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Abstract—Software defect prediction (SDP) is a critical task
that aims to identify potential defects and allocate resources
for testing to enhance software reliability. In this study, we
present a novel defect prediction framework called EDP-BGCNN,
which leverages the power of BERT and graph convolutional
neural networks to represent code. Our approach first extracts
the code’s structural semantic features based on its abstract
syntax tree (AST), followed by applying BERT for embedded
learning to extract the code’s semantic features. We then use
latent Dirichlet allocation (LDA) to extract descriptive semantic
features and convert them into a numeric vector. The code and
descriptive semantic features are then combined and processed by
GraphSMOTE to address the class imbalance problem. Finally,
we obtain a more comprehensive representation using graph
convolutional neural networks. We evaluated our approach on
five open-source projects and compared it with three state-of-the-
art deep-learning methods. Our experimental results demonstrate
that EDP-BGCNN can achieve significant improvements in AUC
(4.9% - 23%) and F1-measure (6.6% - 10.7%) on average.

I. INTRODUCTION

As software systems have grown increasingly complex,

ensuring their quality and reliability has become a critical

concern. To address this issue, many companies, such as

Google, have implemented code reviews and team unit testing

to identify potential code defects [1]. However, manual code

reviews and unit testing can be costly and time-consuming.

To address these challenges, software defect prediction (SDP)

technology has emerged as a powerful tool that automatically

identifies potential defects, helping developers allocate lim-

ited resources while ensuring software reliability at a lower

cost [2], [3].

SDP prefers to construct models by considering data like

code complexity and change history [4], and then predict

defects in new code modules. Many studies on SDP have

concentrated on prediction by machine learning. By designing

metrics based on historical data and utilizing classifiers like

the Naive Bayesian (NB), support vector machine (SVM),

decision tree (DT), and random forest (RF). They manually de-

sign new discriminative features, such as Halstead feature [5],

McCabe feature [6], and CK feature [7], to better predict

defects in their studies. Furthermore, Many SDP studies have

supported the advantage of abstract syntax trees (AST) [8]–

[10]. Deep learning techniques are utilized to build powerful

∗ Xiaolin Ju is the corresponding author.

neural networks and construct prediction models using AST

or program dependency graphs (PDG) [11].

Unfortunately, existing code representation methods may

overlook crucial code structural information. Previous studies

have concentrated on manual features that emphasize the

statistical properties of programs, presuming that defect codes

differ from non-defect codes in software metrics [12]. In

fact, the manual features of the defect and non-defect codes

might be similar, which makes it challenging for the classifier

to predict. Therefore, many studies concentrate on manual

features and code semantic features. We need features that can

distinguish semantic differences to construct more appropriate

defect prediction models. Similar to natural language, pro-

gramming languages also have syntactic rules, which offers the

possibility of extracting rich structural semantic feature. AST

is a special source code representation containing information

about how the code is organized and interacts [13]. Many

studies [14], [15] extracted code flattened features. As shown

in Fig. 1 (a), this is a code snippet that represents the bubble

sorting function. Fig. 1 (b) shows that current deep learning

methods construct ASTs to learn flattened token sequences.

However, AST also contains structural features as shown

in Fig. 1 (c). If we follow the methods studied in the past to

deal with code, we will ignore the code’s structural features.

Moreover, the code description can be seen as a summary.

The description may contain information such as program

language, modification time, functional description, etc. Nu-

merous studies [16]–[18] have demonstrated the effectiveness

of using models to extract valuable insights from unstructured

software engineering (SE) data. As a result, there is growing

interest in this area, with an increasing focus on theme

modeling to measure concerns in source code and identify the

likelihood of defects at different levels in the code. Previous

research has explored the possibility of enhancing the semantic

features of programs represented by AST by combining them

with descriptive features. This approach intuitively leads to a

richer feature representation.

In this paper, we introduce a novel framework called Defect

Prediction by Graph Convolutional Neural Network (DGNN),

which combines program semantic and structural features with

descriptive features to improve defect prediction. The frame-

work begins by parsing the source code into Abstract Syntax

Trees (ASTs) and generating a sequence of AST nodes and

node-relationship pairs. We then combine the features obtained
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Fig. 1. Structural Feature Sample

from the description and apply them as node attributes in the

AST. The node sequences and description are converted to

numeric vectors and fed into the graph convolutional neural

network to obtain the final representation. The features are

then sent to the Multi-Layer Perception (MLP) classifier to

determine whether they contain defects. Finally, we evaluate

and compare our method with three state-of-the-art baselines

on five open-source projects. The experiment results show

EDP-BGCNN can improve the performance 4.9%−23%, in

terms of AUC and 6.6%−10.7% in terms of F1-measure on

average.
The main contributions of this study are as follows:

• We propose a defect detection framework based on graph

convolutional neural networks for automatically generat-

ing distinctive features from the AST of the program to

mine both semantic and structural data.

