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 A B S T R A C T

Software vulnerability type classification (SVTC) is essential for efficient and targeted remediation of vulner-
abilities. With the rapid increase in software vulnerabilities, the demand for automated SVTC approaches is 
becoming increasingly critical. However, the SVTC is significantly affected by the long-tailed issues, where the 
distribution of vulnerability types is highly unbalanced. Specifically, a small number of head classes contain a 
large volume of samples, while a substantial portion of tail classes consists of only a limited number of samples. 
This imbalance poses a significant challenge to the classification accuracy of existing approaches. To alleviate 
these challenges, we propose an innovative approach VulTC-LTPF, which integrates prompt tuning with long-
tailed learning to enhance the effectiveness of SVTC. Within VulTC-LTPF, an adaptive error-rate-based data 
augmentation strategy is developed. This strategy allows the SVTC model to dynamically augment data for tail 
classes types with limited sample size during training, thereby mitigating the impact of the long-tailed problem. 
Furthermore, VulTC-LTPF employs a hybrid prompt tuning strategy, aligning the training process more closely 
with pre-training, which enhances adaptability to downstream tasks. Unlike existing approaches that rely 
solely on either vulnerability description or source code, VulTC-LTPF leverages both sources of information. 
By incorporating a combination of hard and soft prompts, it facilitates a more comprehensive and effective 
classification strategy. Experimental results demonstrate that VulTC-LTPF achieves substantial performance 
improvements over four state-of-the-art SVTC baselines, with gains ranging from 26.1% to 55.1% in MCC. 
Ablation studies further validate the effectiveness of the adaptive data augmentation, prompt tuning, the 
integration of two types of vulnerability information, and the use of hybrid prompts. These findings highlight 
that VulTC-LTPF represents a promising advancement in the field of SVTC, offering significant potential for 
further progress in addressing software vulnerability type classification challenges.
1. Introduction

As software systems grow increasingly complex, vulnerabilities in-
herent within these systems have emerged as critical threats to software 
security [1]. These vulnerabilities are often exploited by malicious ac-
tors, leading to potentially severe consequences such as data breaches, 
financial losses, and the compromise of system integrity and secu-
rity [2]. Moreover, the continuous expansion in the scale and com-
plexity of software systems has resulted in a corresponding increase in 
the diversity and prevalence of vulnerabilities [3], presenting unprece-
dented challenges for the maintenance of software security. Therefore, 
it is crucial to promptly and accurately identify and fix vulnerabilities 
to ensure system security and integrity.

In the vulnerability fixing process, software vulnerability type clas-
sification (SVTC) is a key step that helps developers effectively identify 
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the specific type of vulnerability, which provides an important basis for 
subsequent fixing work. First, accurately classifying vulnerability types 
enables the prioritization of remediation efforts, allowing for a focus 
on vulnerabilities that pose the greatest threat to the system. Second, 
identifying specific vulnerability types facilitates the implementation of 
more targeted and effective remediation strategies. For example, among 
the 25 most dangerous vulnerabilities [4] identified by the Common 
Weakness Enumeration (CWE), the highest-ranked is CWE-787 [5], 
which pertains to out-of-bounds write. This vulnerability represents 
one of the most prevalent and severe issues associated with memory 
operations. If such risk can be identified early during the vulnerability 
remediation process, developers can prioritize implementing boundary 
checks for memory operations in their code, thereby significantly 
mitigating system risk.
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Fig. 1. Statistical analysis of vulnerability data from 2006 to 2024. The CWE types of vulnerabilities show a long-tailed distribution.
While existing research predominantly focuses on vulnerability de-
tection [6–9], the critical task of SVTC remains understudied despite 
its direct impact on remediation efficacy. To address this gap, we 
conducted a statistical analysis of vulnerability data from 2006 to 
2024 using open-source databases. The findings, illustrated in Fig. 
1, reveal a distinct long-tailed distribution of vulnerability types. In 
this distribution, a small subset of types refer to as ‘‘head classes’’, 
accounts for the majority of samples, while the vast majority of vul-
nerability types, known as ‘‘tail classes’’, are represented by a limited 
number of samples. This long-tailed distribution can seriously affect the 
performance of the SVTC models. Specifically, it leads to insufficient 
learning of the tail classes during model training, adversely affecting 
classification accuracy and generalization ability. Tail classes, due to 
their scarcity, are often overlooked by the model, resulting in reduced 
classification accuracy. Moreover, in practical applications, tail class 
vulnerabilities frequently correspond to high-risk vulnerabilities. For 
instance, vulnerabilities such as CWE-22 and CWE-415 have a Common 
Vulnerability Scoring System (CVSS) score of 7.5 or higher, indicating 
a severity rating of ‘‘high’’ [10]. Consider CWE-22(Path Traversal) [11] 
as an example. This vulnerability enables attackers to manipulate file 
paths to access unauthorized files, potentially leading to the disclo-
sure of sensitive information or the execution of malicious operations. 
Therefore, addressing the long-tailed distribution problem is critical 
for improving the performance of the SVTC model. Improving the 
model’s ability to accurately classify tail class vulnerabilities not only 
boosts overall classification performance but also ensures that high-risk 
vulnerabilities are effectively identified and mitigated.

Previous SVTC models [12–15] rarely fully consider the long-tailed 
problem in the vulnerability type dataset. Since a few common head 
classes dominate the number of samples, this oversight causes the 
model to tend to learn the characteristics of the head classes during 
training, which seriously affects the accuracy of the model in identi-
fying tail classes. While some studies [12,16] have proposed strategies 
to mitigate the long-tailed problem, they remain limited in scope. For 
instance, Wen et al. [17] introduced the LIVABLE approach, incorporat-
ing an adaptive re-weighting module. This module dynamically adjusts 
the loss weight during training based on the number of training rounds 
and the distribution of samples. However, this approach primarily 
focuses on adjusting the model’s learning bias between head and tail 
classes across different training stages. It does not directly address the 
insufficient learning of tail class samples within each training iteration, 
leaving room for optimization. In contrast, our proposed approach 
introduces adaptive data augmentation that dynamically augments the 
tail class dataset by studying the model’s classification efficiency of tail 
class samples during training and combining it with data augmentation 
techniques [18]. By dynamically increasing the number of tail classes 
2 
samples during training based on model performance, the model can 
be encouraged to allocate more attention to underrepresented tail 
classes, thereby alleviating the long-tailed problem and improving over-
all classification performance. By dynamically increasing the number of 
samples of the tail classes according to the training performance during 
training, the model can be encouraged to allocate more attention to the 
tail classes in need during learning, thereby alleviating the long tail 
problem and improving the overall classification performance.

Currently, most SVTC models usually rely on a single type of vul-
nerability information for classification, such as the source code of the 
vulnerability [12,15,19,20] or the vulnerability description [13,14,21]. 
However, relying solely on one modality limits the model’s ability to 
capture the full semantic features of vulnerabilities. In contrast, bi-
modal information combining source code and vulnerability description 
can significantly improve the accuracy of SVTC. Unlike some exist-
ing SVTC research approaches, using a pre-trained language model 
(PLM) in combination with fine-tuning paradigms [22,23] provides 
a new direction for improving SVTC performance. PLMs, trained on 
large-scale corpora, capture rich semantic information and complex 
language patterns, which can be effectively utilized for downstream 
tasks through fine-tuning [24–26]. However, SVTC tasks differ signif-
icantly from traditional pre-training tasks, which may hinder PLMs 
from effectively capturing domain-specific semantic information. First, 
the general semantic knowledge acquired during pre-training may be 
insufficient to meet the specific requirements of SVTC tasks directly. 
Second, fine-tuning PLMs typically necessitates a substantial amount of 
high-quality data, which is often scarce in SVTC tasks. These challenges 
underscore the need for a tailored approach to harness the potential of 
PLMs for SVTC tasks fully.

Building on the aforementioned motivation, we propose the VulTC-
LTPF approach, which leverages prompt tuning and incorporates adap-
tive data augmentation. During the training phase, bi-modal informa-
tion of the vulnerability is used as input, and a new input is constructed 
by integrating a hybrid prompt. The PLM CodeT5 [27] is then fine-
tuned using the prompt tuning approach to achieve the SVTC task. 
At the end of each training round, the size of the required data aug-
mentation is dynamically determined and the corresponding data aug-
mentation is applied specifically to tail class categories. In the model 
prediction phase, the source code and vulnerability description of the 
target vulnerability are input into the fine-tuned model, which process 
the data using the trained hybrid prompt template. Finally, a verbalizer 
maps the model’s predicted tokens to their corresponding vulnerabil-
ity types. To evaluate the effectiveness of our proposed VulTC-LTPF 
approach, we compared it against four state-of-the-art SVTC base-
lines [15,28,29] (i.e., VulExplainerCodeBERT, VulExplainerCodeGPT, Devign, 
and ReGVD). We conducted a comprehensive evaluation of the model’s 
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performance using standard evaluation metrics, including accuracy, 
precision, recall, F1 score, and Matthews Correlation Coefficient (MCC). 
The experimental results demonstrate that the  VulTC-LTPF approach 
consistently outperforms the baseline models across all metrics. No-
tably, on the MCC metric, the  VulTC-LTPF approach achieves a signifi-
cant performance improvement, ranging from 26.1% to 55.1%. Further-
more, ablation studies confirm the critical contributions of bi-modal 
information, hybrid prompt templates, and adaptive data augmentation 
in enhancing the performance of the  VulTC-LTPF approach.

