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 A B S T R A C T

Detecting vulnerabilities is crucial for mitigating inherent risks in software systems. In recent years, there 
has been a significant increase in developing effective vulnerability detection approaches, many of which 
leverage deep learning technologies. These methods provide notable advantages, including automated feature 
extraction and the ability to train models autonomously, thereby improving the efficiency and accuracy of the 
detection process. However, existing methods encounter two significant limitations. Firstly, code analysis lacks 
granularity and does not fully leverage semantic and syntactic information within code structures, resulting in 
suboptimal performance. Secondly, approaches based on Graph Neural Networks (GNNs) inherently struggle 
to capture long-distance relationships between nodes in code structures. In this paper, we propose HGAN4VD, 
a novel vulnerability detection method that utilizes heterogeneous intermediate source code representations 
to address these limitations. HGAN4VD comprises two components: a heterogeneous code representation 
graph, which is constructed by creating diverse code representations and simplifying the graph to reduce 
node distances, and a Heterogeneous Graph Attention Network, which incorporates two attention layers to 
calculate node-level and semantic-level attention. Experiments on three widely used datasets demonstrate 
that HGAN4VD outperforms state-of-the-art methods by 1.5% to 7.7% in accuracy and 3.8% to 12.2% in F1 
score metrics, affirming its effectiveness in learning global information for code graphs used in vulnerability 
detection. Furthermore, we demonstrate the generalization capability of our method on Java and Python 
datasets, suggesting its potential for broader applicability.
1. Introduction

Software vulnerabilities, known as bugs or weaknesses, present 
substantial risks to confidentiality, integrity, and data availability. We 
calculate the number of vulnerabilities over the past decade using data 
from the National Vulnerability Database (NVD) of the United States. 
As shown in Fig.  1, 37197 new Common Vulnerabilities and Exposures 
(CVEs) were recorded in 2024. This represents a 28% improvement 
compared to the 29066 vulnerabilities reported in 2023. For example, 
Apple disclosed a critical zero-day vulnerability (CVE-2023-41064) in 
ImageIO,1 affecting millions of applications. Exploited through a zero-
click method, this vulnerability enables attackers to install Pegasus 
spyware without requiring any user interaction, thus posing a sig-
nificant threat. With the rapid evolution of information technology, 
vulnerability detection has become critical for safeguarding the security 
of software systems.
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Traditional vulnerability detection methods mainly rely on static 
analysis (Yamaguchi et al., 2013; Du et al., 2019; Xu et al., 2017) 
and dynamic analysis (Li et al., 2017) techniques to identify potential 
vulnerabilities in software systems. The static analysis method relies 
on predetermined rules to detect vulnerabilities, effectively identifying 
vulnerabilities that conform to these established criteria. However, 
they often struggle with accuracy when dealing with highly complex 
code, particularly in cases of obfuscation or polymorphism, and may 
generate false positives or negatives due to their reliance on predefined 
patterns (Landman et al., 2017; Yamaguchi, 2017).

For languages such as C/C++, where the syntax and structure 
of code are well-defined, static analysis is particularly effective in 
identifying vulnerabilities. Nevertheless, its applicability to other pro-
gramming languages, such as Python or Java, may be restricted by dis-
parities in language features (e.g., dynamic typing, garbage collection). 
https://doi.org/10.1016/j.cose.2025.104548
Received 7 December 2024; Received in revised form 9 April 2025; Accepted 25 M
vailable online 14 June 2025 
167-4048/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
ay 2025

data mining, AI training, and similar technologies. 



Y. Zhang et al.

 

Computers & Security 157 (2025) 104548 
Fig. 1. Annual Distribution of CVEs.

Our method will be expanded to accommodate future multi-language 
projects, focusing on overcoming language-specific obstacles in feature 
extraction and graph construction.

Dynamic analysis method allows for real-time detection of vul-
nerabilities. However, they often have strict real-time performance 
requirements and may miss vulnerabilities that do not manifest during 
execution or depend on specific execution paths (Aggarwal and Jalote, 
2006). A potent method for minimizing false positives and negatives 
has emerged: hybrid analysis, which integrates static and dynamic 
techniques. Hybrid analysis can offer a more comprehensive and pre-
cise vulnerability detection by capitalizing on the advantages of both 
methodologies. Although our current methodology emphasizes static 
analysis, future research will explore integrating hybrid techniques to 
enhance detection accuracy.

Previous studies have attempted to overcome these limitations 
through using machine learning and deep learning based methods
(Backes et al., 2009; Shankar et al., 2001; Shar et al., 2014; Li et al., 
2018; Russell et al., 2018; Li et al., 2021c; Dam et al., 2017; Wu et al., 
2022, 2017; Guo et al., 2020a; Zhao et al., 2021; Li et al., 2021b; 
Tang et al., 2023b,a; Wang et al., 2023b; Tang et al., 2024). Machine 
learning-based methods (Backes et al., 2009; Shankar et al., 2001; Shar 
et al., 2014) learn the features of vulnerabilities using custom metrics, 
often performing poorly on complex datasets. Deep learning-based 
methods (Li et al., 2021a, 2018; Lin et al., 2017; Russell et al., 2018; Li 
et al., 2021c; Dam et al., 2017; Wu et al., 2022, 2017; Guo et al., 2020a; 
Zhao et al., 2021; Li et al., 2021b; Tang et al., 2023b,a; Wang et al., 
2023b; Tang et al., 2024) train models by automatically evaluating 
metrics. Research has shown that deep learning-based methods, such 
as Bi-directional Long Short-Term Memory (BiLSTM) (Li et al., 2018), 
Convolutional Neural Network (CNN) (Guo et al., 2020a), Bi-directional 
Gated Recurrent Unit (BiGRU) (Li et al., 2021b), Bidirectional Recur-
rent Neural Networks (BiRNN) (Li et al., 2021b), can achieve better 
results in function-level vulnerability detection (Steenhoek et al., 2023; 
Cao et al., 2022). These algorithms rely on sequence mining of code fea-
tures, demonstrating the feasibility of deep learning for code sequence 
learning. However, they ignore the syntax and semantic information in 
the code (Feng et al., 2020).

Recent research has primarily concentrated on the automatic learn-
ing of code representation, especially Graph deep learning, which 
can perfectly match graph learning by representing source code as 
intermediate graph structures. By parsing source code into Abstract 
Syntax Trees (AST), Control Flow Graphs (CFG), and Data Flow Graphs 
(DFG), complex hierarchical information in the source code can be 
captured more effectively (Wang et al., 2020; Wen et al., 2023; Wang 
et al., 2023a). Subsequently, widely adopted deep learning models are 
employed to detect vulnerabilities based on the node tokens derived 
2 
from these graphs. Despite the promising results of these graph-based 
deep-learning approaches, several limitations remain.

(1) Limited representation of the code. Traditional methods typ-
ically parse code into graph structures and then utilize word2vec
(Mikolov et al., 2013) to initialize node embeddings. However, these 
methods primarily focus on the shallow semantics of nodes, failing to 
distinguish between their semantic and syntactic information.

(2) Learning features unrelated to vulnerabilities. Function-
level vulnerability detection encompasses the entire function, offering 
the advantage of capturing comprehensive vulnerability information. 
However, it also introduces numerous extraneous statements unrelated 
to vulnerabilities, which can lead to reduced detection accuracy.

(3) Inadequate models. Simply merging information from different 
edges results in a homograph in which all edges and nodes can only 
be treated as the same type, which causes the semantic and syntactic 
structures of various graphs to become entangled, making it difficult 
for models to distinguish between them.

To address the deficiencies above of the existing work, we propose 
HGAN4VD, a new source-oriented vulnerability detection framework 
based on heterogeneous graphs. The primary innovation of our method 
lies in the integration of heterogeneous information and meta-paths to 
construct a novel data structure, the Semantic Heterogeneous Informa-
tion Network (SHIN). This structure employs graph attention networks 
to capture semantic relationships between graph nodes and their neigh-
bors. Precisely, given a code snippet, we first extract multiple code 
structure graphs that contain features from different forms of code, in-
cluding Abstract Syntax Trees (AST), Data Flow Graphs (DFG), Control 
Flow Graphs (CFG) and Program Dependency Graphs (PDG) (Ferrante 
et al., 1987). These graphs are integrated into heterogeneous graphs 
with multiple node types and edge types and then pruned according to 
certain rules. The purpose of this approach is twofold: to eliminate the 
influence of irrelevant factors on vulnerability detection efficiency and 
to reduce the distance between non-adjacent nodes. This addresses the 
long-distance dependency problem inherent in the GNN model (Zhou 
et al., 2020). Then, a semantic heterogeneous information network 
is constructed based on meta-paths and input into a Graph Attention 
Network to predict vulnerabilities in code fragments. Thus, HGAN4VD 
not only integrates rich code syntax and semantic information into a 
graph representation but also establishes a comprehensive semantic 
heterogeneous information network, allowing the model to understand 
deeper semantic information.

We evaluated the effectiveness of HGAN4VD on three datasets, 
the Devign (Zhou et al., 2019), Reveal (Chakraborty et al., 2022) 
and Schmidt et al. (2007), We compared HGAN4VD with five existing 
deep learning-based methods. The accuracy of HGAN4VD improved by 
1.5% to 7.7%, and F1 score increased by 3.8% to 12.2%.

In summary, the main contributions of our work can be summarized 
as follows:

• We propose a novel vulnerability detection framework HGAN4VD,
which employs an innovative method to obtain the fine-grained 
semantic information of code. This approach constructs a seman-
tic heterogeneous information network, a multi-graph generated 
based on meta-paths, by aggregating the code information of 
multiple structure graphs.