• We apply the pre-trained model-BERT to encode nodes

extracted from ASTs and description, which helps graph

convolutional neural networks to more precisely learn the

semantics of programs.

• We also compare the performance of EDP-BGCNN with

popular deep learning methods on Java projects and

outperform them in AUC and F1-measure.

II. BACKGROUND

In this section, we provide background on the main tech-

niques within our model: deep features extraction by Abstract

Syntax Tree, graph convolutional neural network, and word

embedding.

A. Deep Features Extraction from Abstract Syntax Tree
Abstract syntax trees(ASTs) have been utilized in numer-

ous research studies for source code search [19], program

repair [20], and source code representation learning [13]. An

AST is designed to describe the abstract syntactic structure

of source code [21], where each node in the tree represents a

structure in the source code and is a high level of abstraction

of the source code. Identifiers and literals in the code are

represented by leaf nodes in ASTs, while non-leaf nodes can

express some grammatical structure.

As shown in Fig. 1 (a), it utilizes bubble sort to achieve a

column of data from smallest to largest. As shown in Fig. 1 (b)

and (c) is the token sequences and relationship matrix of the

AST corresponding to the code in (a). Where MethodDec-

laration is the declaration node and BubbleSortFloat is the

method name. AST includes some nodes that can and cannot

be seen in the source code compared with the initial source

code. For example, float corresponds to float in the source

code, and static corresponds to static in the code. However,

FormalParameter and BasicType do not find corresponding

statements in the code. Assuming that these nodes do not

exist in the AST, the information we obtain about the coed

structural features may be affected. Therefore, we cannot

discard these types of nodes and need to supplement the

structural information of the graph with the properties of their

children to avoid the incomplete structure of the graph. All

nodes in the AST have their corresponding information in the

source code. It can be determined that their corresponding

code parts are problematic when some nodes are judged to be

in the class of problematic nodes.

B. Semantic Learning by Graph Convolutional Neural Net-
work

Some studies [11] have applied graph representation to soft-

ware defect prediction with the application of deep learning

in SDP, driven by a number of success factors. Since non-

Euclidean spaces are used to generate data in many real-world

application scenarios, traditional deep learning methods still

perform poorly when processing this type of data. Kipf et

al. [22] first proposed the graph convolutional neural network

(GCN). GCN combines the features of convolutional neural

networks and graph neural networks. Additionally, it extends

the convolutional non-Euclidean space of neural networks that

are only applicable to Euclidean space. GCN applies the

Fourier transform principle to perform convolutional opera-

tions on graphs. It contains spectral-based and spatial-based

methods. The central concept of GCN is the aggregation of

node information using edge information to generate new node

representations. Several studies have shown which demon-

851

Authorized licensed use limited to: Nan Tong University. Downloaded on October 18,2023 at 02:10:00 UTC from IEEE Xplore.  Restrictions apply. 



strates effectiveness in the fields of image classification [23],

text classification [24], and unsupervised learning [25].

Hamilton et al. [26] proposed a framework for inductive

representation learning on large graphs: GraphSAGE. It learns

node representations by aggregating information over neigh-

borhoods. To make inductive learning adaptive, GraphSAGE

samples a fixed-size neighborhood for each node. Additionally,

three aggregation functions are provided: MEAN Aggregator,

Pooling Aggregator, and LSTM. MEAN Aggregator performs

MEAN operation on the current node and its neighbor nodes,

which is linearly similar to the local spectral convolution of

the node and its neighbor vectors. And it quotes the average

value of related nodes as the aggregation result. The pooling

Aggregator puts all neighbors’ vectors into a fully connected

network. Then attaches a maximum pooling layer, and takes

the maximum value of the relevant nodes as the aggregation

result. LSTM performs a random permutation of all neighbor

nodes before aggregating. Then sends the relevant nodes to

the model and the output is taken as the aggregation result.

Considering the time overhead of the model, many studies

apply MEAN Aggregator as the aggregation function (as in

Equation (1)) [27].