The findings of this study highlight three promising directions for 
future research in SVTC that warrant further investigation. First, de-
veloping more effective strategies to address the long-tailed problem 
in SVTC datasets remains a critical area of focus. Second, exploring 
advanced prompt tuning-based methods offers significant potential for 
enhancing the performance of SVTC tasks. Third, delving deeper into 
additional sources of information related to software vulnerabilities, 
such as the structural features of source code, presents an opportunity 
to further improve the effectiveness of SVTC approaches.

The novelty and contributions of our study can be summarized as 
follows:

• Dataset. We refined and update the dataset to enhance its adapt-
ability to the SVTC task. The specific processing steps will be 
discussed in detail in Sections 3.1 and 4.2.

• Perspective. We applied prompt tuning and long-tailed learning 
techniques to the task of software vulnerability type classification, 
achieving a significant and reliable improvement in performance.

• Approach. We propose the VulTC-LTPF approach, which com-
bines adaptive data augmentation with bi-modal inputs (source 
code and vulnerability descriptions) into prompt tuning frame-
work to optimize the SVTC task.

• Practical Evaluation. We conducted a comprehensive evalua-
tion of VulTC-LTPF, assessing the effectiveness of our approach 
by comparing it against state-of-the-art SVTC baseline methods. 
Furthermore, we performed extensive multi-group ablation exper-
iments to validate the robustness and efficacy of the proposed 
method.

Open Science. To promote open science and reproducible research, 
we share datasets, code, and detailed experimental results.1

Paper Organization. Section 2 is the background of this paper, 
introducing software vulnerability type classification, long-tailed learn-
ing, and prompt tuning. Section 3 provides a detailed explanation 
of the VulTC-LTPF framework, systematically outlining each stage of 
the proposed approach. Section 4 describes the experimental setup, 
including the research questions and their design motivations, the 
experimental object, the baseline approaches as well as the evaluation 
metrics. Section 5 presents the experimental results and their analysis, 
covering comparisons with baselines and ablations experiments. Sec-
tion 6 discusses the impact of pre-trained language models and scaling 
factors on performance, while summarizing validity threats. Section 7 
reviews related work and highlights the paper’s innovations. Finally, 
Section 8 summarizes our findings and discusses future directions.

2. Background

This section begins by providing an overview of software vulner-
ability type classification, followed by an introduction to long-tailed 
learning and prompt tuning.

1 https://github.com/ntu-juking/VulTC-LTPF.
3 
2.1. Software vulnerability type classification

Common Weakness Enumeration (CWE) is a publicly available and 
widely used official vulnerability database that plays a vital role in 
addressing software vulnerabilities. Maintained by MITRE [30], the 
CWE provides a systematic classification, detailed descriptions, and 
an analysis of the potential impacts of various software weaknesses 
on security and quality. Through standardized vulnerability descrip-
tions and classifications, CWE facilitates the accurate identification and 
reporting of vulnerabilities by security professionals, offers evidence-
based recommendations for remediation, and assists in determining 
the type and severity of vulnerabilities. In the process of vulnerability 
remediation, this information aids in the establishment of appropriate 
priorities, thereby enhancing the efficiency of the remediation process.

However, SVTC is a challenging task [14,17] that requires secu-
rity experts to manually analyze code to identify vulnerability types. 
But, there are some obvious problems with this process. First, man-
ual analysis is highly dependent on the security expert’s specialized 
experience and domain knowledge. Second, the manual classification 
process is time-intensive and resource-consuming. These issues make 
manual analysis inadequate for meeting the demands of large-scale 
vulnerability classification. For instance, the US National Vulnerability 
Database (NVD) recorded 28,902 vulnerabilities in 2023, with 4113 
cases remaining unclassified [12]. Therefore, there is an urgent need 
for an efficient automated software vulnerability type classification 
tool that can quickly and accurately predict the potential vulnerability 
type, providing valuable reference for security experts to follow up on 
software vulnerability repair work.

2.2. Long-tailed learning

The long-tailed learning approach aims to solve the problem of 
severe class imbalance in data distribution. In many real-world tasks, 
the data set usually has a long-tailed distribution [31], that is, most 
data samples are concentrated in a few ‘‘head class’’ categories, while 
the vast majority of categories have a small number of samples and are 
‘‘tail classes’’. The long-tailed problem is particularly prominent in the 
field of SVTC.

Long-tailed learning has become an important research direction 
in the field of computer vision [31–33]. There are some popular ap-
proaches to alleviate the long-tailed problem, such as data resam-
pling [34], loss function re-weighting [35], and data augmentation 
[36]. Data resampling balances a dataset by adjusting the number of 
samples in different categories in the training data, usually by oversam-
pling the tail classes or undersampling the head classes. Loss function 
re-weighting makes the model pay more attention to these difficult-
to-classify samples by assigning higher weights to samples in the tail 
classes in the loss function. Data augmentation generates new samples 
by transforming the original data, thereby increasing data diversity and 
improving the generalization ability of the model.

These approaches have been widely used in the field of computer 
vision and have effectively alleviated the long-tailed problem. How-
ever, research on long-tailed distributions for the SVTC task is still 
limited. Therefore, based on the research and analysis of existing long-
tailed learning approaches, we propose an effective long-tailed learning 
approach suitable for SVTC.

2.3. Prompt tuning

Prompt tuning is a technique in Natural Language Processing (NLP) 
aimed at optimizing model performance in downstream tasks by refin-
ing the prompts that guide pre-trained language models (PLMs) [37]. 
Unlike traditional fine-tuning, which updates model weights, prompt 
tuning enhances task adaptation by designing effective prompt tem-
plates. In the SVTC task, this approach helps PLMs better capture 
vulnerability-related information and distinguish between source code 
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Fig. 2. Framework of VulTC-LTPF.
and vulnerability descriptions. Specifically, the template 𝑓prompt(𝑥)
transforms the original input 𝑥 into a new input 𝑥′ [38]. The template 
contains two main slots, one for filling in the input data and the 
other for filling in the expected answer, corresponding to data entry 
and answer prediction, respectively. The verbalizer maps the words 
predicted by the model to specific vulnerability type labels. Through 
these one-to-one or one-to-many mappings, semantically similar words 
are grouped into the same category.

Prompt templates can be classified into hard prompts and soft 
prompts [20]. Hard prompts are manually designed static templates 
that guide PLMs through specific tasks. In contrast, soft prompts consist 
of learnable embeddings added to input tokens, which can be optimized 
during training via backpropagation. Soft prompts are represented as 
continuous vectors, enabling the model to adapt and fine-tune them 
for specific tasks.

In the SVTC task, natural language is added to the input to con-
struct prompt templates that combine source code and vulnerability 
descriptions.

A study by Wang et al. [39] applied prompt tuning to a variety 
of code intelligence tasks, including defect prediction, code summa-
rization, and code translation. Their experimental results show that 
prompt tuning performs well in these tasks. Similarly, Yang et al. [40] 
applied prompt tuning to the Stack Overflow title generation task with 
satisfactory results. These results show that prompt tuning has signif-
icant performance advantages over traditional fine-tuning approaches 
in multiple domains. In this study, we apply prompt tuning to the SVTC 
task and explore its effectiveness in depth to verify the potential and 
advantages of this approach in vulnerability types classification.

3. Approach

Fig.  2 shows the framework of our proposed VulTC-LTPF approach. 
It is divided into three main phases, namely the data preprocessing 
phase, the model training phase and the model prediction phase. In 
the remainder of this section, we describe these three phases in detail.
4 
3.1. Data preprocessing phase

In our study, we chose the dataset MegaVul shared by Ni et al. [41]. 
as the initial dataset and selected vulnerability functions in the C/C++ 
programming language. Through in-depth analysis of the MegaVul 
dataset, we found that certain elements in the exploit code (e.g., blank 
lines, comments, and spaces before paragraphs) may adversely affect 
the performance of the model. Specifically, these elements can take 
up the length of the input of a pre-trained language model due to 
its length limitation, and in the case of comments, the model may 
incorrectly recognize them as code. To optimize model performance, 
we remove these redundant elements to ensure that the model can focus 
on the actual functional part of the code and learn as much relevant 
information as possible. The simplified version of the code does not 
affect its functionality. These preprocessing steps are intended to help 
make the source code more suitable as input for SVTC tasks.

Subsequently, according to our research findings in Section 4.2, 
some vulnerability entries in the original dataset used CWE-IDs that had 
been deprecated on the official website. For this reason, we optimized 
these entries by deleting or updating the vulnerability entries. After 
these processes, we obtained an enhanced dataset that is more suitable 
for the SVTC task. We then divided the dataset into head and tail 
classes.

