 2022. VulCNN: An image-inspired
scalable vulnerability detection system. In: Proceedings of the 44th International
Conference on Software Engineering. pp. 2365–2376.

Xu, Z., Chen, B., Chandramohan, M., Liu, Y., Song, F., 2017. Spain: security patch
analysis for binaries towards understanding the pain and pills. In: 2017 IEEE/ACM
39th International Conference on Software Engineering. ICSE, IEEE, pp. 462–472.

Xu, J., Wang, F., Ai, J., 2020. Defect prediction with semantics and context features of
codes based on graph representation learning. IEEE Trans. Reliab. 70 (2), 613–625.

Yamaguchi, F., 2017. Pattern-based methods for vulnerability discovery. It- Inf. Technol.
59 (2), 101–106.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy. IEEE, pp. 590–604.

Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K., 2013. Chucky: Exposing missing
checks in source code for vulnerability discovery. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security. pp. 499–510.

Yang, X., 2020. An overview of the attention mechanisms in computer vision. J. Phys.:
Conf. Ser. 1693 (1), 012173.

Yu, K., Lin, L., Alazab, M., Tan, L., Gu, B., 2020. Deep learning-based traffic safety so-
lution for a mixture of autonomous and manual vehicles in a 5G-enabled intelligent
transportation system. IEEE Trans. Intell. Transp. Syst. 22 (7), 4337–4347.

Yu, C., Yang, G., Chen, X., Liu, K., Zhou, Y., 2022. BashExplainer: Retrieval-augmented
bash code comment generation based on fine-tuned CodeBERT. In: 2022 IEEE
International Conference on Software Maintenance and Evolution. ICSME, IEEE,
pp. 82–93.

Zhang, J., Wang, X., Zhang, H., Sun, H., Liu, X., 2020. Retrieval-based neural
source code summarization. In: 2020 IEEE/ACM 42nd International Conference on
Software Engineering. ICSE, IEEE, pp. 1385–1397.

Zhao, J., Guo, S., Mu, D., 2021. DouBiGRU-A: software defect detection algorithm based
on attention mechanism and double BiGRU. Comput. Secur. 111, 102459.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2020.
Graph neural networks: A review of methods and applications. AI Open 1, 57–81.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Adv. Neural Inf. Process. Syst. 32.