Hk
v←σ

(
W·MEAN

({
Hk−1

v

}⋃{
Hk−1

v , ∀u ∈ N (v)
}))

(1)

where σ denotes the nonlinear transformation, W is the weight

matrix for each layer of learning, Hk
v denotes the node

embedding of node v after the k-th aggregation, and hk−1
u ,

∀u ∈ N(v) denotes the (k− 1)-th layer vector of neighboring

embeddings. Splicing the central node’s neighboring node

mean vectors with the central node’s vector to produce the

k-th layer’s nodes embedding.

GraphSAGE and GCN aggregate features on the neigh-

boring nodes. The main difference is that GCN learns the

entire graph, which tests the computational power of the GPU

for processing large graphs. A shallow GCN network cannot

propagate label information over a large area, and a deep GCN

network can lead to excessive smoothing problems. Graph-

SAGE aims at learning an Aggregator rather than learning a

representation for each node, which is inductive learning. New

nodes will be aggregated to obtain the latest representation

to avoid overfitting when added to the graph. GraphSAGE

can be trained in batches to improve the convergence speed.

GraphSAGE applies a special sampling method to solve the

memory problem and improve flexibility and generalization

ability.

C. Feature Vectorization by Word Embedding

Word embedding aims to represent each word in a dataset

with a fixed-length numeric vector [28] and is a widely used

technique in NLP [29], [30]. The vector representation is

learned before or during the training of a deep learning model.

After training and learning, the vector can be applied to

measure the semantic distance between two words by various

distance calculation methods. This distributed representation

can improve the performance of the model on tasks such

as code classification [31], sentiment classification [32], and

speech recognition [33].

Each node in AST is similar to a word in NLP. Devlin

et al. proposed the pre-training model BERT [34], which

is a Transformer-based encoder [34]. A deep bidirectional

representation from unlabeled text is pre-trained by computing

conditionals that are common in the left and right contexts.

This preserves the structural information of the word context

in the sentence. In the code representation, the node names in

the AST are recorded as words in NLP. We applied BERT to

transform each node into a vector, which can be fed into the

subsequent model directly.

III. OUR METHOD

The overall framework of our method is shown in Fig. 2.

The method contains three stages: data processing, model con-

struction, and model evaluation. In the first stage, we parse the

source code into ASTs. Secondly, we extract code descriptive

features from the description. Then convert ASTs and code

descriptive features into numeric vectors by BERT. Finally,

we fuse the code semantics and descriptive features. In the

second stage, we feed the fused features into GraphSMOTE to

handle the class imbalance problem. Then we construct EDP-

BGCNN and apply MLP classifier to predict. In the last stage,

we evaluate the performance of our model. In the following,

we detail the implementation process of these three phases.

A. Data Processing phase

In this stage, we process the data. Firstly, we extract the code

descriptive features. Second, we parse the codes into ASTs to

obtain the code semantic features. Then, we utilize BERT to

transform the code descriptive features and semantic features

into vectors. Finally, we fuse the descriptive and semantic

features. We describe the details of each part in the following.

We consider the description for each code module as a

comprehensive document, including semantic features such as

code syntax, method names, and information about fixes and

other meaningful contextual changes. We extract descriptive

features from them. We utilize the Latent Dirichlet Assignment

(LDA) [35] model to generate a set of themes. LDA model

is a Bayes-based learning model, which is an extension of

Latent Dirichlet Analysis and Probabilistic Latent Dirichlet

Analysis to identify and extract themes. It helps to reduce

model overfitting [36] compared to other theme models such

as probabilistic LSI. Chen et al [37] utilize LDA to account

for software defects and argue that defect-prone themes tend to

persist over time. We utilize the scikit-learn machine learning

library to construct the LDA model. We set the number of

theme words to 10, which is the average length of code

comments in many studies [38]–[40] considering the size of

the description text. Words with the highest probability will

be utilized to summarize the descriptive features.

We need to transform the code into vectors to learn the

code’s semantic features. Peng et al. [41] showed that parsing

source code into node representations in AST achieved better

performance in program classification tasks. These studies
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Fig. 2. Overview of EDP-BGCNN

provide the possibility of adopting a strategy that extracts the

AST node-level representation from the Java source code in

our study. Javalang1 is a third-party open-source library in the

Python language that provides a Java-oriented lexical parser

and parser. We utilize Javalang for source code tokeniza-

tion and AST generation. The node tokens in the AST and

the source code may differ, for example, MemberReference,

MethodDeclaration, and BasicType. However, we can find the

corresponding AST nodes according to the syntax rules of

AST. We consider the AST as a special undirected graph after

getting the AST nodes. We obtain the adjacency matrix about

the structure of the code, which is symmetric on the diagonal

by traversing this graph.