3.2. Model training phase

In the model training stage, we first consider using the bi-modal 
information of vulnerabilities (i.e., source code and vulnerability de-
scription) to construct prompt templates. We apply prompt tuning to 
the pre-trained model CodeT5 to perform the downstream task of SVTC. 
Then, considering the long-tailed distribution of vulnerability types in 
the dataset and the data imbalance problem, we designed an adaptive 
data augmentation module that adaptively augments the data for each 
tail class based on the model’s predicted performance on these tail 
classes. In the framework of our approach, the two components of adap-
tive data augmentation and prompt tuning are closely connected and 
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complement each other. The effectiveness of prompt tuning depends 
mainly on the quality and balance of the input data, while adaptive 
data augmentation provides a fairer training basis for prompt tuning. 
In turn, the prompt tuning fully uses the enhanced sample distribution 
to improve further the model’s performance regarding semantic mod-
eling and category discrimination. The two work together to improve 
the recognition ability of tail classes and the overall classification 
accuracy.The model training part is described in detail below.

3.2.1. Prompt template and verbalizer construction
Prompt tuning approaches utilize prompt templates to modify raw 

inputs and generate a new input. The design of prompt templates 
is a critical and challenging task that often requires multiple trials 
and optimizations to produce high-quality templates for specific down-
stream tasks. Prompt templates can be classified into three types: hard 
prompts, soft prompts, and hybrid prompts.

Hard Prompt. Hard prompts [22,42] refer to manually designed 
natural language phrases or templates that are usually fixed before 
model training and remain unchanged throughout the training process. 
Hard prompt templates have two types of slots: input slots and answer 
slots. For the SVTC task, considering that our approach uses bi-modal 
information as input, two input slots are required. The specific hard 
prompt template structure can be expressed as follows:
𝑓ℎ𝑎𝑟𝑑 = The code snippet: [X] The vulnerability description:

[Y] Classify the vulnerability type: [Z] (1)

Here, input slot [X] will be filled with source code and input 
slot [Y] with a vulnerability description. PLM predicts the probability 
distribution of the label term at position [Z] based on the given input 
information, and the label term with the highest probability is used as 
the intermediate answer generated by PLM.

Soft Prompt. Soft prompts [22,38,42,43] are a learnable form of 
embedding representation that allows optimization during training. 
The greatest advantage of soft prompts is their flexibility, as they can 
be automatically adjusted according to the specific requirements of the 
task, thereby enabling the model to better understand the input and 
perform specific downstream tasks. For SVTC, the specific soft prompt 
template can be defined as: 
𝑓𝑠𝑜𝑓𝑡 = [SOFT] [X] [SOFT] [Y] [SOFT] [Z] (2)

In this template, we initialize the [SOFT] tokens using the natural 
language embeddings from the hard prompt above. Specifically, the 
first [SOFT] token is initialized to ‘‘The code snippet:’’, the second 
[SOFT] token is initialized to ‘‘The vulnerability description:’’, and the 
third [SOFT] token is initialized to ‘‘Classify the vulnerability type:’’.

Hybrid Prompt. Hybrid prompting [40,42] combines the advan-
tages of both hard and soft prompting. Specifically, hard prompts are 
suitable for denoting important information that is closely related to 
downstream tasks because they remain unchanged during training. For 
example, in the SVTC task, ‘‘The code snippet:’’ and ‘‘The vulnerability 
description:’’ are important markers, so we retain these as hard prompt 
tokens. In contrast, soft prompt tokens can be optimized throughout 
the training process and are more flexible, so we use them to retain 
the token ‘‘Classify the vulnerability type:’’, because there are many 
alternative tokens for this phrase, such as ‘‘Classify the CWE:’’ or ‘‘The 
vulnerability type is:’’. The use of soft prompts allows the model to dy-
namically adjust its wording based on the context, thereby augmenting 
the diversity and adaptability of the prompt. For the SVTC task, the 
hybrid prompt can be designed as follows:
𝑓ℎ𝑦𝑏𝑟𝑖𝑑 = The code snippet: [X] The vulnerability description:

[Y] [SOFT] [Z] (3)

In our research, we found that using a hybrid prompt (i.e., Eq.  (3)) 
enables VulTC-LTPF to achieve optimal performance. For a detailed 
analysis, see our ablation study section.
5 
Verbalizer. Verbalizer is a key component in the prompt tuning 
approach. It is responsible for mapping the predictions generated by 
the model at the [MASK] position to specific vulnerability type labels. 
In this process, the output label words of the model are restricted by a 
vocabulary that maps the generated words to the labels of the vulnera-
bility types in the actual task. One label for a specific category can have 
one or more label words. Depending on the requirements, Verbalizer 
can be divided into the following two types: one-to-one Verbalizer and 
one-to-many Verbalizer. In the SVTC task, we designed one-to-one and 
one-to-many Verbalizers suitable for the task, as follows: 

Verbalizer𝑂2𝑂 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‘‘𝐶𝑊𝐸 − 119’’ ∶ [‘‘𝑏𝑢𝑓𝑓𝑒𝑟𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤’’]
‘‘𝐶𝑊𝐸 − 125’’ ∶ [‘‘𝑜𝑢𝑡 − 𝑜𝑓 − 𝑏𝑜𝑢𝑛𝑑𝑠𝑟𝑒𝑎𝑑’’]

………
‘‘𝐶𝑊𝐸 − 310’’ ∶ [‘‘𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑖𝑠𝑠𝑢𝑒’’]

(4)

Verbalizer𝑂2𝑀 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‘‘𝐶𝑊𝐸 − 119’’ ∶ [⋯ + ‘‘𝑚𝑒𝑚𝑜𝑟𝑦𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛’’]
‘‘𝐶𝑊𝐸 − 125’’ ∶ [⋯ + ‘‘𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑘’’]

………
‘‘𝐶𝑊𝐸 − 310’’ ∶ [⋯ + ‘‘𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦’’]

(5)

In our study, we found that the verbalizer designed in Eq.  (5) 
enables the best performance of VulTC-LTPF. For a detailed analysis, 
please see our ablation study section.

3.2.2. Prompt tuning on CodeT5
The Cross-Entropy(CE) Loss [44] Function is widely used in multi-

class classification tasks, which effectively measures the discrepancy 
between the model predictions and the true labels, and thus drives the 
optimization of the model parameters. Therefore, in the model training 
phase, in order to optimize the performance of the model in the SVTC 
task, we choose to use the Cross-Entropy loss function. For each training 
sample, the loss function is calculated as follows: 

CE = −
𝑛
∑

𝑖=1
𝑦𝑖 log(𝑝𝑖) (6)

where 𝑛 is the number of categories, 𝑦𝑖 is the indicator function of the 
true label, and 𝑝𝑖 is the output predicted by the model.

In VulTC-LTPF we have chosen the pre-trained CodeT5 model for 
prompt tuning. This is mainly because CodeT5 is specially designed 
to handle source code related tasks and performs well in a variety of 
code understanding tasks. In addition, studies by Ruan et al. [45] and 
Niu et al. [46] have verified the powerful performance of CodeT5 in 
different downstream tasks, demonstrating its versatility and reliability.

3.2.3. Adaptive data augmentation
According to our study of the SVTC dataset, we found that the 

types of vulnerabilities in the dataset show a long-tailed distribution, 
which can lead to data imbalance problems. To address the long-tailed 
problem in the SVTC task, we designed adaptive data augmentation in 
VulTC-LTPF, as detailed in Algorithm 1.

The adaptive data augmentation module is designed to improve 
the model’s classification performance for tail classes. This module 
dynamically evaluates the error rate of tail classes on the validation 
set after each training round, and determines the number of augmented 
samples to be generated based on these error rates. Then, tail classes are 
augmented adaptively using multiple data augmentation approaches. 
Finally, the augmented training set is generated for subsequent training. 
This approach efficiently augments the tail class sample by dynamically 
adjusting the augmentation strength of the tail class sample, which can 
effectively improve the negative impact caused by data imbalance and 
improve the model’s classification ability for the tail class. The details 
of this module are described in detail below.
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Algorithm 1 Adaptive Data Augmentation
Input: Training set 𝐷𝑡𝑟𝑎𝑖𝑛, Validation set 𝐷𝑣𝑎𝑙, Trained model 𝑀 , 
Scaling factor 𝐾, Set of augmentation approaches 𝑆
Output: Augmented dataset 𝐷𝑎𝑢𝑔

1: Initialize 𝐷𝑎𝑢𝑔 ← 𝐷𝑡𝑟𝑎𝑖𝑛
2: Initialize 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠 ← ∅
3: Initialize 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑠 ← ∅
4: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
5:  𝑁𝑖 ← number of samples of category 𝑖 in 𝐷𝑣𝑎𝑙

  where 𝑌𝑖 = 𝑖
6:  𝑇𝑖 ← number of samples correctly predicted as

  category 𝑖 by model 𝑀
7:  if 𝑁𝑖 > 0 then
8:  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖 ← 1 − 𝑇𝑖