• We design an encoder based on a two-layer heterogeneous graph 
attention network. This method encodes heterogeneous graphs 
using multi-faceted semantic contexts, enabling the generated 
code representation to capture more structural, syntactic, and 
semantic features of the code.

• We also implemented prototypes of HGAN4VD and evaluated its 
effectiveness using three widely recognized standard datasets. The 
experimental results demonstrate the efficacy of HGAN4VD in 
vulnerability detection. The code is available in the published 
repository.2

2 https://github.com/VDHGANcode/VDHGAN
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The rest of this paper is organized as follows. Section 2 provides 
background on code representation in vulnerability detection and deep 
learning models for vulnerability detection. Section 3 details the frame-
work and specifics of our proposed method. Section 4 shows our 
empirical settings. Section 5 analyzes the findings related to the re-
search questions.  Section 6 discusses key aspects of our model beyond 
the main experiments, including hyper-parameter sensitivity, overfit-
ting risks, cross-language generalization, method limitations, and its 
scalability and applicability. Section 7 summarizes related studies to 
our work and emphasizes the novelty of our research. Finally, Section 8 
summarizes our work and shows potential future directions.

2. Research background

This section mainly introduces the background of advanced tech-
nologies exploited by HGAN4VD.

2.1. Graphical representation of source code

Graphical representation of code refers to transforming source code 
into visual representations that facilitate human or machine analysis, 
understanding, and manipulation. In our research, we extracted the 
Code Property Graph (CPG) (Yamaguchi et al., 2014) of a function, a 
multiple graph containing attributes such as AST, CFG, and PDG. We 
extract information on the following graph structures from CPG:

Abstract Syntax Tree (AST) (Cai et al., 2019) is an ordered tree rep-
resentation of the abstract syntax of code. In the AST, each node repre-
sents the smallest lexical unit, and each edge signifies the parent–child 
relationship between nodes.

Control Flow Graph (CFG) is a graphical representation of code that 
illustrates all possible paths during execution. Nodes in CFG represent 
basic blocks, which can be statements or conditions. Edges in CFG 
represent control flow transitions through directed connections.

Program Dependence Graph (PDG) (Ferrante et al., 1987) is a 
program representation that generates data dependency relationships 
and explicitly controls dependencies. It includes two types of rela-
tionships: Data Dependency (DD) and Control Dependency (CD). Data 
dependency edges represent the def-use relationships, each labeled with 
a variable that is defined in the source node and used in the target node. 
Control dependency edges represent essential control flow relationships 
between predicates and statements.

Natural Code Sequence (NCS) (Wang et al., 2020) connects all leaf 
nodes of AST in natural order according to the source code’s natural 
sequence. It reflects the programming logic of functions based on the 
order in which code appears in the function code. This solves the 
problem that information between leaf nodes in the AST cannot flow in 
the graph. However, this approach may also link semantically unrelated 
nodes, making the representation less ideal.

While our current implementation focuses on C/C++ code, the 
graphical representations used in our method (AST, CFG, PDG, etc.) 
are language-agnostic. They can be adapted to programming languages 
like Java and Python. However, language-specific features (e.g., dy-
namic typing in Python or garbage collection in Java) may require 
graph-construction adjustment. Future work will explore extending our 
method to multi-language projects, addressing these language-specific 
challenges.

Following previous studies (Wu et al., 2022; Zhou et al., 2019), we 
utilize the Joern tool (Yamaguchi et al., 2014) to extract various types 
of graphs and construct a heterogeneous graph with nodes representing 
statements in the code. In addition, we considered the type information 
of each node after parsing to enhance the graph’s node representation. 
A visual example of a heterogeneous graph is shown in Fig.  2.
3 
Fig. 2. Heterogeneous Graph representation of an Example Function.

2.2. Vulnerability detection based on graph

Early Machine Learning-based vulnerability detection methods used 
code features as input for vulnerability detection, such as sequence 
codes of different lengths (Shin and Williams, 2013; Wen et al., 2014). 
Deep Learning-based methods have been proven to generate features 
automatically (Guo et al., 2020b; Yu et al., 2020), so more and more 
Deep Learning-based methods (Russell et al., 2018; Li et al., 2018; 
Lin et al., 2019) are being applied in vulnerability detection. Due to 
the ability of graph structures to effectively represent the semantic 
information of code, several studies (Zhou et al., 2019; Cao et al., 
2021; Wu et al., 2021) have begun to utilizing GNN to detect vul-
nerabilities. Graph Neural Networks (GNNs) (Zhou et al., 2020) are a 
class of neural networks aimed at solving graph-related tasks end-to-
end. Unlike traditional neural networks that process data in a tabular 
or sequential format, GNNs can effectively capture and exploit the 
relational information encoded in graph structures.

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016) are 
among the earliest and most well-known types of GNNs. They extend 
the concept of convolutional neural networks to graphs, enabling the 
aggregation of information from neighboring nodes. The core concept 
involves aggregating a node’s features with its neighbors by learn-
ing a functional map to update the node’s representation. However, 
GCN primarily focuses on learning local features of nodes through 
neighborhood aggregation. Therefore, when the graph structure is too 
large, GCNs often struggle to capture long-range dependencies between 
nodes (Fu and Tantithamthavorn, 2022).

Graph attention network (GAT) (Veličković et al., 2017) combines 
the self-attention mechanism with a graph convolutional neural net-
work for the first time, by calculating the attention coefficient be-
tween nodes as the weight of neighbor information aggregation, the 
importance of neighboring nodes can be distinguished. In addition, 
multiple independent attention mechanisms (i.e. multi-head attention 
mechanisms) are applied to calculate implicit states, and output repre-
sentations are obtained through concatenation or averaging to stabilize 
the learning process.

Gated graph neural network(GGNN) (Li et al., 2015) has added a 
gated recurrent unit (GRU), which takes the information of neighboring 
nodes as input and the state of the nodes themselves as hidden states. 
This allows the model to selectively remember the hidden information 
of nodes and their neighbors, improving the long-term propagation 
ability of graph structure information.



Y. Zhang et al. Computers & Security 157 (2025) 104548 
2.3. Attention mechanism

Attention mechanism (Vaswani et al., 2017) is a powerful tool in 
machine learning, enabling models to focus on different parts of the in-
put data selectively. There are two main types of attention mechanisms: 
self-attention and multi-head attention.

Self-attention, also known as intra-attention or internal attention, 
allows a model to attend to different positions of the input sequence to 
compute a representation of each position. It calculates the importance 
of each element in the sequence concerning the other elements, en-
abling the model to capture long-range dependencies and relationships 
within the input data.

Multi-head attention extends the idea of self-attention by perform-
ing multiple attention operations in parallel. In this mechanism, the 
input is transformed into multiple representations by applying differ-
ent linear projections, and self-attention is applied independently to 
each of these representations. The results are then concatenated and 
linearly transformed to produce the final output. Multi-head attention 
allows the model to attend to different parts of the input differently, 
facilitating more prosperous and diverse representations.

Attention mechanism has been widely used in various machine 
learning tasks, including natural language processing (Bahdanau et al., 
2014), computer vision (Yang, 2020), and graph-based learning (Wen 
et al., 2023; Wang et al., 2023a). They have demonstrated effectiveness 
in capturing complex patterns and dependencies in the data, leading to 
state-of-the-art performance in many applications.

2.4. Static vs. Dynamic analysis in vulnerability detection

In the context of software vulnerability detection, static and dy-
namic analyses are two widely used paradigms, each with distinct 
advantages and limitations.

Static analysis techniques analyze the source code without exe-
cuting the program. These approaches are efficient and scalable for 
large codebases and can detect potential vulnerabilities before software 
deployment. However, static methods often suffer from false positives 
due to their limited ability to reason about runtime behavior, such as 
execution paths dependent on input values or runtime environments.

Dynamic analysis, in contrast, inspects the behavior of software dur-
ing execution. It is more effective at detecting vulnerabilities manifest 
only at runtime, such as memory corruption, race conditions, or logic 
flaws dependent on specific inputs. However, dynamic methods face 
challenges such as path explosion, high performance overhead, and 
incomplete coverage due to limited test cases or execution traces.

Hybrid analysis combines static and dynamic techniques to leverage 
their complementary strengths. While hybrid approaches can signifi-
cantly reduce false positives and negatives, they usually have higher 
implementation complexity and resource demands.

In this work, HGAN4VD primarily focuses on static analysis to 
ensure scalability and efficiency in processing large-scale open-source 
C/C++ codebases. By leveraging static representations like AST, CFG, 
DFG, and PDG, our model captures syntactic and semantic patterns 
in source code for vulnerability prediction. However, we acknowledge 
that static analysis alone may miss vulnerabilities dependent on dy-
namic execution contexts. Addressing this gap is part of our planned 
future research, which will explore integrating runtime and hybrid 
analysis techniques to improve detection accuracy further.

3. Our approach

In this section, we introduce the detailed architecture of HGAN4VD. 
As shown in Fig.  3, HGAN4VD consists of three parts: Generate Graph-
ical representation of code, Heterogeneous graph attention network 
module, and Vulnerability Detection module. Next, we will provide 
detailed explanations for each part.
4 
3.1. Constructing heterogeneous graph

Data Preprocessing. Specifically, for a source code dataset 𝐷 =
{

𝑓1, 𝑓2,… , 𝑓𝑛
}

, we perform vulnerability detection on each function-
level code snippet 𝑓𝑖.