We traverse the AST to get all tokens corresponding to the

source code. We utilize a pre-trained model-BERT [34] to

convert token and descriptive features into numeric vectors.

BERT is a multilayer bidirectional transformer encoder. It

emphasizes that instead of using a traditional one-way lan-

guage model or shallow splicing of two one-way language

models for pre-training. It utilizes a new Masked Language

Model (MLM) to generate a deep bidirectional language

representation. One of its distinguishing features is its unified

architecture across different tasks. Moreover, each descriptive

feature is considered as a sentence representing the whole code

project.

We utilize AST to capture the code semantic features.

Then we utilize LDA to extract the code descriptive features.

To integrate the code semantic and descriptive features, we

also need a fusion mechanism. We enhance the dimensional

1https://github.com/c2nes/javalang

features hcode by vector stitching, which can be described as:

hcode = concat(hAST , hLDA) (2)

where hAST represents the code semantic features learned

from the AST sequence, and hLDA represents the code de-

scriptive features learned from the description.

B. Model Construction phase

In this stage, we construct the defect prediction model.

Firstly, we perform class imbalance processing on the fused

features. Then, we input the processed code semantics and

descriptive features into GraphSAGE. We obtain the code

semantic representation by sampling and aggregation. Finally,

we utilize MLP to classify the marked code representation

to distinguish between defective and non-defective code. We

describe the details of each part in the following.

In most cases, the number of defective code statements is

much less than the number of non-defective code statements.

Unbalanced data will bias the prediction results in favor of the

non-defective statements. Class imbalance refers to the situa-

tion where the number of training samples differs significantly

across categories [42]. In real life, perfectly balanced datasets

in which the training proportions of different classes are the

same rarely exist. Suppose the ratio of one category in the data

is too high as 10:1, then the accuracy will be high because the

model only needs to predict the results for this category. This

result is not informative for the model.

There are three solution strategies to solve the class im-

balance problem currently. Oversampling, undersampling, and

their combination. Oversampling means sampling a small
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number of classes to increase the number of samples. Un-

dersampling means sampling less and reducing the number

of samples for classes with a larger number of samples.

The combination of oversampling and undersampling gives

comprehensive results. Undersampling eliminates some code

features and leads to overfitting because of missing overall

samples. Mohammed et al. [43] compared the performance

of oversampling and undersampling on machine learning and

concluded that oversampling performs better. We utilize over-

sampling to perform random replication of the data to ensure

the integrity of the data.
SMOTE [44] is a classical oversampling algorithm. SMOTE

calculates the distance from each sample in the minority class

to all samples in the minority class sample set in terms of Eu-

clidean distance to get its k-nearest neighbors. Then generate a

number between 0 and 1 randomly to synthesize a new sample.

However, SOMTE can only synthesize new samples and lacks

the edge relations in graph data. Zhao et al [45] proposed

GraphSMOTE which is a migration of SMOTE. GraphSMOTE

generates some synthetic nodes mainly by interpolating the

expression embedding space obtained from the GNN-based

feature extractor. Then predicts the links of synthetic nodes

utilizing an edge generator to form an extended graph with

balanced classes. Therefore we utilize GraphSMOTE to pro-

cess the data into a balanced graph.
We extract the code feature by data processing, which is to

utilize the AST node features and nod e relationships of the

source code as a defect representation. Moreover, we combine

the code semantic features with the descriptive features as the

input for our graph representation learning. The GNN frame-

work and its variants transform the feature representations

of nodes by utilizing aggregated weight matrices, etc., and

utilize linear unit activation functions (Relu) of rectification

to implement nonlinear transformations. In our method, we

utilize GraphSAGE [46] model. We set the number of neurons

in each hidden layer to be the same, which can make the

model relatively simplified. Algorithm 1, describes the process

of embedding generation.