𝑁𝑖
9:  else
10:  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖 ← 0
11:  end if
12:  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠[𝑖] ← 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖
13: end for
14: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
15:  𝐴𝑖 ← ⌊𝐾 × 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠[𝑖]⌋
16:  𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑠[𝑖] ← 𝐴𝑖
17: end for
18: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
19:  𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 ← select 𝐴𝑖 samples from 𝐷𝑡𝑟𝑎𝑖𝑛 with

  category 𝑖
20:  for each sample 𝑋𝑖 in 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 do
21:  𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ← randomly apply one

  approach from 𝑆 to 𝑋𝑖
22:  𝐷𝑎𝑢𝑔 ← 𝐷𝑎𝑢𝑔 ∪ {(𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒, 𝑌𝑖)}
23:  end for
24: end for
25: return 𝐷𝑎𝑢𝑔

Evaluate the error rate of the tail class and determine the aug-
mentation scale. In order to achieve adaptive data augmentation, the 
model’s performance on the tail class categories needs to be evaluated 
at the end of each training round, so we first need to quantify the error 
rate of the tail class categories (Lines 4–13). The error rate for the tail 
class 𝑖 is calculated as follows: 

ErrorRate𝑖 = 1 −
𝑇𝑖
𝑁𝑖

(7)

where 𝑁𝑖 denotes the total number of samples in the validation set 
belonging to class 𝑖, while 𝑇𝑖 denotes the number of samples that 
the model correctly predicts to belong to class 𝑖. These quantities are 
formally defined as follows: 

𝑇𝑖 =
𝑁𝑖
∑

𝑗=1
I(𝑦̂𝑗 = 𝑦𝑗 ∧ 𝑦𝑗 = 𝑖) (8)

After obtaining the error rate of the model in each tail class cate-
gory, we designed an adaptive data augmentation calculation formula 
to determine the scale of data augmentation required for each tail class 
category (Lines 14–17). The formula is as follows: 

𝐴𝑖 = ⌊𝑘 × ErrorRate𝑖⌋ (9)

where 𝑘 is a predefined scaling factor that determines the amplification 
rate of augmented samples.

To determine an appropriate value for the scaling factor 𝑘 in adap-
tive data augmentation, we experimented with the grid search ap-
proach [47] (detailed in Section 6.1) using values ranging from 1 to 
20. The results demonstrated that 𝑘 = 15 provided the best balance 
between enhancing tail classes representation and avoiding overfitting. 
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This empirical evaluation ensures the reproducibility and scalability of 
the proposed strategy.

Data Augmentation Approaches. To generate augmented samples, 
we choose to augment the source code of the vulnerability. We con-
struct a data augmentation approach library that contains multiple data 
augmentation techniques. When the tail class category’s augmentation 
scale is determined, each category will perform a determined number 
of data augmentations. Each time, a data augmentation approach is 
randomly selected from the approach library and applied to the original 
sample (Lines 18–24). In this way, we can effectively increase the 
diversity of augmented samples and improve the robustness of the 
model. In the data augmentation approach library, we have designed 
the following data augmentation approaches:

• Variable name substitution. This approach identifies variable 
names in code snippets through regular expressions and replaces 
them with randomly generated new names. This approach in-
creases the divsamples’ diversity without changing the code’s 
semantics augmenting the model’s ability to handle potentially 
diverse inputs.

• Insertion of redundant code. This approach simulates the ad-
ditional non-functional parts that may exist in the actual code 
by inserting non-functional code at random locations. In this 
way, the complexity and diversity of the training samples are 
increased.

3.3. Model prediction phase

In the model prediction stage, we combine the bi-modal information 
of the vulnerability with the hybrid prompt template we designed as 
an input, and then input it into the trained SVTC model for software 
vulnerability type classification.

4. Experimental setup

In this section, we first describe the research questions and their 
design motivations. We then detail the experimental subject, baseline, 
evaluation metrics, and experimental settings in turn.

4.1. Research questions

To demonstrate the competitiveness of VulTC-LTPF and justify its 
component configurations, we formulate the following five research 
questions (RQs) for our study.

RQ1: What is the performance of VulTC-LTPF in SVTC?
Motivation: In RQ1, the goal of our study is to evaluate the overall 

effectiveness of the VulTC-LTPF approach in solving the SVTC task. To 
this end, five automated performance evaluation metrics (i.e., Accu-
racy, Precision, Recall, F1 score, and MCC) were used to comprehen-
sively measure its classification performance.

RQ2: What is the impact of adaptive data augmentation on the 
performance of the VulTC-LTPF?

Motivation: Adaptive data augmentation aims to alleviate the prob-
lem of long-tailed distribution of the dataset and optimize the training 
process of the model by enhancing the data quality and diversity of 
the samples in the tail class. A study of its impact on VulTC-LTPF 
performance will not only help to demonstrate the effectiveness of 
the strategy, but also validate its actual contribution in enhancing the 
model capability.

RQ3: What is the impact of bi-modal information on the per-
formance of the VulTC-LTPF?

Motivation: In our VulTC-LTPF approach, the two modal data, 
source code and vulnerability description, are fused through a prompt 
template we designed to form a new bi-modal information input into 
the model. Therefore, in RQ3, our research goal is to explore whether 
this bi-modal input configuration can achieve the best performance 
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Table 1
Comparison between Big-Vul and MegaVul.
 Statistic Big-Vul MegaVul  
 Number of repositories 310 1062  
 Number of Vul function 10,547 17,380  
 Number of commits 4058 9288  
 Number of CVE IDs 3539 8476  
 Date range of crawled CVEs 2013/01∼2019/03 2006/01∼2024/04 
 Number of CWE IDs 92 176  
 Function extract approach/(Quality) Lizard/(Low) Tree-sitter/(High)  
 Code integrality Partial Full  

of VulTC-LTPF. In addition, we would like to determine which input 
modality contributes the most to the performance of VulTC-LTPF by 
comparing different modal configurations (using only source code or 
only vulnerability description).

RQ4: What is the impact of the prompt tuning paradigm on the 
performance of the VulTC-LTPF?

Motivation: Our approach VulTC-LTPF conducts experiments based 
on prompt tuning, which capitalizes on the latent knowledge in the 
pre-trained model. In RQ4, the goal of our research is to explore the 
applicability of prompt tuning in SVTC tasks and the magnitude of its 
performance improvement over traditional fine-tuning approaches.

RQ5: What is the impact of different prompt settings on VulTC-
LTPF performance?

Motivation: In prompt tuning approaches, the design of the
prompts template and the verbalizer can directly affect the performance 
of the model. Settings such as the use of different prompt templates, the 
choice between soft and hard prompts, and the selection of the type of 
the verbalizer can significantly impact the performance of the model. 
Therefore, selecting the appropriate prompt template and verbalizer 
for downstream tasks is a challenging and open problem. In RQ5, we 
aim to explore the effects of different prompt settings and demonstrate 
that the hybrid prompt strategy adopted by VulTC-LTPF is the optimal 
solution. Additionally, we also investigate the impact of the number of 
mapping words in the verbalizer on the performance of the VulTC-LTPF 
approach.

4.2. Experimental subjects

This study uses the latest version of MegaVul [41] as its ini-
tial dataset. MegaVul contains 17,975 vulnerabilities from 1062 open 
source repositories, covering 176 different types of vulnerabilities dis-
closed between January 2006 and April 2024. In previous SVTC studies, 
the most widely used dataset was BigVul [48]. Compared to the BigVul 
dataset, MegaVul contains 64.9% more vulnerabilities and covers a 
wider range of vulnerability types. In addition, the BigVul dataset 
only contains vulnerability data from 2003 to 2019 and is of lower 
quality, with a number of problems including incomplete functions, 
incorrect function merging and missing commit information. Unlike 
BigVul, which uses regular expressions to extract functions, MegaVul 
uses a complex syntax rule-based parse tree to extract functions. The 
specific differences between these two datasets are shown in Table  1, 
and the tabular results indicate that MegaVul is more suitable than 
BigVul for SVTC tasks.

The MegaVul dataset provides a wealth of vulnerability information, 
including vulnerable code, descriptions, and vulnerability types. How-
ever, some vulnerability entries in MegaVul use deprecated CWE-IDs. 
For example, vulnerability CVE-2016-1640 has the vulnerability type 
CWE-17. However, according to the information on the official CWE 
website [49], it can be confirmed that this vulnerability type has been 
deprecated. In order to ensure the quality of the dataset and to make it 
better suited to the SVTC task, we have updated or removed data with 
this condition.