Graph Generation. In our study, we processed each code snippet 
𝑓𝑖 in the following steps: (1) Extraction of the code structure graph, 
which obtains the structural representation of the function through a 
code parser. (2) The initialization encoding of nodes, which obtains 
the features of each statement through a pre-trained Word2Vec model. 
Currently, functional vulnerability detection methods based on deep 
learning mostly use Abstract Syntax Trees(AST) as code representation. 
AST is a tree representation used to describe the syntax structure of 
program code. However, AST lacks program control information and 
data dependency information, which can be filled by the Data Flow 
Graphs(DFG) and the Control Flow Graphs(CFG). Following previous 
works (Wu et al., 2022; Siow et al., 2022), all types of graphs were 
extracted using the Joern tool (Yamaguchi et al., 2014).

Specifically, utilizing the Joern parsing function allows us to ex-
tract a set of nodes and edges 𝐺 = {𝑉 ,𝐸}, where each node 𝑣 =
{𝑖𝑑, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, 𝑛𝑡𝑦𝑝𝑒} ∈ 𝑉  represents a statement and records its ID, 
statement, and type of that node, each edge 𝑒 = {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑒𝑡𝑦𝑝𝑒} ∈ 𝐸
records the starting node, destination node, and edge type of that 
edge. Referring to the Devign’s method (Zhou et al., 2019), we stored 
code statements corresponding to node attributes through dictionary 
data types and recorded node types corresponding to node information 
through node mapping tables, constructing a comprehensive hetero-
geneous graph that includes different node types and edge types. 
Following the steps above, the graph is simplified to eliminate re-
dundant information. Subsequently, the graph is transformed into an 
adjacency matrix based on the starting nodes of the edges within the 
graph.

The node set 𝑉 =
{

𝑣1, 𝑣2,… , 𝑣𝑛
} contains a set of type nodes. Each 

node 𝑣 ∈ 𝑉  has the attribute 𝑛𝑡𝑦𝑝𝑒 ∈ {𝑆𝑖𝑧𝑒𝑜𝑓 ,
𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟, 𝑅𝑒𝑡𝑢𝑟𝑛𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡⋯} indicating its type. According to 

statistics, 69 types of 𝑛𝑡𝑦𝑝𝑒 are in the parsed node set 𝑉 . We categorize 
these node types into four parent types based on their syntax. For 
the type of each node, we consider parent types 𝑆𝑣 ∈ {𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟,
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 𝑂𝑡ℎ𝑒𝑟}. For each directed edge 𝑒 = (𝑠𝑟𝑐, 𝑑𝑠𝑡,
𝑒𝑡𝑦𝑝𝑒) ∈ 𝐸, it and 𝑇 𝑒 ⊂ {𝐴𝑆𝑇 , 𝐶𝐹𝐺,𝐷𝐹𝐺, 𝑃𝐷𝐺} represent the origin 
of the connection from node 𝑣𝑠𝑟𝑐 to node 𝑣𝑑𝑠𝑡. Specifically, we replace 
the 𝑛𝑡𝑦𝑝𝑒 of each node 𝑣 with its parent type and retain its original 
𝑛𝑡𝑦𝑝𝑒 with a string 𝑆𝑣for subsequent node vectorization.

Initialize node representation. In addition to the structural in-
formation of functions, the semantic information of code statements 
is also important. Since the attributes of nodes are textual represen-
tations of code, and text belongs to the character type, it cannot be 
directly used as node attributes for model computation. Therefore, it is 
necessary to prioritize converting textual information into node feature 
vectors. Encoding statements in a function using pre-trained models 
is a standard method in the programming language domain (Zhou 
et al., 2019; Wen et al., 2023). We convert the statement of nodes into 
quantifiable vectors and utilize them as the initial features for nodes. 
Initially, HGAN4VD employs a lexical analyzer to acquire basic tokens 
from the code of nodes. After obtaining the vulnerability heterogeneity 
graph, considering that the cause of the vulnerability is incorrect code 
logic or incomplete consideration of the impact of data before and 
after, it is not significantly related to the naming of variables and 
functions (Li et al., 2019). The function and variable names in the token 
are mapped to the form of symbol names 𝐹𝑈𝑁𝑥 and 𝑉 𝐴𝑅𝑥, where 𝑥
represents the order in which the functions and variables appear. The 
purpose of doing this is to prevent them from interfering with the initial 
functionality of nodes, as different programmers defining function and 
variable names can bring some text noise, and symbolic processing 
can improve the ability to obtain common features of vulnerabilities. 
Subsequently, HGAN4VD uses a pre-trained Word2Vec model (Mikolov 
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Fig. 3. Overall Framework of Proposed Method HGAN4VD.
et al., 2013) to obtain the primary embedding for each node. The 
corpus for the pre-trained word embedding model is constructed using 
mapped tokens from all training samples, with the token dimensions 
constrained to fewer than 100 to reduce computational costs. Finally, to 
capture hidden information about the feature types of nodes, we encode 
each type as an integer and concatenate the encoding of the node type 
with the obtained node embedding as the feature representation for 
the node. We represent the statement of each node as 𝑥𝑖, and the 
representation of that node ℎ𝑖 = 𝑚𝑜𝑑𝑒𝑙(𝑥𝑖), where 𝑚𝑜𝑑𝑒𝑙 represents 
the mathematical expression of the pre-trained model. The final node 
embedding of the graph can be represented as 𝐻𝑛𝑜𝑑𝑒 = {ℎ1, ℎ2,… , ℎ𝑁}.

3.2. Simplification of heterogeneous graphs

The initial code structure graph extracted via the Joern (Yamaguchi 
et al., 2014) contains a significant amount of redundant information, 
increasing the number of nodes and edges. In heterogeneous graph 
neural networks (HGNNs), redundant or noisy nodes and edges can 
negatively impact model efficiency and accuracy. Prior studies (Liang 
et al., 2022; Liu et al., 2022) have shown that excessive structural 
complexity in graphs can lead to several issues: (1) increasing the 
distance between semantically related nodes, making it harder for 
message-passing mechanisms to capture meaningful relationships; (2) 
introducing noise in message propagation, thereby diluting important 
vulnerability-related patterns; and (3) unnecessarily increasing com-
putational complexity, which hinders scalability in large codebases. 
To address these challenges, we designed two graph simplification 
strategies, HGS1 and HGS2, to systematically reduce redundancy in 
the fused heterogeneous graph while preserving critical structural and 
semantic information. 

Firstly, we consider merging nodes with duplicate information. 
When constructing the code structure graph, Joern (Yamaguchi et al., 
2014) categorizes nodes into various types. For example, Expression-
type nodes are classified into subtypes like 𝐴𝑛𝑑𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,
𝑆𝑖𝑧𝑒𝑜𝑓𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, and 𝑜𝑡ℎ𝑒𝑟𝑠. Although this 
5 
approach enhances semantic information, it also increases the size of 
the graph. As shown in Fig.  2, the variable ‘‘𝑖’’ appears redundantly 
in the child nodes of both ‘‘int 𝑖 = 0’’ and ‘‘𝑖 = 0’’, with ‘‘int 𝑖 = 0’’ 
serving as the parent node for ‘‘𝑖 = 0’’. Consequently, in such cases, we 
retain the node ‘‘𝑖’’ closer to the parent node and eliminate the node 
‘‘𝑖’’ farther away.

Secondly, if node 𝑖 is the only parent node of node 𝑗 and their values 
are the same, this will result in a longer distance between node 𝑖 and 
the child nodes of node 𝑗. Since the values of nodes 𝑣 and 𝑗 are the 
same, they can be merged to shorten the distance between nodes.

The simplification process is outlined in Algorithm 1 and Algorithm 
2, where the simplification processing in two strategies, respectively. 
For HGS1, the algorithm performs breadth-first traversal on the input 
graph. Whenever two nodes 𝑣 and 𝑗 have the same value and share a 
common parent node, the edges between 𝑣 and 𝑗 and node 𝑗 are deleted, 
and the type of 𝑣 is changed to the parent node type(lines 10–12). 
Similarly, for HGS2, when nodes 𝑣 and 𝑗 share the same value and 𝑣 is 
the sole parent node of 𝑗, the two nodes are merged (lines 9–10).  HGS1 
removes isolated nodes and prunes weakly connected structures that 
contribute minimally to vulnerability detection, ensuring that retained 
subgraphs focus on relevant code semantics. HGS2 further refines the 
graph by reducing edge redundancy and optimizing node connectiv-
ity, enhancing the effectiveness of subsequent graph-based learning. 
Similar graph simplification techniques have been explored in recent 
studies (Xu et al., 2020; Wen et al., 2023; Ba et al., 2025), demon-
strating their potential to improve model robustness and computational 
efficiency in deep learning-based vulnerability detection tasks. 