Algorithm 1 GraphSAGE embedding generation

Input: Graph:G(V,E); features:xv , ∀v∈V ; depth:K; weight

matrices:Wk, ∀k ∈ {1, ...,K}; non-linearity:σ; aggregator

functions:MEANk, ∀k∈{1, ...,K};neighborhood func-

tion N : v→2V

Output: Vector representations:Zv

1: h0
v←xv ,∀v∈V

2: for k = 1...K do
3: for v∈V do
4: hk

N(v)←MEANk(
{
hk−1
u , ∀u∈N(v)

}
);

5: hk
v←σ(W k•CONCAT (hk−1

v , hk
N(v)))

6: end for
7: hk

v←hk
v/‖hk

v‖2, ∀v∈V
8: end for
9: return Zv←hK

v , ∀v∈V

Specifically, GraphSAGE utilizes a new information trans-

mission framework where nodes’ structural and semantic

information is transmitted from point to surface. A node can

aggregate the information of its neighbors and update the infor-

mation of the current node through an update function through

an aggregation function, which is an iterative information

transfer process. A node can aggregate the information of its

higher-order neighbors as the number of iterations increases.

We input the set of code nodes after data processing into

the model and sample their first-order neighbors. Then we

sample their first-order neighbors, which are second-order

neighbors, and repeat until the sampling of K-order neighbors

is complete. We fix a number of neighbors to sample at

each level. The sampling is repeated when the number of

neighbors of a node is less than this number. Then we utilize

MEAN aggregation for the current node and its neighbors.

Each dimension in the embedding of the neighboring nodes is

averaged, then stitched with the embedding of its node. After

that, we utilize a nonlinear transformation to generate the K-

layer representation vector of the target vertex.
After obtaining the learned features, we send them to the

MLP. The software defect prediction problem can be viewed

as a binary classification problem, so we utilize the softmax

function to output the probability of each node (as in Equation

(3)):

softmax =
ey

′
i

∑n
j=1 e

y′
j

(3)

where y′i is the output of the node i, and n is the number

of all nodes. The softmax function normalizes the output to

obtain a probability distribution for the basis of defective node

classification.
To avoid overfitting, in the forward propagation embedding

generation, we utilize dropout [9] regularization to randomly

remove a portion of neural units to enhance the model’s

generalization ability.
In the third stage, we evaluate the performance of the model.

We take the code and description as input and learn features

from the model to identify the defective parts. From the level

of the metrics, we can determine whether the model is reliable

or not.

IV. EMPIRICAL SETUP

In our study, we evaluate the effectiveness of our model

(EDP-BGCNN) in defect prediction tasks by answering the

following four questions(RQs):
RQ1: What is the performance of the proposed method?
RQ2: Is the project information of the project helpful for

defect prediction?
RQ3: Does sampling have an effect on the results?
RQ4: Does the size of the dataset have an impact on the

performance of the model?
In the rest of this section, we first introduce the details of our

empirical research subject. Then, we describe the experimental

evaluation indicators. Moreover, we present the three state-

of-the-art baselines. Finally, we explain the details of our

experiment setting.
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A. Experimental subject

We evaluate the effectiveness of the EDP-BGCNN frame-

work using five processed open-source projects: pulsar, pro-

cessing, cas, keycloak, and vavr. The processed dataset is

available online2. They are from the GHPR dataset, which

is automatically generated by the tool BugMiner and contains

their corresponding modified code. Since they were collected

from many projects in Github, the sample is diverse. The

largest defective instance contains 2704 nodes and the small-

est defective instance contains only 5 nodes. We manually

removed and corrected some noisy data without defects and

incorrect project information. The version number before and

after modification corresponded, and structurally weak code

was removed. TABLE I provides detailed information about

the datasets, including their code line numbers and the average

number of nodes and edges in each file.

TABLE I
DETAILS OF DATASET

Project Loc #Node #Edge

pulsar 13910 870 234
processing 12527 829 219
cas 9384 407 109
keycloak 2298 495 140
vavr 8923 759 176

B. Evaluation Indicators

In our study, we choose the metrics widely used in the

studies [47], [48]: AUC and F1-measure to evaluate the

predictive performance. According to the confusion matrix,

we can get a definition of them.

Precision represents the percentage of real defective code

among the code predicted to be defective.

Precision =
TP

TP + FP
(4)

Recall represents the percentage of true defective code that

is predicted to be defective.

Recall =
TP

TP + FN
(5)

F1-measure is a derived validity measure that measures the

summed average of precision and recall.

F1-measure = 2× Precision×Recall

Precision+Recall
(6)

F1-measure [49] is applied to measure the stability of EDP-

BGCNN, and AUC is applied to evaluate its discriminative

power. F1-measure is a combined Precision and Recall metric.