We ended up with an enhanced dataset that contains 13, 124 
vulnerabilities. The contents of the dataset are shown in Table  2. We 
grouped the categories with a sample size of less than 70 into a new 
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Table 2
The types of vulnerabilities in the experimental dataset and their 
corresponding proportions, as well as the distribution of the head 
and tail classes. Categories with a sample size of less than 70 are 
classified into the ‘‘Remain’’ class.
Types Ratio Group Types Ratio Group

CWE-119 11.43%

Head

CWE-835 1.76%

Tail

CWE-125 10.09% CWE-772 1.36%
CWE-787 9.75% CWE-287 1.29%
CWE-476 9.40% CWE-369 1.28%
CWE-20 8.15% CWE-22 1.13%
CWE-416 6.95% CWE-415 1.12%
CWE-190 4.51% CWE-674 0.92%
CWE-200 3.90% CWE-122 0.85%
CWE-399 3.38% CWE-254 0.74%
CWE-264 3.35% CWE-834 0.68%
CWE-120 3.16% CWE-770 0.66%

CWE-362 2.89%

Tail

CWE-295 0.58%
CWE-400 2.58% CWE-74 0.55%
CWE-401 2.06% CWE-310 0.54%
CWE-189 1.95% Remain 1.14%
CWE-617 1.86%

class called ‘‘Remain’’. The table shows the distribution of vulnerability 
types in the dataset, and it can be seen that the head and tail classes 
account for 74.1% and 25.9% of the samples, respectively. During 
the dataset partitioning process, we ensured that vulnerabilities with 
the same CVE ID (they have different source code snippets with the 
same descriptive information) are kept in the same dataset to maintain 
validity and fairness. We partitioned the data into non-overlapping 
training, validation and testing sets at a ratio of 8:1:1.

4.3. Baselines

We compare our approach to the state-of-the-art SVTC model VulEx-
plainer [15]. We also compare our approach to models designed for bi-
nary classification vulnerability detection tasks, including Devign [28] 
and ReGVD [29]. The baseline approach is described below:

• VulExplainer: The transformer-based hierarchical distillation
model proposed by Fu et al. [15] for handling highly unbalanced 
CWE labels to improve the performance of SVTC. In this ap-
proach, the data distribution is made more balanced by grouping 
similar CWE-IDs based on CWE abstract types.

• Devign: The GNN-based approach for vulnerability detection pro-
posed by Zhou et al. [28] The model first converts source code 
functions into graph structures, and then updates the node rep-
resentations using Gated GNNs [50] to capture semantic and 
structural features in the source code. Finally, Devign uses a 
1-D CNN-based pooling operation for vulnerability prediction. 
Although the authors of Devign [28] have not released an offi-
cial implementation, we used the re-implementation provided by 
[29] and followed the training protocol of the original Devign for 
experimental validation.

• ReGVD: The GNN-based approach for source code vulnerability 
detection proposed by Nguyen et al. [29]. The approach repre-
sents a source code function as a flat sequence of tokens and 
constructs a graph based on these tokens, where the nodes of the 
graph are initialized by embedding vectors generated by a pre-
trained programming language model. ReGVD learns graphical 
embeddings of the source code by introducing residual connectiv-
ity between the GCN [51] layers and combining it with pooling 
operations, which ultimately performs vulnerability prediction.

4.4. Evaluation metrics

In our study, we use five evaluation metrics: accuracy, precision, 
recall, F1 score, and Matthews correlation coefficient (MCC) to provide 
a comprehensive performance evaluation.
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According to previous research, the first four metrics are more 
common for SVTC tasks, while MCC is particularly suitable for datasets 
with class imbalance problems. Since multiple vulnerability types need 
to be predicted, we use macro-averaged metrics to compute the final 
results. These metrics measure the performance of the model in multi-
class classification from different perspectives, especially how well it 
handles class imbalance problems. Next, we describe in detail the 
approach to calculating these evaluation metrics.

TP: True Positive, which indicates the number of samples that were 
correctly categorized into the positive category. In the SVTC task, it 
indicates that the model correctly identifies samples with different 
types.

TN: True Negative, which indicates the number of samples that 
were correctly categorized as negative categories. For each type, it 
indicates the number of samples that were accurately categorized as 
not belonging to that type.

FN: False Negative, which indicates the number of samples in 
the positive category that were misclassified as being in the negative 
category. For each type, it indicates the number of samples that were 
misclassified as not belonging to that type.

FP: False Positive, which indicates the number of samples in the 
negative category that were misclassified as being in the positive 
category. For each type, it indicates the number of samples that were 
misclassified as belonging to that type.

For each type 𝑖, these metrics can be represented as: 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑁𝑖, 
𝐹𝑃𝑖.

Accuracy: Accuracy is the ratio of the number of correctly predicted 
vulnerability type samples to the total number of all predicted samples. 

Accuracy =
∑

𝑖 𝑇𝑃𝑖
∑

𝑖(𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑁𝑖)
(10)

Precision: Precision rate indicates the proportion of all samples 
predicted to be in the positive category that are actually in the positive 
category. Macro-precision rate is averaged over each type and is used 
to measure the overall precision of the model over all categories. Where 
𝑁 denotes the number of vulnerability types. 

Precision𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

(11)

Recall: Recall indicates the proportion of samples that are correctly 
predicted to be positive out of those that actually fall into the posi-
tive category. Macro-recall is averaged over each type and is used to 
measure the overall recall ability of the model over all categories. 

Recall𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(12)

F1 score: The F1 score is a reconciled average of precision and 
recall and is used to assess the precision and recall of the model in 
aggregate. Macro-F1 score is the average of the F1 scores for each type. 

F1-score𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖
2 ×

Precision𝑖 × Recall𝑖
Precision𝑖 + Recall𝑖

(13)

MCC: The Matthews Correlation Coefficient is a metric that com-
bines True Positives (TP), True Negatives (TN), False Positives (FP), 
and False Negatives (FN) and is particularly well suited for dealing with 
type imbalances. Macro MCC is the average of each type of MCC. 

MCC𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖 ⋅ 𝑇𝑁𝑖 − 𝐹𝑃𝑖 ⋅ 𝐹𝑁𝑖
√

(𝑇𝑃𝑖 + 𝐹𝑃𝑖)(𝑇𝑃𝑖 + 𝐹𝑁𝑖)(𝑇𝑁𝑖 + 𝐹𝑃𝑖)(𝑇𝑁𝑖 + 𝐹𝑁𝑖)

(14)

For performance evaluation, we use macro versions of the metrics 
precision, recall, F1 score and MCC as default metrics for evaluating 
the performance of different approaches.
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Table 3
Performance comparison between VulTC-LTPF and SVTC baselines, with the best results 
for each metric highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 VulExplainerCodeBERT 0.446 0.458 0.349 0.357 0.405 
 VulExplainerCodeGPT 0.432 0.365 0.282 0.273 0.385 
 Devign 0.221 0.190 0.130 0.122 0.152 
 ReGVD 0.175 0.194 0.153 0.140 0.115 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

4.5. Experimental settings

In our experiments, we performed the following experimental set-
tings:

Prompt template construction. To achieve prompt tuning, we use 
the OpenPrompt framework [52] and build hard templates, soft tem-
plates and hybrid templates through the ManualTemplate, SoftTemplate
and MixedTemplate APIs.

Model hyperparameter configuration. In our experiments, we 
followed the default parameter configuration of CodeT5. Specifically, 
the word embedding dimension and hidden layer size are both set 
to 768, and the model contains 12 attention heads and 12 layers 
of Transformer encoders. The optimization process uses the AdamW 
optimizer  [53], with an initial learning rate of 5e−5. During training, 
the batch size is set to 32, and the maximum length of the input 
sequence is 512. To avoid overfitting the model, an early stop strategy 
[54] is used, i.e., when the performance of the validation set does not 
improve for 10 epochs in a row, training is stopped, and the model with 
the best validation set performance is selected as the final model.

Input length analysis and truncation strategies. Due to the input 
length limitation of CodeT5, in order to maximize the retention of 
vulnerability information, we implemented truncation of the bi-modal 
input based on code simplification of the source code information in 
the dataset, where the maximum length of the code snippet was set 
to 384 words and the maximum length of the vulnerability description 
was set to 64 words.

Experimental environment. All experiments were performed on a 
computer equipped with an Intel(R) Core(TM) i5-13600K processor, a 
GeForce RTX 4090 GPU with 24 GB of graphics memory, and Windows 
10 operating system.

5. Experimental results

5.1. RQ1: What is the performance of VulTC-LTPF in SVTC?

Approach: To evaluate the effectiveness of our approach, we adopt 
commonly used evaluation metrics (including accuracy, precision, re-
call, F1 score and MCC) and comprehensively compare them with four 
state-of-the-art baselines. In the experiment, the experimental settings 
of all baselines are kept consistent, and their respective optimized 
hyperparameters are used.

Results: As shown in Table  3, VulTC-LTPF significantly outperforms 
existing baseline approaches in all evaluation metrics, demonstrating its 
strong performance in the SVTC task. Specifically, VulTC-LTPF’s accu-
racy metric improved by 24.2% to 51.3%, precision metric improved 
by 18.2% to 45%, recall metric improved by 29.3% to 51.2%, F1 score 
improved by 26.3% to 49.8%, and MCC metric improved by 26.1% to 
55.1%.