3.3. Meta-graph generation

In vulnerability detection, generating code structure graphs is es-
sential for capturing key structures and dependencies in source code 
to identify potential security vulnerabilities. To enhance this process, 
we propose meta-graph generation based on meta-paths (Wang et al., 
2019) to better represent the complexity of code structures.
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Algorithm 1 Heterogeneous Graph Simplification Strategy 1 (HGS1)
 Input: Original Code Structure Graphs: 𝐺 = {𝑔1, 𝑔2,⋯ , 𝑔n}
 Output: Simplified Code Structure Graphs: 𝐺1
 Function: 𝐻𝐺𝑆1
1: 𝐺1 ← ∅
2: for each 𝑔𝑖 in 𝐺 do
3:  //do breadth-first traversal
4:  𝑆𝑡𝑎𝑐𝑘 ← ∅
5:  Push 𝑔𝑖.𝑟𝑜𝑜𝑡 into 𝑆𝑡𝑎𝑐𝑘;
6:  while 𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
7:  𝑣 ← Pop Stack
8:  for 𝑗 ∈ 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9:  if 𝑣.𝑣𝑎𝑙𝑢𝑒 = 𝑗.𝑣𝑎𝑙𝑢𝑒 and 𝑣.𝑡𝑦𝑝𝑒, 𝑗.𝑡𝑦𝑝𝑒 have the same parent 

𝑁𝑜𝑑𝑒𝑇 𝑦𝑝𝑒 then
10:  Remove edge < 𝑣, 𝑗 > from 𝑔𝑖;
11:  Remove node 𝑗 from 𝑔𝑖;
12:  𝑣.𝑡𝑦𝑝𝑒 ← 𝑣.𝑡𝑦𝑝𝑒.𝑃 𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑇 𝑦𝑝𝑒
13:  Push 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 into 𝑆𝑡𝑎𝑐𝑘;
14:  else
15:  Push 𝑗 into 𝑆𝑡𝑎𝑐𝑘;
16:  end if
17:  end for
18:  end while
19:  𝐺1 ← 𝑔𝑖;
20: end for
21: return 𝐺1

Algorithm 2 Heterogeneous Graph Simplification Strategy 2 (HGS2)
 Input: Original Code Structure Graphs: 𝐺 = {𝑔1, 𝑔2,⋯ , 𝑔n}
 Output: Simplified Code Structure Graphs: 𝐺2
 Function: 𝐻𝐺𝑆2
1: 𝐺2 ← ∅
2: for each 𝑔𝑖 in 𝐺 do
3:  𝑆𝑡𝑎𝑐𝑘 ← ∅
4:  Push 𝑔𝑖.𝑟𝑜𝑜𝑡 into 𝑆𝑡𝑎𝑐𝑘;
5:  while 𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
6:  𝑣 ← Pop Stack
7:  for 𝑗 ∈ 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
8:  if 𝑣.𝑣𝑎𝑙𝑢𝑒 = 𝑗.𝑣𝑎𝑙𝑢𝑒 and 𝑗.𝑛𝑢𝑚_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 1 then
9:  Remove edge < 𝑣, 𝑗 > from 𝑔𝑖;
10:  Remove node 𝑗 from 𝑔𝑖;
11:  Push 𝑣.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 into 𝑆𝑡𝑎𝑐𝑘;
12:  else
13:  Push 𝑗 into 𝑆𝑡𝑎𝑐𝑘;
14:  end if
15:  end for
16:  end while
17:  𝐺2 ← 𝑔𝑖;
18: end for
19: return 𝐺2

In our approach, a meta-path is defined as an ordered sequence 
of different types of nodes, illustrating their semantic relationships. 
A meta-path 𝜃 is a sequence in the form of 𝜃 = 𝑁1

𝑅1
←←←←←←←←←←←←→ 𝑁2

𝑅2
←←←←←←←←←←←←→

⋯
𝑅𝑛
←←←←←←←←←←←←→ 𝑁𝑛+1, where 𝑁𝑖 represents a state and 𝑅𝑖 embodies a composite 

relationship between 𝑁𝑖 and 𝑁𝑖+1 (Liu et al., 2021). Therefore, the 
composite relationship between 𝑁1 and 𝑁𝑖+1 can be expressed as 𝑅 =
𝑅1◦𝑅2◦⋯◦𝑅𝑖, where 𝑅 represents the composite operator of different 
relationships. The meta-graph is a sub-graph pattern that describes the 
relationship between a target node and contextual nodes. We construct 
a meta-graph structure by defining a meta-path, such as 𝐸 → 𝐼 → 𝐸
representing a fixed semantic meta-path and 𝐸 → 𝐷 → 𝐸 representing 
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another fixed semantic meta-path, where 𝐸, 𝐼 , and 𝐷 represent three 
different parent types of nodes (Expression, Identifier, Declaration). The 
auxiliary node 𝐼 and 𝐷 illustrate the sharing relationship between the 
target node 𝐸1 and the context node 𝐸2, where 𝐸1 and 𝐸2 represent two 
types of nodes with the Expression type. Each meta-path represents a 
distinct pattern of structure and dependency relationships, aiding in the 
more precise capture of semantic information within the code.

We define the set of all meta-graphs generated based on meta-
paths as Semantic Heterogeneous Information Networks (SHINs). We 
formally define the SHIN as follows: A Semantic Heterogeneous in-
formation network SHIN = {𝐺1, 𝐺2,… , 𝐺𝑛} is a set of meta-graphs 
generated based on predefined meta-paths, where 𝑛 represents the 
number of meta-paths. Each meta-graph 𝐺 = (𝑉 ,𝐸,𝐻) with node type 
mapping: 𝑉 ∶ 𝑡 ↦   where 𝑉 = 𝑣1,… , 𝑣𝑁  is the set of 𝑁 nodes, 𝐸
is the set of edges,   is the set of node types, and 𝐻 ∈ R𝑁×𝐷 is the 
feature matrix describing all nodes, where 𝑁 represents the number 
of nodes, and 𝐷 represents the node feature dimension initialized by 
the pre-trained model. A meta-graph is a sub-graph pattern describing 
the relationship between a pair of target and context nodes In contrast 
to existing meta-graph definitions (Wang et al., 2019), we explicitly 
specify four parent types of nodes to connect auxiliary nodes, and on 
this basis, up to 12 meta-paths (EDE, ECE, EOE, etc.) can be formed.

Unlike traditional GNN-based methods that primarily focus on local 
node information, meta-paths enable the capture of higher-order rela-
tionships between nodes. A meta-graph generated by the meta-path of 
length 2 can account for multiple node relationships to capture rela-
tionships between more distant nodes. This enables the deep learning 
model to capture more complex, higher-order relationships, thereby 
improving the performance of vulnerability detection tasks. Further-
more, using custom meta-paths provides scalability and adaptability, 
making them suitable for large graphs by focusing on specific, user-
defined node relationships. By employing meta-path rules of length 2, 
we mitigate the vanishing gradient problem, improve the structural 
integrity of the graph, and reduce computational costs compared to 
methods that consider all possible paths within the graph.

3.4. Heterogeneous graph convolution module

For the heterogeneous graph representation SHIN of each code 
snippet, we introduce a graph neural network with two attention layers 
to learn the semantic and structural information of the code from
SHIN. Firstly, there is a node-level attention layer where nodes in each 
meta-graph aggregate information from their neighboring nodes along 
the edges and utilize it to update the feature representation of nodes. 
HGAN4VD performs the node learning process based on meta-graphs 
extracted under different meta-paths. Subsequently, a vector attention-
weighted aggregation is conducted on the vectors aggregated from each 
meta-path, followed by a downstream propagation.

We represent the initial representation of node 𝑉𝑖 in meta-graph 
𝐺𝑟 as ℎ0𝑖,𝑟. Therefore, the representation of node 𝑉𝑖 in 𝑡 state is ℎ𝑡𝑖,𝑟, 
while ℎ𝑡+1𝑖,𝑟  represents the process of clustering along the edges in the 
meta-graph 𝐺𝑟 in 𝑡 + 1 state. 

ℎ𝑡+1𝑖,𝑟 = aggregator
(

ℎ𝑡𝑗,𝑟
)

,∀𝜈𝑗 ∈ 𝑁𝑖,𝑟 (1)

where 𝑁𝑖,𝑟 refers to the neighbors of node 𝑣𝑖 in meta-graph 𝐺𝑟.
Node-level Attention layer. Given a meta-path, each node is as-

sociated with multiple neighbors determined by the meta-path. Dis-
tinguishing the differences among these neighbors and selecting the 
most informative ones is a challenge. Node-level attention measures the 
importance of these neighbors and allocates different levels of attention 
to them.

In updating the feature representation of nodes in each meta-graph, 
we employs attention mechanisms to distinguish the influence of neigh-
boring nodes. Precisely, the correlation coefficient 𝑒 is first calculated 



Y. Zhang et al. Computers & Security 157 (2025) 104548 
between the nodes in graph 𝐺 and their immediate neighbors. Sub-
sequently, the attention coefficient 𝑎𝑖 is computed for each neighbor 
relative to target node 𝑣𝑖. 

𝑒𝑟𝑖,𝑗 = 𝑚
([

𝑊 ℎ𝑡𝑖,𝑟
‖

‖

‖

𝑊 ℎ𝑡𝑗,𝑟
])

, 𝑗 ∈ 𝑁𝑖,𝑟 , (2)

𝑎𝑟i,j = sof tmaxj
(

e𝑟i,j
)

=
exp

(

𝜎
(

𝐚T𝑟 ⋅
[

𝐡′i ∥ 𝐡′j
]))

∑

k∈ 𝑟
i
exp

(

𝜎
(

𝐚T𝑟 ⋅ [𝐡′i ∥ 𝐡′k ]
)) , (3)

where 𝑚 represents the transformation matrix operation, which can 
map different types of node features to the same feature space, ∥
represent cascading operation, 𝜎(⋅) represents the activation function, 
𝑒𝑟𝑖,𝑗 represents the importance of node 𝑣𝑗 to node 𝑣𝑖 in the meta-graph 
𝑟.

After obtaining the attention coefficients, a linear transformation is 
applied to the initial node representations, and the node representations 
are then updated by combining the attention coefficients. Given the 
scale-free properties of heterogeneous graphs, the graph data exhibits 
significant variability. To improve the stability of the training process, 
we extend node-level attention to multi-head attention. 

ℎ𝑡+1𝑖,𝑟 =∥𝐾𝑘=1 𝜎

(

∑

𝑗∈𝑁𝑖,𝑟

𝑎𝑟
𝑘
𝑖𝑗 𝑊

𝑘ℎ𝑡𝑗,𝑟

)

, (4)

where 𝑎𝑘𝑖,𝑗 denotes the 𝑘th head of 𝑁𝑖,𝑟. 𝑊 𝑘 corresponds to the 𝑘th head 
of 𝑊 , ∥𝐾𝑘=1 represents the concatenation of results from 𝐾 different 
attention heads.