The higher the F1-measure, the better the prediction perfor-

mance AUC is the area under the ROC (i.e. receiver operating

characteristic) curve to evaluate the predictive capability of

the model. Additionally, AUC performs well on datasets with

class imbalance.

2https://github.com/Abel-pipihao/gnndf

C. Baselines

To evaluate the performance of EDP-BGCNN, we apply

three state-of-the-art methods as baselines. The first one is

the Seml method [15], which built long short-term memory

(LSTM) networks that automatically learn semantic features

about the program and perform defect prediction. The sec-

ond is a CNN-based method [14] which contained three

convolutional layers and four dense layers with dropouts to

generate deep features to help better generalization. The third

method [50] constructed a class-dependent network to learn

semantic features and apply GCN to obtain a deeper class

representation.

D. Implement details

We extract the code’s descriptive features and preprocess

the text by word embedding. During the training process,

the structural code semantic features, the code descriptive

features, and their related labels (i.e., defective and non-

defective) are sent to the graph neural network. The model

is iteratively trained to optimize the training loss. For the

testing process, the new code structural representation vector,

descriptive information, and related labels are sent into the

model. The model gives prediction results for the relationships

between them. Through these results, various performance

metrics related to the model are calculated to evaluate the

performance of our model.

For each experiment, we divided the dataset into training

and testing sets in the ratio of 7:3, and each experiment was

repeated 25 times. Moreover, we will utilize the average result

as the final result to reduce the bias caused by random data. We

set the dropout to 0.1, the learning rate to 0.001, and the epoch

to 100. We utilize the Adam optimization algorithm to train

the model. We run our proposed method on machines running

Windows 10, 64-bit, Intel Core i5-9300H CPU @ 2.40GHz,

and NVIDIA GeForce GTX 3090.

V. RESULT ANALYSIS

A. RQ1: What is the performance of the proposed method?

RQ1 aims to evaluate the performance of EDP-BGCNN in

an automated way. We consider the performance of two deep

neural network-based methods and one graph neural network-

based method for comparison (including Pan’s CNN [14],

Seml [15] and GCN2defect [50]).

We put four methods on our five public open-source projects

for experiments. We added descriptive semantic features to

each method to ensure the fairness of the experiments.

Fig. 3 shows the experimental results, i.e., the AUC and F1-

measure of four competitive methods. From the perspective

of AUC, EDP-BGCNN improves on average 5.2% over Pan’s

CNN, 23% over Seml, and 4.9% over GCN2defect. This in-

dicates that EDP-BGCNN improves the differentiation ability

of software defect prediction. EDP-BGCNN improves 9.7%,

6.6%, and 10.7% in F1-measure compared with Pan’s CNN,

Seml and GCN2defect. The result shows that EDP-BGCNN is

more stable in terms of software defect prediction. This

indicates that the special sampling and aggregation methods
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Fig. 3. Comparison with other methods

have a positive impact on a further generation of key features,

which leads to better defect prediction performance. Semantic

learning that considers structured features also works better

than methods that consider only flattened features.

Summary for RQ1: EDP-BGCNN is capable of learn-

ing both code semantic features and descriptive se-

mantic features. Notably, EDP-BGCNN outperforms

other deep learning methods in terms of AUC and F1-

measure.

B. RQ2: Is the descriptive semantic features helpful for defect
prediction?

RQ2 aims to investigate whether utilizing code descrip-

tive features helps to improve performance. Therefore, we

design a method without adding code description features for

comparison. In this method, the experiments are divided into

two parts: pure code and code with code descriptive features.

The comparison experiments are conducted on five datasets

separately.

TABLE II
CONTRIBUTIONS OF DESCRIPTIVE FEATURES

Subject Model AUC F1-measure

pulsar
with desc 0.779 0.762
without desc 0.650 0.667

processing
with desc 0.733 0.748
without desc 0.678 0.687

cas
with desc 0.716 0.726
without desc 0.668 0.669

keycloak
with desc 0.701 0.725
without desc 0.626 0.669

vavr
with desc 0.685 0.712
without desc 0.625 0.666

With the experimental results obtained from this widely

used ablation experiment [51], [52], we can determine whether

adding descriptive semantic features can help us obtain bet-

ter software defect prediction results. TABLE II shows the

experimental results, i.e., the AUC and F1-measure on the

five datasets. From the view of AUC, EDP-BGCNN improves

12.9% on average than without descriptive semantic features.