The superior performance of VulTC-LTPF can be attributed to sev-
eral key innovations. First, VulTC-LTPF employs adaptive data aug-
mentation, which effectively mitigates the long-tailed problem and 
improves the classification on tail class vulnerability types. In contrast, 
other baseline approaches, do not employ a similar long-tailed learning 
approach. Second, VulTC-LTPF introduces prompt tuning, which allows 
the model to leverage the latent knowledge of the pre-trained model 
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Table 4
Comparative results between our approach VulTC-LTPF and VulTC-LTPF without ADA, 
with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 w/o ADA 0.654 0.600 0.615 0.582 0.629 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

Table 5
Comparative results between our approach VulTC-LTPF and VulTC-LTPF using tradi-
tional data augmentation, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 w/o Adaptive 0.661 0.589 0.617 0.584 0.637 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

and enhances the model’s generalization ability and adaptability. Fi-
nally, unlike the baseline approaches, VulTC-LTPF employs a bi-modal 
input strategy that combines information from source code and vul-
nerability descriptions. With the bi-modal input, VulTC-LTPF is able to 
capture the potential correlation between source code and vulnerability 
descriptions, addressing the limitations of single-modal input.

Summary for RQ1: Our proposed approach, VulTC-LTPF 
outperforms the baselines across all evaluated metrics. Specifi-
cally, VulTC-LTPF achieves improvements in F1 score ranging 
from 26.3% to 49.8% and in MCC from 26.1% to 55.1%. 
These results underscore the effectiveness of VulTC-LTPF in 
addressing SVTC tasks.

5.2. RQ2: What is the impact of adaptive data augmentation on the perfor-
mance of the VulTC-LTPF approach?

Approach: To demonstrate the effectiveness of the adaptive data 
augmentation component, we validate it through ablation experiments, 
with ‘‘w/o ADA’’ representing the approach without adaptive data 
augmentation. The rest of the experimental settings are kept constant. 
The comparison results are shown in Table  4.

Results: The results of the ablation experiments, as shown in Table 
4, indicate that the ADA strategy has a significant effect on the model 
performance. When the ADA strategy is removed (i.e., ‘‘w/o ADA’’), 
the model’s accuracy is 0.654 (3.4% reduction), precision is 0.6 (4% 
reduction), recall is 0.615 (2.7% reduction), F1 score is 0.582 (3.8% re-
duction), and MCC is 0.629 (3.7% reduction). This shows that the ADA 
strategy effectively mitigates the problem of long-tailed distribution of 
the data set by enhancing the diversity and quality of the tail class 
samples, which improves the model’s ability to detect vulnerabilities 
in a small number of classes and enhances the overall performance of 
the model.

To verify the effectiveness of adaptive data augmentation further, 
we designed additional experiments. We compared VulTC-LTPF with 
a version of the model that uses a traditional data augmentation 
strategy [55], where the adaptive mechanism is removed(i.e., ‘‘w/o 
Adaptive’’).

The experimental results are shown in Table  5. The results show 
that the adaptive data augmentation approach is better than the tra-
ditional data augmentation model in all evaluation metrics. This may 
be because the traditional data augmentation strategy uses a static 
approach to treat all tail classes equally and cannot be dynamically 
adjusted according to the actual performance of the categories during 
training. As a result, it is difficult for the model to pay extra attention to 
the poorly performing categories during training, limiting its learning 
ability on these categories and the final overall classification effect.

This confirms that the adaptive mechanism is crucial for better miti-
gating the long-tailed distribution problem and improving classification 
performance.
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Table 6
Comparison results between our approaches VulTC-LTPF and VulTC-LTPF alone using 
different modal information as input, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 w/o Desc 0.182 0.215 0.152 0.146 0.118 
 w/o Code 0.641 0.606 0.581 0.560 0.616 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

Summary for RQ2: The results of the ablation experiments 
indicate that the adoption of adaptive data augmentation 
leads to significant improvements across multiple metrics. This 
demonstrates the effectiveness of ADA in enabling the model 
to address the long-tailed distribution present in the dataset.

5.3. RQ3: What is the impact of bi-modal information on the performance 
of the VulTC-LTPF approach?

Approach: In order to demonstrate the effectiveness of the bi-modal 
information input, we verified it through ablation experiments, using 
‘‘w/o Desc’’ to represent the approach that does not use the description 
as input and ‘‘w/o Code’’ to represent the approach that does not use 
the source code as input. The rest of the experimental settings are kept 
constant. The comparison results are shown in Table  6.

Results: The results of the ablation experiments are shown in 
Table  6. Specifically, when only the vulnerability description (‘‘w/o 
Desc’’) is used as input, the performance of the model is significantly 
degraded, with a F1 score of 0.146, and an MCC of 0.118. This 
suggests that relying on source vulnerability information alone is not 
sufficient to effectively capture critical information about vulnerabil-
ities. In contrast, when only the source code (‘‘w/o Code’’) is used 
as input, the performance improves with a F1 score of 0.56, and 
MCC of 0.616. This suggests that the vulnerability description provides 
valuable information (e.g., contextual information and details that are 
not immediately apparent from the source code), but still falls short of 
optimal performance.

When source code and vulnerability descriptions are used together 
as input, there is a significant improvement in all metrics to achieve 
the best results. For example, the F1 score is 0.62 and the MCC is 
0.666. These results show that by fusing source code and vulnerability 
descriptions, the input of bi-modal information can help the model cap-
ture richer vulnerability information. This information fusion approach 
provides a more comprehensive understanding of vulnerabilities, which 
significantly improves the model’s performance on SVTC.

Summary for RQ3: The model performance is relatively 
weak when using only source code or vulnerability descrip-
tions, while the bi-modal inputs combining both significantly 
enhance the model performance.

5.4. RQ4: What is the impact of the prompt tuning paradigm on the 
performance of the VulTC-LTPF approach?

Approach: In order to bridge the gap between the pre-trained 
model and the downstream task, we introduce a specially tailored 
prompt tuning paradigm for the SVTC task. In this study, we validate 
the effectiveness of this paradigm by comparing the performance of 
VulTC-LTPF with traditional fine-tuning approaches. Specifically, tradi-
tional fine-tuning approaches focus only on tuning pre-trained models 
and do not involve task-based prompt design. In order to introduce 
the pre-training fine-tuning approach in bi-modal inputs, we include 
a special identifier <desc> before the vulnerability description to 
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Table 7
Comparison between VulTC-LTPF using the prompt tuning paradigm and VulTC-LTPF 
using the fine-tuning paradigm, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 VulTC-LTPFf t 0.623 0.556 0.537 0.519 0.597 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

distinguish different parts of the input data. The input format is defined 
as follows:
𝑋 = 𝑋code + ⟨desc⟩ +𝑋desc

where 𝑋 represents the overall input data, 𝑋code is the source code 
part, and 𝑋desc is the vulnerability description part. In this framework, 
the model using the traditional fine-tuning approach is represented as 
VulTC-LTPFf t .

Results: The experimental results are shown in Table  7, and from 
the results in the table, it can be seen that the VulTC-LTPF approach 
significantly outperforms VulTC-LTPFf t in all the evaluation metrics. 
For example, VulTC-LTPFf t has an F1 score of 0.519 (10.1% reduction) 
and an MCC of 0.597 (6.9% reduction).

These results indicate that the prompt tuning approach is able to 
better utilize the latent knowledge of the pre-trained model, thus show-
ing significant performance improvement in the SVTC task. Traditional 
fine-tuning approaches rely on large-scale annotated data for fine-
tuning model parameters, however, this approach does not fully utilize 
the potential of the pre-trained model, resulting in lower efficiency 
and more limited performance when processing the task. Compared 
to the fine-tuning approach, prompt tuning is able to enhance the 
model’s comprehension of vulnerability information more effectively 
by designing task-specific prompt templates that more accurately guide 
the knowledge of the pre-trained model to align with the requirements 
of the downstream tasks.

Summary for RQ4: Compared with the fine-tuning ap-
proach, the prompt tuning paradigm significantly improves the 
performance of VulTC-LTPF.

5.5. RQ5: What is the impact of different prompt settings on VulTC-LTPF 
performance?

Approach: To validate the effectiveness of our proposed hybrid 
prompt templates, we designed comparison experiments comparing 
the hybrid prompt templates (i.e., Eq.  (3)) with hard prompts only 
(i.e., Eq.  (1)) and soft prompts only (i.e., Eq.  (2)). The rest of the 
experimental settings were kept constant. The comparison results are 
shown in Table  8. In addition, to verify the effectiveness of the one-
to-many verbalizer we used. We also set up a comparison experiment 
between the approaches of one-to-one and one-to-many verbalizers (as 
described by Eqs.  (4) and (5), which have different numbers of mapping 
words). The results are shown in Table  9

Results: Tables  8 and 9 show the impact of different prompt settings 
and mapping words configurations on the performance of the VulTC-
LTPF model. First, Table  8 shows a comparison between hard prompt, 
soft prompt and hybrid prompt templates. The results show that the 
F1 score and MCC are 0.6 and 0.63 when only hard prompt are used. 
The F1 score and MCC are 0.605 and 0.657 when only soft prompt are 
used. We found that the hybrid prompt template outperforms both hard 
prompt and soft prompt when used alone on all evaluation metrics.