Semantic-level Attention layer. In heterogeneous graphs, different 
meta-paths convey distinct semantic information. The primary chal-
lenge lies in selecting the most meaningful meta-paths and integrating 
these diverse semantic details. To address this, semantic-level attention 
is employed to evaluate the significance of various meta-paths and 
assign appropriate attention weights to each. The weight of each meta-
path is computed by first applying a non-linear transformation to the 
node-level embeddings, followed by calculating the weight using the 
formula provided. 

wr =
1
|V|

∑

i∈V
qT ⋅ tanh

(

W ⋅ hi,r + b
)

, (5)

where 𝑉  represents the set of all nodes, and 𝑞, 𝑊 , and 𝑏 are train-
able model parameters. Softmax normalization is applied to the above 
results as semantic-level attention. After obtaining the weight coef-
ficients, all node-level embeddings can be fused to obtain the final 
embedding ℎ𝑟𝑖 . 

𝛽𝑟 =
exp

(

w𝑟
)

∑𝑅
𝑘=1 exp

(

w𝑘
)
, (6)

ℎ′𝑖 =
𝑅
∑

𝑟=1
𝛽𝑟 ⋅ ℎ𝑖,𝑟, (7)

where 𝛽𝑟 represents the weight of the generated meta-graph 𝐺𝑟 under 
the meta-path 𝑟, 𝑅 represents the number of meta-paths. A more sig-
nificant value of 𝛽𝑟 indicates a higher importance of the corresponding 
meta-path.

Classifier layer. In this stage, HGAN4VD extracts node features 
from the graph to obtain a feature representation of the function. 
Each node in the graph represents a basic block that encapsulates 
syntactic and semantic information. Therefore, HGAN4VD retrieves the 
function’s feature by computing the average of all nodes’ features in the 
graph. 

𝐻 = 1
|𝑉 |

∑

𝑖∈𝑉
ℎ′𝑖 , (8)

where 𝐻 represents the feature representation of the sample function.
HGAN4VD conducts graph-level classification to ascertain the vul-

nerability of a function. It accepts the function’s feature representation 
as input and teaches a classifier to indicate whether the function is 
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vulnerable. The classifier extracts additional abstract features at the 
function level by utilizing a linear transformation on the feature rep-
resentation. To improve the extraction of function-level features, the 
proposed approach uses a multilayer perceptron (MLP) and applies the 
sigmoid function for classification. 

𝑦 = Sigmod(MLP(𝐻)), (9)

where 𝑦 is the final binary classification result of two dimensions. 
The first dimension represents the probability of non-vulnerability in 
the result, and the second represents the probability of vulnerability. 
Finally, the model takes the higher probability of both as the final 
output of vulnerability classification.

4. Experimental setup

This section provides a comprehensive examination of the evalu-
ation process for  HGAN4VD. The evaluation is structured to ensure 
a thorough and transparent analysis of the tool’s performance and 
contributions to the field. Firstly, we outlined the research questions 
along with their underlying motivation. Next, we introduce the dataset 
used in the experiment and outline the data preprocessing steps. Sub-
sequently, we describe the latest state-of-the-art baseline methods and 
compare their performance against our proposed model. Finally, we 
present a comprehensive overview of the experimental setup used for 
the evaluation. This includes a detailed description of the hardware and 
software configurations, parameter settings, evaluation metrics, and 
any other relevant experimental details.

4.1. Research questions

Our empirical study aims to answer the following research ques-
tions.

• RQ1: How efficient is our proposed method, HGAN4VD, in 
detecting vulnerabilities?
This research question aims to assess the performance of
HGAN4VD by conducting a comparative analysis against five 
baseline methods.

• RQ2: How does each module contribute to the performance 
of HGAN4VD?
We proposed two graph simplification algorithms, HGS1 and 
HGS2, to eliminate redundant nodes from code structure graphs. 
In addition, we effectively capture semantic and syntactic in-
formation in heterogeneous graphs using a two-layer attention 
network (HGAN). Therefore, the research question was raised to 
investigate the impact of the graph simplification module and 
HGAN module on the performance of HGAN4VD.

• RQ3: How does the selection of different meta-paths influ-
ence the performance of HGAN4VD?
The choice of meta-paths plays a crucial role in shaping the 
performance of HGAN4VD, as they define the semantic relation-
ships captured within the heterogeneous graph representation 
of the code. Therefore, this research question set out to assess 
how different selections of meta-paths impact the effectiveness of 
HGAN4VD.

• RQ4: How robust is HGAN4VD when trained on small or 
imbalanced datasets?
This research question investigates whether HGAN4VD is prone 
to overfitting when trained on limited or imbalanced data, by 
evaluating its performance under varying training set sizes and 
class distributions.
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Table 1
Datasets statistics.
 Dataset Samples #Vul #Non-Vul Vul Ratio 
 Devgin 22361 10067 12294 45.02%  
 Reveal 18 169 1664 16505 9.16%  
 Fan et al. 179 299 10547 168752 5.88%  

4.2. Experimental subject

To investigate the effectiveness of HGAN4VD, we adopt three vul-
nerability datasets in our study, including Devign (Zhou et al., 2019), 
Reveal (Wei et al., 2020), and Schmidt et al. (2007). However, in the 
field of vulnerability detection, other publicly available datasets can 
also serve as alternative solutions, such as SARD (Li et al., 2021b), 
Juliet C/C++ (Black and Black, 2018), CodeXGLUE (Lu et al., 2021), 
etc. Given our focus on analyzing real-world project datasets, we opted 
not to use the three previously mentioned datasets containing ar-
tificially synthesized data. However, we acknowledge the existence 
of other datasets and encourage their exploration in future research 
endeavors.

The FFmpeg + QEMU dataset, provided by Devign, is manually 
labeled and derived from two open-source C projects. It comprises 
approximately 10,000 vulnerable entries and 12,000 non-vulnerable 
entries. On the other hand, the Reveal dataset is collected from two 
open-source projects: the Linux Debian Kernel and Chromium. This 
dataset includes around 2,000 vulnerable entries and 20,000 non-
vulnerable entries. Additionally, Fan et al. curated a dataset from over 
300 open-source C/C++ GitHub projects, encompassing 91 distinct 
vulnerability types recorded in the Common Vulnerabilities and Ex-
posures (CVE) database from 2002 to 2019. The dataset consists of 
approximately 10k vulnerable entries and 177k non-vulnerable entries. 
We also performed three filtering steps on the above three datasets: 
(1) deleting functions with abnormal truncation; (2) deleting functions 
that failed to be parsed by the Joern tool (Yamaguchi et al., 2014); 
(3) deleting functions with more than 500 nodes after parsing to avoid 
noise. The statistical data of each experimental dataset after processing 
are shown in Table  1.

In our empirical study, we used a random sampling method to 
divide the corpus into three sets: a training set, a validation set, and 
a test set. The split ratio was 80% for training, 10% for validation, 
and 10% for testing. This ratio is consistent with the settings used in a 
previous study (Yu et al., 2022) to ensure a fair comparison.

4.3. Performance metrics

We employ four widely-used performance metrics to evaluate the 
performance of  HGAN4VD and explain their relevance in vulnerability 
detection scenarios.

• Precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 . In vulnerability detection, Preci-

sion refers to the proportion of samples identified as vulnerabili-
ties that are truly vulnerabilities. TP is the number of true positive 
samples, and FP is the number of false positive samples.

• Recall: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . In the context of vulnerability detection, 

this metric represents the proportion of actual vulnerabilities 
correctly identified by the system. It measures the number of valid 
vulnerabilities detected relative to the total number of actual 
vulnerabilities. Here, FN refers to the number of false negative 
samples.

• Accuracy: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 . In vulnerability detection, 

accuracy denotes the proportion of all samples that are correctly 
classified, regardless of whether they represent vulnerabilities or 
non-vulnerabilities. Here, FP refers to the number of false positive 
samples.
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• F1 score: 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . The F1 Score is the har-

monic mean of Precision and Recall. It provides a balanced mea-
sure between Precision and Recall, especially crucial in vulnera-
bility detection, that balances the aspects of detection accuracy 
and completeness.

4.4. Baselines

To evaluate the competitiveness of  HGAN4VD, we conducted a 
comparative analysis against five state-of-the-art graph-based baseline 
methods. Specifically, we select SySeVR, Devign, Reveal, IVDetect, and 
AMPLE as baselines to ensure direct comparison with mainstream deep 
learning-based vulnerability detection methods. Among these, SySeVR 
represents an advanced token-based method, while the remaining four 
are advanced graph-based methods. Although these baselines primar-
ily utilize deep learning techniques, they differ from our proposed 
heterogeneous graph neural network in structure and methodology. 
By benchmarking against these established methods, we aim to more 
accurately assess and highlight the advantages and effectiveness of 
our heterogeneous graph neural network in addressing vulnerability 
detection tasks.

• SySeVR (Li et al., 2021c) is a deep learning method that utilizes 
program slicing to generate four types of slices from suspicious 
points in the target program. It then learns vector features for 
each slice and performs classification and recognition based on 
these features.

• Devign (Zhou et al., 2019) builds a joint graph containing AST, 
CFG, DFG, and NCS, then uses GGNN for vulnerability detection.

• Reveal (Haiduc et al., 2010) divides code vulnerability detection 
into feature extraction and training phases. It leverages GGNN to 
extract features.

• IVDetect (Zhang et al., 2020) constructs PDG and utilizes GCN to 
learn the graph representation for vulnerability detection.

• AMPLE (Wen et al., 2023) uses the multi-head attention mech-
anism to calculate the weights of different edge types and then 
enhances the node representation by aggregating the attention 
scores of node edges.

For these baseline methods, we reproduced their models based 
on the descriptions provided in the original research and achieved 
performance results consistent with those reported. However, as the 
source code for the Devign model was not made available, we utilized 
the reproduced results reported by Wen et al. (2023).