As for the comparison without descriptive semantic features on

F1-measure, our proposed EDP-BGCNN improves 11.3% on

average. This indicates that code descriptive semantic features

can improve the comprehension of code.

Finally, to verify whether the code descriptive semantic

features statistically outperform other models. We apply paired

Wilcoxon tests to assess. We obtained a p-value of 0.009 by

the Wilcoxon rank test for both AUC and F1-measure between

SAGE with and without descriptive semantic features. The

results show that the method with descriptive semantic features

is significantly improved compared to the method without

descriptive semantic features.

Summary for RQ2: After incorporating descriptive

semantic features, EDP-BGCNN achieved superior re-

sults in both AUC and F1-measure. This highlights the

valuable contribution of descriptive semantic informa-

tion toward enhancing code comprehension.

C. RQ3: Does sampling has an effect on the results?

RQ3 aims to investigate whether utilizing GraphSMOTE

has an impact on the performance of the model. Therefore we

designed a method without adding GraphSMOTE for com-

parison. In this method, the experiments are divided into two

parts: sampled and unsampled. The comparison experiments

are conducted on five open-source datasets.

TABLE III
CONTRIBUTIONS OF SAMPLING

Subject Model AUC F1-measure

pulsar
with sampling 0.779 0.762
without sampling 0.887 0.885

processing
with sampling 0.733 0.748
without sampling 0.884 0.876

cas
with sampling 0.716 0.726
without sampling 0.853 0.863

keycloak
with sampling 0.701 0.725
without sampling 0.876 0.862

vavr
with sampling 0.685 0.712
without sampling 0.757 0.749

As shown in TABLE III, i.e., the AUC and F1-measure

on the five datasets. From the view of AUC, EDP-

BGCNN reduces on average 15.1% compared to without

GraphSMOTE. As for the F1-measure view, our proposed

EDP-BGCNNhas an average reduction of 13.3% compared

to without GraphSMOTE. This may be due to the fact that

there are many more codes without defects than those with

defects, producing a large imbalance in the number. This could

potentially cause distress to the learning process and cause

a decrease in the value of the prediction results. Therefore,

it is necessary to deal with this class imbalance problem by

GraphSMOTE.
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Summary for RQ3: By utilizing GraphSMOTE to

address the class imbalance, EDP-BGCNN demon-

strates improved prediction performance. Hence,

GraphSMOTE is an essential component of EDP-

BGCNN.

D. RQ4: Does the size of the dataset have an impact on the
performance of the model?

RQ4 aims to discuss the performance of EDP-BGCNN on

different size datasets. As shown in TABLE I, we find that

pulsar is the largest. These five datasets are in ascending order

according to the data size in figure 4. Therefore, we have

experimented with these five datasets separately with the same

parameters.

Fig. 4. Effect of data size

As shown in Fig. 4, we find that the AUC and F1-measure

of EDP-BGCNN with and without descriptive semantic fea-

tures on different datasets. The AUC of EDP-BGCNN on both

with and without descriptive semantic features becomes better

as the size of the dataset increases. This may be due to the fact

that GraphSAGE is direct-push learning, and its layer-by-layer

sampling and aggregating method is beneficial to large graphs.

In terms of F1-measure, EDP-BGCNN increases with the size

of the dataset in the project both with and without describing

semantic information. We also find that the performance

rise gradually becomes smoother as the size of the dataset

increases. This suggests that EDP-BGCNN’s performance will

be optimal at a certain amount of data and will not keep rising.

Summary for RQ4: The performance of EDP-

BGCNN is influenced by the size of the dataset, with

gradual improvements observed as the dataset grows.

However, there is a limit to this improvement, and the

best performance is achieved at a certain dataset size.

VI. THREATS TO VALIDITY

A. Threats to external validity

To evaluate the performance of the model. We com-

pared EDP-BGCNN with Seml, Pan’s CNN, and GCN2defect.

Both Seml and Pan’s CNN are the most advanced defect

prediction techniques in deep learning. GCN2defect is the

most advanced defect prediction technique in graph neural net-

works. Since the original implementation was not published,

we reimplemented it as described in the text. We set the same

parameters to reflect the actual defect prediction performance

of the baseline to be as consistent as possible with the original

method. Since it is possible to achieve the same results as

theirs on the same dataset, we believe in the re-implemented

experiments.