The above results can be attributed to the fact that hybrid prompts 
can effectively combine the structured format of hard prompting with 
the flexibility of soft prompting. Hard prompting provides a clear 
structure that helps the model maintain consistency with pre-trained 
knowledge, while soft prompting increases the adaptability of the 
model and enables it to better capture the nuances in the data. Through 
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Table 8
Comparison of our approach VulTC-LTPF with approaches using different types of 
prompt templates. The best result is highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 Hard 0.654 0.610 0.619 0.600 0.630 
 Soft 0.679 0.614 0.641 0.605 0.657 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

this balance, hybrid prompting can more comprehensively capture 
vulnerability information, thereby achieving higher performance.

In addition, Table  9 shows the impact of different verbalizer con-
figurations with different mapping words on the performance of the 
VulTC-LTPF model. In this experiment, the model performs best when 
using one-to-many verbalizer with two mapping words. In contrast, the 
MCC decreased by 3.8% when using a configuration of three mapping 
words, and the F1 score decreased by 8.4% and the MCC decreased 
by 5.4% when using a one-to-one verbalizer. Therefore, the configura-
tion of two mapping words has achieved the best balance, which not 
only enriches the mapping representation, but also does not introduce 
irrelevant information, making it the most effective configuration.

Summary for RQ5: Our proposed hybrid prompt template 
and one-to-many verbalizer achieve significant performance 
improvements over other settings. These results show that the 
performance of VulTC-LTPF can be effectively improved by 
optimizing the settings of prompt templates and verbalizers.

6. Discussion

6.1. Influence of the choice of scaling factor 𝑘

In the design of our adaptive data augmentation, the scaling factor 
𝑘 plays a crucial role in determining the number of augmented samples 
generated for each tail class based on its error rate. The value of 𝑘
influences how aggressively the augmentation is applied to tail classes, 
which can impact both the model’s performance and the class balance 
in the training dataset.

To ensure the robustness and reproducibility of our adaptive data 
augmentation, we experiment with the grid search approach [47] to 
select a suitable scaling factor 𝑘. Specifically, we tested values of 𝑘 ∈
{1, 5, 10, 15, 20}, covering both conservative and aggressive augmen-
tation strategies. These values range from conservative to aggressive 
augmentation strategies, reflecting different augmentation strengths. 
By experimentally comparing the model performance under each can-
didate value, we aim to determine an appropriate parameter value that 
can augment the tail classes while maintaining overall performance. 
The experimental results are shown in Table  10.

Our experimental results indicate that 𝑘 = 15 yielded the best 
performance in terms of model accuracy and generalization. Specif-
ically, this value of 𝑘 produced a sufficient number of augmented 
samples to address the underrepresentation and misclassification of tail 
classes, without introducing excessive redundancy or noise into the 
training data. Although a higher 𝑘 value (e.g., 20) may bring about 
further improvements in some tail classes, it also leads to overfitting 
and longer training times. In addition, a higher 𝑘 value means that 
stronger augmentation is applied to the tail classes, which may lead to 
an excessive number of samples in some tail classes, thereby weakening 
the model’s ability to learn from the head classes. This situation may 
trigger a decrease in the classification accuracy of the head classes, 
which will have a negative impact on the overall performance of the 
model. Conversely, smaller values of 𝑘 (e.g., 5) were insufficient to 
alleviate the challenges posed by tail classes, resulting in suboptimal 
performance.
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Table 9
Comparison of different verbalizers on VulTC-LTPF, with the best result highlighted in bold.
 Verbalizer Accuracy Precision Recall F1 MCC  
 ‘‘CWE-119’’: [‘‘buffer overflow’’]
‘‘CWE-125’’: [‘‘out-of-bounds read’’] 
. . . . . . . . .
‘‘CWE-310’’: [‘‘cryptographic issue’’]

0.637 0.535 0.583 0.536 0.612 

 ‘‘CWE-119’’: [. . .+ ‘‘memory violation’’]
‘‘CWE-125’’: [. . .+ ‘‘information leak’’] 
. . . . . . . . .
‘‘CWE-310’’: [. . .+ ‘‘insecure cryptography’’]

0.688 0.640 0.642 0.620 0.666 

 ‘‘CWE-119’’: [. . .+ ‘‘out-of-bounds access’’]
‘‘CWE-125’’: [. . .+ ‘‘data exposure’’] 
. . . . . . . . .
‘‘CWE-310’’: [. . .+ ‘‘weak encryption’’]

0.652 0.646 0.637 0.628 0.628 
Table 10
The effect of different scaling factor 𝑘 values on the classification performance of VulTC-
LTPF, with the best result highlighted in bold.
 Value of 𝑘 Accuracy Precision Recall F1 MCC  
 1 0.665 0.600 0.622 0.591 0.641 
 5 0.669 0.601 0.635 0.593 0.647 
 10 0.675 0.614 0.627 0.600 0.652 
 15 0.688 0.640 0.642 0.620 0.666 
 20 0.665 0.614 0.630 0.601 0.641 

Table 11
The results of the VulTC-LTPF performance comparison when considering different 
PLMs are shown, with the best result for each performance metric highlighted in
bold.
 Approach Accuracy Precision Recall F1 MCC  
 T5 0.609 0.518 0.522 0.506 0.581 
 UnixCoder 0.644 0.548 0.570 0.545 0.619 
 CodeBERT 0.646 0.556 0.577 0.551 0.621 
 GraphCodeBERT 0.636 0.575 0.594 0.558 0.610 
 CodeT5 0.688 0.640 0.642 0.620 0.666 

In summary, in the implementation of adaptive data enhancement, 
we designed a fixed 𝑘 value and found a suitable 𝑘 value through 
experiments. In the experiment, our main purpose is not to find the best 
parameters, but to prove the effectiveness of our approach. Our results 
suggest that 𝑘 = 15 strikes a good balance between augmentation 
intensity and model efficiency, making it the most effective choice for 
improving the classification performance of tail classes in this study. 
In future work, we can further explore more adaptive dynamic scaling 
strategies, such as automatically adjusting parameters based on the 
distribution characteristics or training performance of samples in each 
category, so as to achieve more flexible, responsive and data-driven 
adaptive data augmentation.

6.2. Influence of PLMs

To comprehensively evaluate our proposed VulTC-LTPF approach, 
we conducted a comparison experiment using different pre-trained 
language models (PLMs) to assess their effectiveness in the SVTC 
task. Specifically, we selected five widely used PLMs for comparison: 
T5 [56], UnixCoder [57], CodeBERT [58], GraphCodeBERT [59], and 
CodeT5 [27]. To ensure a fair comparison, we only replaced the PLM 
and kept all other experimental settings the same. The results of this 
experiment are shown in Table  11.

The experimental results show that VulTC-LTPF using CodeT5 con-
sistently outperforms those using other PLM models in all evaluation 
metrics. Compared with using T5, a general pre-trained model, the 
use of CodeT5 in the VulTC-LTPF achieved a significant improvement. 
T5 has a MCC of 0.581, which is relatively average. Since T5 is not 
specifically optimized for programming languages, it is difficult for it 
to effectively capture the source code syntax and semantic features 
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required for the SVTC task, which affects its performance in the SVTC 
task. The MCC obtained by using UnixCoder’s VulTC-LTPF is improved 
to 0.619, but it is still lower than that of using CodeT5. UnixCoder is 
based on the UniLM style of design, and may be subject to interference 
between tasks when processing multiple tasks, limiting its performance 
in specific tasks.

Although CodeBERT and GraphCodeBERT are models optimized for 
coding tasks, unlike CodeT5, they rely on the BERT architecture, which 
may limit their ability to fully capture the deep semantic relationship 
between source code and vulnerability descriptions.

The reason why CodeT5 outperforms other models in various met-
rics is due to its design specifically for code syntax and natural language 
understanding. Unlike other models, CodeT5 is optimized to better han-
dle the bi-modal input (source code and vulnerability description) in 
the SVTC task, which makes CodeT5 the best choice for the VulTC-LTPF 
approach.

6.3. Influence of the design of the prompt template

As shown in Section 5.5, we conducted comparative experiments on 
soft prompt, hard prompt, and hybrid prompt templates to study the 
effectiveness of different types of prompt templates. The experimental 
results show that the hybrid prompt in VulTC-LTPF has the best perfor-
mance. To further study the impact of different prompt designs on the 
performance of our approach, we refer to previous research [18] and 
explore it by designing different prompt templates.

Since soft prompt tokens are automatically optimized during model 
training, we only initialize them at the beginning of the experiment 
for reproducibility. Therefore, we focus on the hard prompt part in this 
experiment. We designed two other prompt templates by modifying the 
hard prompt parts. One of them uses longer hard prompt tokens, and 
the template is as follows: 
𝑓Long = The following is a source code that contains

a security vulnerability: [X]
The following is the description text of the vulnerability:

 [Y] [SOFT] [Z]

(15)

The other uses shorter hard prompt tokens, and the template is as 
follows: 
𝑓𝑆ℎ𝑜𝑟𝑡 = code: [X] description: [Y] [SOFT] [Z] (16)

We conducted comparative experiments based on these three dif-
ferent prompt template designs, and the detailed results are shown in 
Table  12.