4.5. Experimental settings

Our proposed method and baselines are implemented using the 
PyTorch framework. All experiments were implemented on a server 
composed of a multi-core CPU(Intel i7-13600K) and a GPU(NVIDIA 
GeForce RTX 4090). Following the work (Wen et al., 2023), we ran-
domly divide the overall dataset into training, validation, and testing 
sets in a ratio of 8:1:1.

We utilized the open-source tool Joern (Yamaguchi et al., 2014) 
to build the original code structure diagram of the function, which is 
widely used in graph neural network-related works (Yamaguchi et al., 
2014; Chakraborty et al., 2021; Wang et al., 2023a). The DGLv0.7.2 
package is used to store and process graph-based data. Following the 
work (Wen et al., 2023), the dimension of the code text feature vector 
for each node in the vulnerability heterogeneity graph is 100. Although 
higher dimensions may lead to better results, we did not conduct 
experiments with higher dimensions due to hardware limitations. Our 
two-layer attention network consists of 8 attention heads and 12 meta-
paths, with parameter complexity mainly determined by 𝑂(𝐾 × 𝑑2)
per meta-path for node-level attention and 𝑂(𝑅 × 𝑑) for semantic-level 
attention. To prevent overfitting, we apply parameter sharing across 
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Table 2
Hyper-parameters settings for experiments.
 Category Hyper-parameter Value 
 Word2Vec embedding_size 100  
 epochs 50  
 

HGAN4VD

num_metapath 12  
 feature_size 100  
 batch_size 64  
 num_heads 8  
 dropout 0.1  
 epochs 100  

meta-paths to reduce redundant weights, dropout (rate = 0.1) to pre-
vent over-reliance on specific attention paths, and early stopping with 
a patience of 20 epochs. Additionally, L2 regularization is implicitly 
enforced through the RAdam (Liu et al., 2019) optimizer. The model 
is trained using the RAdam (Liu et al., 2019) optimizer for 100 epochs, 
with a learning rate of 1×10−3. We did not use Adam (Kingma and Ba, 
2014) because although Adam converges quickly, it is easy to converge 
to local solutions. At the same time, Adam can control the variance of 
the adaptive rate, resulting in better training performance (Liu et al., 
2019). These measures ensure that model complexity grows linearly 
with the number of meta-paths rather than exponentially, maintaining 
efficiency even for smaller datasets.

Table  2 illustrates the specific hyperparameter setting of HGAN4VD.

5. Experimental results

5.1. RQ1: How efficient is our proposed method, HGAN4VD, in detecting 
vulnerabilities?

RQ1 aims to compare the HGAN4VD with five state-of-the-art base-
lines, which are illustrated in Section 4.4. Table  3 shows the overall 
results of the different methods concerning four evaluation measures 
as shown in Section 4.3, and we mark the best one of each metric in 
bold.

As presented in Table  3, our proposed method HGAN4VD out-
performs all considered baselines. We observe that, across the three 
datasets, HGAN4VD exhibits superior accuracy and F1 scores compared 
to all baseline methods. Specifically, compared to AMPLE, HGAN4VD 
has improved accuracy by 7.7%, 1.5%, 2%, and F1 scores by 3.8%, 
12.2%, 2.01% on the Devign, Reveal, and Fan et al. datasets, respec-
tively. Moreover, the improvement in vulnerability detection perfor-
mance of HGAN4VD compared to the Devign method is even more 
pronounced. Our method employs a heterogeneous graph to gather 
diverse semantic information and applies a two-layer attention mech-
anism to capture subtle code details within each semantic subgraph. 
In contrast, other GNN-based methods generate code representations 
directly from the original graph, lacking the capability to distinguish 
fine-grained heterogeneous features of the code effectively.

Our findings indicate that the vulnerability detection performance 
of the token-based method, SySeVR, is significantly inferior to that of 
the graph-based techniques. This performance gap can be attributed 
to SySeVR’s loss of syntactic and semantic information during the 
source code transformation into token sequences. The experimental 
results further demonstrate that graph-based methods are highly effec-
tive in capturing both syntactic and semantic information from source 
code, leading to improved performance in vulnerability detection tasks. 
Therefore, the following observation can be made: HGAN4VD is more 
effective than state-of-the-art vulnerability detection methods.

Summary for RQ1: HGAN4VD outperforms state-of-the-
art vulnerability detection methods in terms of F1 score 
and accuracy, enabling more effective identification of 
vulnerabilities.
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5.2. RQ2: How does each module contribute to the performance of
HGAN4VD?

To answer this research question, we separately investigated the 
effects of graph simplification and heterogeneous graph attention net-
works on HGAN4VD.

(1) Graph simplification. Based on breadth-first traversal, we pro-
pose two heterogeneous graph simplification algorithms, HGS1 and 
HGS2, for dynamically removing redundant nodes from code structure 
graphs. Considering the impact of redundant control dependencies 
on vulnerability detection results, this section evaluates the perfor-
mance of these two algorithms by comparing the code structure graphs 
processed by each algorithm with the original code structure graph 
without algorithmic processing and conducting ablation research on 
three datasets.

Table  4 presents the performance of the vulnerability detection 
models under different processing methods. From Table  4, it can be 
observed that the graph neural network trained on code structure 
graphs processed by Algorithm 1 and Algorithm 2 outperforms those 
trained on the initial code structure graphs without graph simplification 
algorithms. This indicates that both algorithms can remove redundant 
information from the code structure graphs without negatively impact-
ing the model, as they ensure the removal of duplicate nodes without 
disrupting the original control dependencies. When both algorithms are 
used simultaneously, our approach achieves an average improvement 
of 7.2% in F1 score compared to not using any algorithms.

(2) HGAN Module. To evaluate the effectiveness of the two-layer 
attention network, we replaced it with several commonly used graph 
neural networks, including GCN, GGNN, and GAT, and conducted 
a comparative analysis with  HGAN4VD. Additionally, we examined 
models utilizing only a single-layer attention network by removing the 
semantic-level attention layer and averaging the outputs obtained from 
the node-level attention layer.

As presented in Table  4, the two-layer attention network outper-
formed all other compared methods, demonstrating its superior ef-
fectiveness. This indicates that effectively utilizing the semantic and 
syntactic information in the heterogeneous graph can significantly 
improve the effectiveness of vulnerability detection. Furthermore, the 
two-layer attention network achieved better results than the single-
layer attention network, underscoring the effectiveness of our subgraph 
partitioning approach. This method successfully distinguishes between 
different semantics by organizing them into separate meta-graphs and 
calculating their weights through the semantic-level attention layer.

Summary for RQ2: The graph simplification algorithm and 
the two-layer attention network significantly contribute to 
the performance of HGAN4VD. Using the graph simplification 
algorithm resulted in an average improvement of 7.2% in F1 
score across the three datasets, while employing the two-layer 
attention network led to an average increase of 9.39% in F1 
score compared to the best baseline models across the three 
datasets.

5.3. RQ3: How does the selection of different meta-paths influence the 
performance of HGAN4VD?

We analyze the impact of meta-graphs derived from different meta-
paths on the model’s performance. In our approach, we classify 69 node 
types into four parent categories based on their functionality. With a 
meta-path length of 2, up to 12 unique meta-path combinations can be 
generated, resulting in 12 corresponding meta-graphs. While extending 
the meta-path length was considered, it was observed that increasing 
the length leads to a rapid and exponential growth in the number 
of meta-graphs, making it less practical. This will result in a small 
number of nodes in each meta-graph. Z. Wu et al. (2020) highlighted 
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Table 3
Comparison of HGAN4VD and baselines in terms of Accuracy, Precision, Recall, and F1 score Metrics.
 Metrics

Dataset Devign Reveal Fan et al.
 Baseline Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score 
 SySeVR 47.88 46.06 58.81 51.66 74.33 40.70 24.95 30.75 90.04 30.91 14.11 18.88  
 Devign 56.89 52.50 64.67 57.95 87.49 31.55 36.65 33.91 92.78 30.61 15.96 20.98  
 Reveal 61.08 55.60 69.70 62.20 81.77 31.55 61.21 41.24 87.10 17.22 33.04 22.87  
 IVDetect 57.26 52.33 57.30 54.84 – – – - – – – –  
 AMPLE 62.16 55.64 83.99 66.94 92.71 51.06 46.15 48.48 93.14 29.92 34.58 32.11  
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12  
Table 4
Ablation study results for various methods.
 Metrics

Dataset Devign Reveal Fan et al.
 Setting Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score 
 w/o HGS 64.53 59.68 71.41 65.02 92.52 45.10 63.23 52.65 87.39 16.76 59.91 26.20  
 w/o HGS1 67.94 62.26 77.60 69.09 92.58 45.55 65.09 53.59 87.61 18.30 66.89 28.74  
 w/o HGS2 65.39 59.73 76.81 67.20 92.67 46.06 66.95 54.57 94.34 18.96 64.22 29.27  
 w/o SAL 61.80 57.70 64.69 60.99 91.74 41.42 61.80 49.60 93.85 15.93 55.33 24.73  
 GCN 61.08 55.60 69.70 62.20 92.46 44.78 62.66 52.24 87.10 17.22 33.04 22.87  
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12  
Table 5
Comparison of results across different meta-path selections.
 Metrics

Dataset Devign Reveal Fan et al.
 nums Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score 
 0 61.80 57.70 64.69 60.99 91.74 41.42 61.80 49.60 92.78 30.61 15.96 20.98  
 3 63.26 58.36 71.28 64.17 92.00 43.05 66.95 52.40 87.10 17.22 33.04 22.87  
 6 65.75 60.02 77.34 67.59 92.52 45.10 63.23 52.65 94.59 18.28 56.70 27.65  
 9 68.67 63.14 77.21 69.47 93.55 50.66 71.39 59.26 94.87 21.28 67.15 32.32  
 HGAN4VD 69.83 64.09 78.79 70.69 94.07 53.82 69.53 60.67 95.28 22.88 66.95 34.12  
that insufficient nodes can result in limited information propagation 
and inadequate model training. Based on this observation, we opted 
not to consider more meta-paths. To further evaluate meta-graphs’ 
impact, we trained the model using a two-layer attention network. We 
randomly removed three meta-graphs simultaneously, retraining the 
model to observe the resulting performance degradation. Given the 
randomness of meta-graph removal, we repeated the experiment 10 
times and averaged the results to obtain the outcome.