The subjects of our experiments are GHPR datasets col-

lected from GitHub. It belongs to many different domains and

is representative and general. In the future, we will consider

other programming languages (such as C++ and Python) to

evaluate our method.

B. Threats to internal validity

To be fair, the parameter combinations for our experiments

are set to default values or to be consistent with other

baseline methods. However, we want to employ evolutionary

algorithms to further optimize our parameter values in the

future to obtain the best performance of our proposed method.

Moreover, we only utilize PyTorch to build our model.

It has higher programmability compared to TensorFlow. We

may compare the feasibility of this method under different

frameworks in the future.

C. Threats to construct validity

The independent variables in our study can be divided

into code semantic features and code descriptive features. We

utilize the pre-training model BERT for word embedding of

tokens and descriptive information of the code. Other word

embedding techniques may also have an impact on the results,

and we will consider utilizing different word embedding

techniques in the future.

We only focused on graph features composed of the AST.

However, graph features such as CFG and PDG have also

been shown to be effective. We only constructed GraphSAGE,

and different graph neural networks (e.g. Graph Attention

Network) may also have an impact on the results. In the future,

we will consider different graph features and graph neural

network models.

VII. RELATED WORK

A. AST-based defect prediction

SDP assumes that software defects have a relationship with

software features. Many studies [53]–[56] have demonstrated

that their relationship can build a prediction model. AST has

been widely applied in SDP, which reported high accuracy and

recall, indicating that this method is effective [57]. Wang et

al. [58] applied AST to extract semantic features. They apply

a deep belief network(DBN) to automatically learn semantic

features from the tag. The research showed that they can

improve the prediction of software defects within and across

projects. Li et al. [59] applied AST to extract marker vectors

and then coded them into digital vectors through mapping
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and word embedding. They applied a convolutional neural

network to learn code semantic features and structural features

automatically. The research showed that combining the learned

features with the standard manual features can improve the

performance of defect prediction. Therefore, applying AST to

express the code’s structural semantic features can improve

software defect prediction.

B. Graph-based defect prediction

Most data in the real world is stored as graphs, for example,

traffic networks, urban networks, and social networks. Many

studies tend to build graph neural networks to process graph-

related data which can learn structural and semantic features.

AST is employed to process codes graphically since it can be

thought of as a particular type of graph. Many studies have

shown that semantic learning is improved with the addition of

structural features [60]. Shi et al. [61] constructed a complex

network model based on the dependencies between code files.

Then applied the network embedding method to the generated

model as structural features. The improvement of the F1-

measure shows that structural features are effective. Tang

et al. [62] constructed the graph by connecting the parent

and child nodes. Then combining the features learned by

the GCN with the manual features. It was shown that the

prediction performance of the model was improved. Zhou

et al. [63] constructed source code-related class dependency

networks, captured the code semantic features by CNN, and

learn the structural features of the network by GCN. Af-

ter incorporating manual features, we combined the learned

semantic and structural features using various weights. Our

results demonstrate that integrating these features leads to

improved code representation, allowing graph neural networks

to effectively learn the code’s structural features.

In contrast to the mentioned methods, our approach, EDP-

BGCNN, extracts both code semantic and descriptive features.

This comprehensive approach preserves all information from

software modules and enables the development of more accu-

rate defect prediction models.

VIII. CONCLUSION

In this paper, we propose a new defect prediction framework

EDP-BGCNN to learn the code semantic and structural fea-

tures, which considers the description information as natural

language descriptions. Specifically, we extract the descriptive

features from the description and construct ASTs to obtain the

code semantic and structural features. Secondly, we obtain the

vectorized representation of the sequence by BERT. Then, we

utilize GraphSMOTE to handle the sample imbalance problem

and build a graph convolutional neural network model, and

finally perform defect prediction. The evaluation results on the

open-source dataset show that EDP-BGCNN improves 9.7%,

6.6%, and 10.7% in F1-measure compared with Pan’s CNN,

Seml and GCN2defect, and 5.2%, 23% and 4.9% over Pan’s

CNN, Seml and GCN2defect in AUC.

Moving forward, our plan is to expand our dataset by

collecting more open-source projects in different programming

languages and building new datasets for deep feature-based

defect prediction. Additionally, we aim to incorporate other

code semantic features, such as Control Flow Graphs (CFG),

to enhance the feature set of EDP-BGCNN. Furthermore, we

intend to optimize our parameter values using the evolutionary

algorithm. These efforts will help us to continue improving the

accuracy and effectiveness of our framework.
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