From the experimental results, we can see that the design of differ-
ent prompt templates does have a certain impact on the performance 
of VulTC-LTPF. In the experiment, we found that when using prompt 
templates with hard prompt tokens of appropriate length, better per-
formance was obtained on all evaluation metrics. In contrast, the long 
prompt may introduce redundant information and distract the model’s 
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Table 12
Comparison of our approach VulTC-LTPF with approaches using prompt templates with 
different prompt tokens. The best result is highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC  
 Long 0.668 0.629 0.637 0.612 0.645 
 Short 0.664 0.605 0.629 0.592 0.642 
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666 

Table 13
Wilcoxon signed-rank test between VulTC-LTPF and the baselines on MCC.
 Approach p-values 
 VulExplainerCodeBERT **  
 VulExplainerCodeGPT **  
 Devign **  
 ReGVD **  
Note: *** means p-value < 0.001, ** means p-value < 0.01, * means p-value < 0.005

attention, while the short prompt may lack sufficient guidance to 
help the model align with the task objective. These findings further 
emphasize the critical importance of the appropriate prompt design for 
the effectiveness of prompt tuning.

6.4. Statistical significance test

The Wilcoxon signed-rank test [60] is commonly used to assess 
whether there is a significant difference between two paired sample 
distributions. We performed the Wilcoxon signed-rank test to assess 
further the statistical significance of the improvement observed in our 
approach over the baselines.

Specifically, we ran our approach and each baseline model mul-
tiple times independently under the same experimental settings and 
recorded their corresponding MCC metrics. We then used the Wilcoxon 
signed-rank test to compare the score distributions of our approach and 
each baseline model to assess whether the differences between the two 
were statistically significant. The comparison results with the baselines 
are shown in Table  13.

The experimental results show that the p-values between VulTC-
LTPF and all baselines are less than 0.01, indicating that there is a 
statistically significant difference in performance. This means that the 
performance improvement of our approach compared to the baselines 
is not due to random fluctuations, but has statistical support. The above 
results further verify the effectiveness and robustness of our approach.

6.5. Threats to validity

In this section, we discuss potential threats to the validity of our 
study.

Internal Validity. This threat is mainly related to the implemen-
tation of the VulTC-LTPF and baseline approaches. To mitigate this 
threat, we conduct a detailed code review and thorough testing of the 
approach implementation. In addition, to avoid the impact of config-
uration differences on baseline performance, we conduct experiments 
according to the recommended hyperparameter settings of these base-
lines. Although the hyperparameters of the model optimizer, learning 
rate, etc., as well as the design of prompt templates and verbalizers, 
may still affect the results, it is more difficult to comprehensively 
optimize these factors. However, the experimental results show that 
under the current configuration, the performance of the VulTC-LTPF 
approach is always better than that of the baseline and the traditional 
fine-tuning paradigm, thus verifying its effectiveness.

External Validity. This threat is mainly related to the choice of 
dataset. First, we selected the high-quality MegaVul dataset as the 
initial dataset, which covers a wide range of time (from 2006 to 2024), 
has a wealth of vulnerability types and real-world code scenarios, and 
is highly representative. To further improve its adaptability, we have 
12 
optimized the dataset, such as cleaning up redundant data and updating 
deprecated CWE-IDs, to serve the SVTC task better. Second, the current 
experiment only uses the C/C++ code dataset, which may limit the 
generality of the approach. However, the core design of VulTC-LTPF 
does not rely on a specific programming language. In theory, it can be 
extended to datasets of other languages to support a broader range of 
vulnerability classification tasks. In addition, the potential drawbacks 
of the hybrid prompt tuning process or scalability concerns may pose 
a threat to the validity of the approach. Since the current design relies 
on manually crafted templates and verbalizer mappings, applying the 
approach to other domains or tasks may require substantial human 
effort. Future work could address these issues by introducing automated 
or semi-automated prompt engineering approaches.

Construct Validity. This threat is mainly related to the selection of 
evaluation metrics. To mitigate this threat, we use multiple commonly 
used and reliable evaluation metrics to comprehensively evaluate the 
performance of VulTC-LTPF and the baseline approaches.

7. Related work

Software vulnerability type classification is a key step in the soft-
ware vulnerability repair process. It can effectively help developers 
quickly identify the type of vulnerability, providing an important basis 
for subsequent vulnerability repair. With the rapid increase in the num-
ber of vulnerabilities, the traditional manual classification approach has 
difficulty coping with the processing requirements of a large number of 
vulnerabilities. Therefore, there is an urgent need to design an efficient 
automated SVTC approach to improve the accuracy and efficiency of 
vulnerability classification. From the perspective of vulnerability infor-
mation input, current SVTC research can be broadly divided into two 
categories: approaches that utilize vulnerability descriptions [13,14,21] 
and approaches based on source code analysis [12,15,19,20]. These 
approaches have different perspectives and use different modalities 
of vulnerability information to propose their own solutions to the 
problem of SVTC. In addition, since the distribution of vulnerability 
types in the dataset often shows a long-tailed distribution, the lack 
of a small number of tail class samples makes the classification effect 
of the model worse in these classes. Therefore, in recent years, some 
studies [12,16,17] have begun to try to introduce long-tailed learning 
approaches to improve the model’s ability to identify tail classes, and 
thus improve the overall performance of the model in the SVTC task.

Vulnerability Description-Based Approaches Vulnerability de-
scriptions provide a textual description of software vulnerabilities, 
usually detailing their characteristics, potential consequences and ex-
ploitation scenarios. This textual data has been extensively studied 
for the purpose of automating SVTC tasks [21]. Aota et al. [13] used 
machine learning models to classify vulnerability types based on the 
textual features of vulnerability descriptions. Pan et al. [14] adopted a 
deep learning approach combining BiGRU and TextCNN models, which 
effectively captured the sequential features and contextual information 
in vulnerability descriptions, improving the accuracy of vulnerability 
classification.

Source Code-Based Approaches In addition to textual descriptions, 
analyzing source code has become another important approach in 
SVTC [19,20]. Code-level analysis provides fine-grained and detailed 
information, capturing structural and contextual aspects of vulnerabili-
ties. For example, Fu et al. [15] open by introducing a hierarchical dis-
tillation mechanism that uses vulnerability code information to provide 
higher classification transparency and more accurate vulnerability type 
classification . Ji et al. [12] explore the application of the contrastive 
learning approach in code vulnerability types classification, using a 
contrastive learning strategy to enhance the classification ability of the 
model through an efficient representation of code features.

Long-tailed Learning-Based Approaches The long-tailed learning 
approach offers an effective solution to address the imbalanced dis-
tribution of vulnerability types within software vulnerability datasets 
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[16]. Wen et al. [17] explored the loss function re-weighting approach 
in long-tailed learning and proposed the LIVABLE framework. This 
framework addresses the long-tailed problem by designing an adaptive 
re-weighting module, which dynamically adjusts the category weights 
based on the samples size and the training progress. By ensuring 
that the tail categories receive sufficient attention during training, 
this dynamic weighting strategy significantly improves the model’s 
performance on SVTC.

Compared with existing work, our approach focuses on the in-
tegration bi-modal information from source code and vulnerability 
descriptions. By leveraging prompt tuning, we effectively fuse this 
bi-modal information to improve the performance of SVTC. Further-
more, in addressing the challenges posed by long-tailed learning, we 
introduce adaptive data augmentation informed by a comprehensive 
analysis of existing data augmentation approaches. This strategy suc-
cessfully alleviates the long-tailed distribution problem and improves 
model performance.

8. Conclusion

We propose a novel SVTC approach, refer to as VulTC-LTPF, which 
combines source code and vulnerability descriptions to accurately pre-
dict vulnerability types. To address the long-tailed distribution of vul-
nerability types within datasets, we introduce adaptive data augmenta-
tion to improve the model’s learning ability for tail classes. Addition-
ally, the performance of the model is further improved through the 
optimization of the prompt tuning paradigm. To achieve a more com-
prehensive representation of vulnerabilities, VulTC-LTPF employs bi-
modal information fusion, combining the structured features of source 
code with the textual information of vulnerability descriptions. Exper-
imental results show that VulTC-LTPF outperforms existing baseline 
approaches in terms of accuracy, precision, recall, F1 score and MCC 
metrics. These findings validate the superiority of VulTC-LTPF in the 
SVTC task.

For future work, we plan to explore more sophisticated augmenta-
tion techniques, such as code refactoring and syntax transformations, to 
further enhance the diversity of training data. Additionally, we aim to 
explore a dynamic scaling strategy that can automatically adjust param-
eters further to enhance the flexibility and adaptability of adaptive data 
augmentation. Lastly, we plan to develop more effective prompt config-
urations specifically tailored for SVTC to improve model performance 
continuously. We also intend to explore automated or semi-automated 
prompt optimization techniques to reduce manual effort and enhance 
the scalability of the approach, thereby further improving the prompt 
tuning module.
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