Table  5 presents the relative decrease in four performance metrics 
corresponding to removing a given number of meta-graphs. The re-
sults demonstrate a positive correlation between the average attention 
weights assigned to the meta-graphs and the extent of performance 
degradation upon removal. This finding indicates that the model ef-
fectively assigns attention weights to meta-graphs, thereby enhancing 
the overall efficiency of vulnerability detection.

Summary for RQ3: Our model can assign higher attention 
weights to more important meta-graphs, thus better utilizing 
the complex information of the code structure graph.

5.4. RQ4: How robust is HGAN4VD when trained on small or imbalanced 
datasets?

To assess the model’s robustness against overfitting, we evaluate 
HGAN4VD on different training sizes (100%, 50%, 25%, and 10%) 
while keeping the test set unchanged. As shown in Fig.  4, reducing the 
training size leads to a gradual decline in both F1-score and Recall, 
confirming the expected impact of reduced training data on model 
generalization.
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(1)Ablation Study on Dataset Sizes. For the Devign dataset, F1-
score and Recall decrease by 15.0% and 18.9%, respectively, when 
using only 10% of the training data. The Reveal dataset experiences 
a larger drop, with F1-score and Recall decreasing by 20.4% and 
27.1%, respectively. The most significant decline is observed in the Fan 
et al. dataset, where F1-score and Recall drop by 30.6% and 37.4%, 
highlighting the challenges posed by data scarcity in highly imbalanced 
settings.

Despite these declines, the model does not exhibit extreme fluctu-
ations or abrupt drops, suggesting that HGAN4VD is not overfitting to 
the full training set. The controlled degradation in performance val-
idates the effectiveness of dropout regularization, parameter sharing, 
and early stopping, which prevent the model from over-relying on large 
training data and promote stable feature extraction across different 
dataset sizes.

(2)Class Imbalance Analysis. Given the inherent class imbalance 
in vulnerability detection tasks, we further analyzed the model’s recall 
on the minority class (vulnerable samples). As training data decreases, 
Recall drops across all datasets, with Reveal and Fan et al. experiencing 
the most significant reductions due to their more skewed label distribu-
tions. In the Fan et al. dataset, Recall declines by 37.4%, emphasizing 
the difficulty in learning vulnerability patterns from limited positive 
samples. Devign, which has a more balanced sample distribution, shows 
a smaller Recall drop of 18.9%, indicating better resilience against class 
imbalance. 

These results reaffirm that while HGAN4VD generalizes well across 
different dataset sizes, class imbalance remains a key challenge, par-
ticularly when training data is scarce. Future work could explore cost-
sensitive learning, data augmentation, or adaptive loss functions tai-
lored for highly imbalanced scenarios to mitigate overfitting risks and 
improve detection of rare vulnerabilities.
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Fig. 4. F1 scores and Recall achieved under different Training Data Sizes.
Summary for RQ4: HGAN4VD maintains stable performance 
across varying training sizes and class distributions, show-
ing resilience against overfitting and demonstrating good 
generalization even on limited or imbalanced datasets.

6. Discussion

6.1. Analysis of hyper-parameter settings

We perform a sensitivity analysis on the key hyperparameters of 
HGAN4VD, explicitly examining the learning rate and batch size. The 
F1 score was selected as the evaluation metric, as it offers a balanced 
measure of precision and recall, both critical for vulnerability detection 
tasks. The results, obtained across three datasets, are presented in Fig. 
5, with all other hyperparameters fixed at their optimal values.

We can observe that for the Design and Reveal dataset, a learning 
rate of 1 × 10−4 and a batch size of 64 achieved the highest F1 scores. 
This suggests that these two datasets’ code structure and semantic 
information have certain similarities, possibly due to their shared focus 
on widely used open-source C projects. These datasets may exhibit less 
code variation, making it easier for the model to converge to an optimal 
solution at a relatively higher learning rate and smaller batch size. In 
contrast, for the dataset of Fan et al. a learning rate of 1 × 10−5 and a 
batch size of 128 are the most effective. This dataset contains a more 
diverse range of code structures and vulnerabilities, which could lead to 
a more complex optimization process. Therefore, a lower learning rate 
and larger batch size are better suited to stabilizing the training process 
and avoiding potential overfitting. This highlights how the model’s 
sensitivity to hyperparameters varies depending on the complexity and 
diversity of the data.

6.2. Cross-language generalization

To evaluate the generalization capability of HGAN4VD across pro-
gramming languages, we conducted supplementary experiments on 
two widely used vulnerability detection datasets written in Java and 
Python. Specifically, we selected the Juliet Test Suite v1.3 (Java ver-
sion) (National Institute of Standards and Technology, 2017) and the 
VUDENC dataset (Wartschinski et al., 2022). The Juliet Java dataset 
contains approximately 28,881 labeled code samples with diverse vul-
nerability types, synthesized under standardized CWE categories. The 
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VUDENC dataset, on the other hand, consists of over 1,000 vulnerable 
functions labeled with different CWE categories.

Due to the lack of publicly reported baseline results from previous 
neural vulnerability detection methods on these datasets, we adopted 
the detection methods proposed in the original dataset papers as base-
lines. In Java, we refer to deep learning methods used in related 
research (Pang et al., 2015; Ma et al., 2017; Hovsepyan et al., 2012). 
In Python, we adopted the baseline results of the original VUDENC 
benchmark (Wartschinski et al., 2022), which reported performance 
for several static and neural vulnerability detectors. Our experimen-
tal setup, including model hyperparameters, training protocols, and 
evaluation metrics, remained consistent with the settings described in 
Section 4. This cross-language evaluation aims not to claim superiority 
over existing baselines but to demonstrate that our model architecture 
can be extended to other programming languages with reasonable 
performance, indicating its potential for broader applicability.

As presented in Table  6, HGAN4VD demonstrated competitive per-
formance on both datasets, achieving better F1 scores than the re-
spective baselines. These results provide preliminary evidence that the 
proposed heterogeneous graph representation and two-tier attention 
mechanism generalize well to other programming languages. However, 
we acknowledge the limited scale and coverage of these additional 
experiments. We plan to conduct more extensive cross-language and 
multi-language evaluations in future work.

Although HGAN4VD’s metrics are slightly lower than the best re-
sults reported in each data set, they still achieve between 85% and 
90% of the performance of the respective baselines on Java and Python. 
We further attribute the performance gap on the Python dataset to 
methodological differences. Specifically, the baseline method in VU-
DENC adopts a per-CWE training strategy, training a separate model 
for each vulnerability type. In contrast, HGAN4VD employs a uni-
fied model to detect all types of vulnerabilities, which, while more 
scalable, may perform poorly in highly imbalanced or specialized vul-
nerability settings. Similarly, differences in language semantics, such 
as dynamic typing and looser syntax in Python, may also pose chal-
lenges to generalization. However, these findings provide encouraging 
evidence that our graph-based representation and attention mechanism 
can be adapted to the Java and Python codebases, which shows promise 
for broader applicability across languages.

6.3. Threats and Limitations of HGAN4VD

Internal threats. The first internal threat to validity lies in the 
potential implementation errors of  HGAN4VD. To address this, we 
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Fig. 5. F1 scores achieved under various Learning Rates and Batch Size configurations.
Table 6
Comparison of results across different programming languages.
 Language Baseline Accuracy Precision Recall F1 score 
 Java Pang et al. (2015) 63 67 63 65  
 VuRLE (Ma et al., 2017) – 65 66 65  
 Hovsepyan et al. (2012) 87 85 88 85  
 HGAN4VD 74.5 73.1 73.8 76.9  
 Python VUDENC (Wartschinski et al., 2022) 92.5 82.2 78.0 80.1  
 HGAN4VD 68.9 67.5 68.2 70.8  
utilized well-established libraries, such as PyTorch and DGL, to en-
sure robustness and minimize the likelihood of errors during imple-
mentation. The second internal threat arises from the use of Joern 
tool (Yamaguchi et al., 2014) to generate the Code Property Graph, 
which has known limitations. Specifically, Joern relies heavily on static 
analysis, which may fail to capture the code’s dynamic behavior and 
complex logic. Additionally, due to the diversity of code structures, 
Joern might not cover all edge cases, potentially leading to incomplete 
or incorrect graph generation. Despite these limitations, Joern remains 
one of the most advanced tools for program dependency analysis and 
is widely used in the vulnerability detection community (Cao et al., 
2022; Chakraborty et al., 2021; Zhou et al., 2019; Wen et al., 2023). 
Our evaluation shows that incorporating program dependencies signif-
icantly improves HGAN4VD’s performance, making Joern’s limitations 
not detrimental to the overall conclusions. The third internal threat is 
the baselines considered in RQ1. For these baselines, we replicated their 
baseline models based on the original research and achieved similar 
performance. However, since the Devign model did not provide source 
code, we relied on results reproduced by Wen et al. (2023), which 
might introduce slight variations.

External threats. The main external threat to this study is the cor-
pus. We consider three datasets to evaluate HGAN4VD: FFMPeg+Qemu, 
Reveal, and Fan et al. These datasets, widely employed in prior vul-
nerability detection research (Wen et al., 2023; Zhou et al., 2019; 
Chakraborty et al., 2022), provide a comprehensive evaluation of our 
method. However, their focus on C-family languages may not fully re-
flect the diversity of code syntax and structure found in other program-
ming paradigms. To mitigate this threat, we conducted preliminary 
cross-language experiments on the Juliet Test Suite v1.3 (Java) (Na-
tional Institute of Standards and Technology, 2017) and VUDENC 
(Python) (Wartschinski et al., 2022), demonstrating the potential of 
our model to generalize to other languages. While these initial results 
are promising, we acknowledge their limited scale, and leave more 
extensive multi-language evaluation as future work.

Limitations. While the findings of this study highlight the effec-
tiveness of HGAN4VD in vulnerability detection, several limitations 
remain. Firstly, the model generically treats vulnerabilities without ac-
counting for the distinct characteristics of different vulnerability types. 
This generalized approach may result in suboptimal performance in 
cases where specific vulnerabilities exhibit unique patterns or behaviors 
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not captured by the current feature representation. Future research 
will address this limitation by incorporating features specific to dif-
ferent types of vulnerabilities. Secondly, HGAN4VD relies heavily on 
static analysis and program dependency graphs. Although effective, 
this approach may not fully account for runtime vulnerabilities or 
dynamic execution patterns. To overcome this limitation, future work 
will explore integrating dynamic analysis techniques to complement 
the static analysis approach, enabling better detection of vulnerabilities 
that manifest only during program execution. Thirdly, the current 
evaluation has primarily focused on open-source C/C++ projects. To 
ensure the robustness and scalability of HGAN4VD across diverse en-
vironments, we plan to extend our evaluation to a broader range of 
software systems, including commercial projects developed in other 
programming languages. Moreover, HGAN4VD is designed to operate 
at the function level, and as such, it may not capture vulnerabilities that 
arise from interactions between multiple functions or modules. These 
include issues such as improper use of global variables, cross-function 
data flows, or module-level resource conflicts, which often require 
inter-procedural or inter-modular analysis to be detected. This limits 
the ability of HGAN4VD to handle system-wide or application-wide 
security assessments.

6.4. Complexity, Scalability and Applicability of HGAN4VD

HGAN4VD utilizes a heterogeneous graph attention network com-
posed of two main modules: node-level attention and semantic-level 
attention layers. The overall time complexity of the node-level attention 
layer is O(K|E|d), where 𝐾 is the number of attention heads, |𝐸| is 
the number of edges in the meta-graph, and 𝑑 is the feature dimension 
of each node. For semantic-level attention, the complexity is O(R|V|d), 
where 𝑅 is the number of meta-paths and |𝑉 | is the number of nodes. 
Thanks to the graph simplification (HGS1, HGS2), the model reduces 
redundant nodes and edges, improving scalability on large datasets.

In practice, the preprocessing stage, which includes parsing code 
and constructing heterogeneous graphs, takes approximately 8 h and 
50 min on the Devign dataset, 8 h on Reveal, and 82 h and 20 min 
on the Fan et al. dataset. The proposed framework benefits from stable 
convergence and performs well on large, imbalanced datasets thanks to 
regularization techniques such as dropout and early stopping.
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HGAN4VD is suitable for large-scale C/C++ projects, including 
system software, embedded systems, industrial control, and security-
critical open-source projects. Future work will extend the model to 
cross-module and multi-language scenarios.

7. Related work

Significant advancements have been made in integrating deep learn-
ing into various domains in recent years. This progress has led to the 
widespread adoption of deep learning techniques for feature extrac-
tion and the automated detection of code vulnerabilities and defects. 
Early research mainly involved advanced neural network architec-
tures to process and understand code for defect prediction. Li et al. 
(2018) proposed VulDeePecker, a deep learning-based vulnerability 
detection framework for vulnerability detection. The framework pro-
cesses C/C++ source code by slicing code segments involving func-
tion calls into ‘‘code gadgets’’. VulDeePecker employs a Recurrent 
Neural Network (RNN) for feature extraction and uses Bidirectional 
Long Short-Term Memory to address the issues of gradient vanishing 
and dependencies between preceding and subsequent directions. This 
approach reduces the false negative rate in vulnerability detection. 
However, the method treats code as natural language text, which 
results in the loss of rich semantic information, such as data flow 
and control flow in source code. Allamanis (Allamanis et al., 2017) 
pioneered graph neural networks to address the challenge of obtaining 
deep semantic features in code. Their method addresses two types of 
software problems: variable renaming and variable misuse. However, 
this approach does not attempt to solve the issue of vulnerability 
detection. Additionally, the model in the paper cannot handle inter-
procedural code analysis. Given the complexity and abstraction of 
modern software, inter-procedural function calls are both common and 
critical, making this a notable limitation.

Recent studies (Steenhoek et al., 2023; Cao et al., 2022; Feng et al., 
2020) focusing on code as text often treat source code as natural 
language, which results in the loss of unstructured semantic informa-
tion inherent in code, such as control flow and data flow. Conversely, 
approaches employing graph neural networks (Wen et al., 2023; Wang 
et al., 2023a), extract unstructured features from code through compi-
lation analysis, enabling the capture of potential semantic information. 
Compared to text-based methods, graph-based approaches are better 
equipped to represent the structural properties of code. However, ex-
isting graph-based methods predominantly utilize homogeneous graphs 
to represent code. These approaches fail to distinguish between edge 
types and do not support multiple edges. As a result, they treat data 
flow and control flow within code as the same type of edge, limiting 
the model’s ability to deeply extract and represent the distinct features 
of these two types of semantic information. This limitation highlights 
the need for more sophisticated graph representations to capture the 
complex relationships within code better.

Recent research has investigated applying advanced machine learn-
ing techniques and attack graphs to mitigate the increasing complexity 
of cybersecurity threats. Liu et al. (2020) suggest a game theory-based 
method for defense decision-making in multistep attack scenarios. They 
employ game theory and attack graphs to model network vulnera-
bilities to optimize defense strategies. This method considers direct 
and indirect payoffs, including legal responsibility and counterattacks. 
This method is particularly effective in dynamic attack-defense en-
vironments, where attackers perpetually modify their strategies. To 
identify emerging threats, Nia et al. (2019) employ attribute-based 
attack graphs and self-avoiding random walks (SARW). By matching 
unknown network traffic to known threat patterns, their method ob-
tains high sensitivity (up to 98%), rendering it suitable for real-time 
detection in intrusion detection systems (IDS). Liang et al. (2020) 
introduce FIT, a neural network-based tool for detecting vulnerabilities 
in firmware across various architectures in the context of IoT security. 
Ineffectiveness and efficiency, FIT surpasses state-of-the-art tools such 
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as Gemini and Discover by employing a three-level ascribed control 
flow graph (3LACFG) and bipartite graph matching to compare binary 
functions. These studies highlight the effectiveness of integrating graph-
based models with advanced learning methods to tackle system-level 
vulnerabilities and attack paths. While our work focuses on static 
vulnerability detection at the code level, future work could incorpo-
rate insights from attack graph modeling to capture cross-function or 
cross-module vulnerabilities better. 

Our approach differs significantly from existing methods by ad-
dressing the limitations of text- and graph-based approaches. Unlike 
text-based methods (Steenhoek et al., 2023; Cao et al., 2022; Feng 
et al., 2020), which treat code as natural language and lose critical 
unstructured semantic information, our method leverages graph repre-
sentations to preserve the structural and semantic relationships within 
code. Furthermore, unlike existing graph-based methods (Wen et al., 
2023; Wang et al., 2023a), which predominantly use homogeneous 
graphs, our approach employs a heterogeneous graph representation 
to capture the complexity of code semantics better.

Specifically, our method distinguishes between edge types, such as 
data flow and control flow, and supports multiple edges between nodes. 
This allows the model to more accurately represent the relationships be-
tween code components, enabling deeper feature extraction and a more 
comprehensive understanding of the code’s behavior. Additionally, our 
approach incorporates inter-procedural analysis, addressing the lim-
itation of existing GNN-based methods that cannot handle function 
calls across procedures. By combining these innovations, our approach 
provides a more robust and effective framework for vulnerability detec-
tion, capable of capturing both the structural and semantic intricacies 
of modern software systems.

8. Conclusion

To address the issue of syntax and semantic information loss in 
existing deep learning-based software vulnerability detection, this pa-
per proposes a new vulnerability detection method, HGAN4VD, based 
on heterogeneous intermediate representations of the source code. 
HGAN4VD utilizes Joern (Yamaguchi et al., 2014) to generate code 
structure graphs at the function level, constructs heterogeneous graphs 
for the code, proposes two simplification algorithms for heteroge-
neous graphs to remove redundant information, and then utilizes 
Word2Vec (Mikolov et al., 2013) to generate vectorized representations 
of heterogeneous graphs. Finally, a two-layer attention network is 
used to implement software vulnerability detection. Experiments on 
three benchmark datasets show HGAN4VD outperforms state-of-the-
art baselines. These results highlight the effectiveness of HGAN4VD 
in leveraging global information from code graphs for vulnerability 
detection.

In the future, we aim to extend this model in several directions. 
First, we plan to extend our evaluation to more programming languages 
further and explore transfer learning techniques to enhance language 
adaptability. We also plan to extend the framework to support cross-
function and cross-module analysis by incorporating inter-procedural 
dependency graphs or global resource graphs, which could further 
enhance the model’s capability to detect system-level vulnerabilities. 
Furthermore, exploring more effective methods for classifying nodes 
in code graphs based on their functional roles will be another key 
direction of our research.
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