
Applied Soft Computing Journal 182 (2025) 113612

A
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Enhancing long-tailed software vulnerability type classification via adaptive

data augmentation and prompt tuning
Long Zhang a , Xiaolin Ju a ,∗, Lina Gong b,∗, Jiyu Wang a , Zilong Ren a
a School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
b School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

A R T I C L E I N F O

Keywords:
Software vulnerability type classification
Long-tailed learning
Prompt tuning
Feature fusion

 A B S T R A C T

Software vulnerability type classification (SVTC) is essential for efficient and targeted remediation of vulner-
abilities. With the rapid increase in software vulnerabilities, the demand for automated SVTC approaches is
becoming increasingly critical. However, the SVTC is significantly affected by the long-tailed issues, where the
distribution of vulnerability types is highly unbalanced. Specifically, a small number of head classes contain a
large volume of samples, while a substantial portion of tail classes consists of only a limited number of samples.
This imbalance poses a significant challenge to the classification accuracy of existing approaches. To alleviate
these challenges, we propose an innovative approach VulTC-LTPF, which integrates prompt tuning with long-
tailed learning to enhance the effectiveness of SVTC. Within VulTC-LTPF, an adaptive error-rate-based data
augmentation strategy is developed. This strategy allows the SVTC model to dynamically augment data for tail
classes types with limited sample size during training, thereby mitigating the impact of the long-tailed problem.
Furthermore, VulTC-LTPF employs a hybrid prompt tuning strategy, aligning the training process more closely
with pre-training, which enhances adaptability to downstream tasks. Unlike existing approaches that rely
solely on either vulnerability description or source code, VulTC-LTPF leverages both sources of information.
By incorporating a combination of hard and soft prompts, it facilitates a more comprehensive and effective
classification strategy. Experimental results demonstrate that VulTC-LTPF achieves substantial performance
improvements over four state-of-the-art SVTC baselines, with gains ranging from 26.1% to 55.1% in MCC.
Ablation studies further validate the effectiveness of the adaptive data augmentation, prompt tuning, the
integration of two types of vulnerability information, and the use of hybrid prompts. These findings highlight
that VulTC-LTPF represents a promising advancement in the field of SVTC, offering significant potential for
further progress in addressing software vulnerability type classification challenges.
1. Introduction

As software systems grow increasingly complex, vulnerabilities in-
herent within these systems have emerged as critical threats to software
security [1]. These vulnerabilities are often exploited by malicious ac-
tors, leading to potentially severe consequences such as data breaches,
financial losses, and the compromise of system integrity and secu-
rity [2]. Moreover, the continuous expansion in the scale and com-
plexity of software systems has resulted in a corresponding increase in
the diversity and prevalence of vulnerabilities [3], presenting unprece-
dented challenges for the maintenance of software security. Therefore,
it is crucial to promptly and accurately identify and fix vulnerabilities
to ensure system security and integrity.

In the vulnerability fixing process, software vulnerability type clas-
sification (SVTC) is a key step that helps developers effectively identify

∗ Corresponding authors.
E-mail addresses: longzhang1219@gmail.com (L. Zhang), ju.xl@ntu.edu.cn (X. Ju), gonglina@nuaa.edu.cn (L. Gong), jyu.wang@outlook.com (J. Wang),

zilongren23@gmail.com (Z. Ren).

the specific type of vulnerability, which provides an important basis for
subsequent fixing work. First, accurately classifying vulnerability types
enables the prioritization of remediation efforts, allowing for a focus
on vulnerabilities that pose the greatest threat to the system. Second,
identifying specific vulnerability types facilitates the implementation of
more targeted and effective remediation strategies. For example, among
the 25 most dangerous vulnerabilities [4] identified by the Common
Weakness Enumeration (CWE), the highest-ranked is CWE-787 [5],
which pertains to out-of-bounds write. This vulnerability represents
one of the most prevalent and severe issues associated with memory
operations. If such risk can be identified early during the vulnerability
remediation process, developers can prioritize implementing boundary
checks for memory operations in their code, thereby significantly
mitigating system risk.
https://doi.org/10.1016/j.asoc.2025.113612
Received 7 February 2025; Received in revised form 12 June 2025; Accepted 8 Jul
vailable online 22 July 2025
568-4946/© 2025 Elsevier B.V. All rights are reserved, including those for text and
y 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
https://orcid.org/0009-0009-4500-1166
https://orcid.org/0000-0003-2579-5359
https://orcid.org/0009-0001-6085-816X
mailto:longzhang1219@gmail.com
mailto:ju.xl@ntu.edu.cn
mailto:gonglina@nuaa.edu.cn
mailto:jyu.wang@outlook.com
mailto:zilongren23@gmail.com
https://doi.org/10.1016/j.asoc.2025.113612
https://doi.org/10.1016/j.asoc.2025.113612

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Fig. 1. Statistical analysis of vulnerability data from 2006 to 2024. The CWE types of vulnerabilities show a long-tailed distribution.
While existing research predominantly focuses on vulnerability de-
tection [6–9], the critical task of SVTC remains understudied despite
its direct impact on remediation efficacy. To address this gap, we
conducted a statistical analysis of vulnerability data from 2006 to
2024 using open-source databases. The findings, illustrated in Fig.
1, reveal a distinct long-tailed distribution of vulnerability types. In
this distribution, a small subset of types refer to as ‘‘head classes’’,
accounts for the majority of samples, while the vast majority of vul-
nerability types, known as ‘‘tail classes’’, are represented by a limited
number of samples. This long-tailed distribution can seriously affect the
performance of the SVTC models. Specifically, it leads to insufficient
learning of the tail classes during model training, adversely affecting
classification accuracy and generalization ability. Tail classes, due to
their scarcity, are often overlooked by the model, resulting in reduced
classification accuracy. Moreover, in practical applications, tail class
vulnerabilities frequently correspond to high-risk vulnerabilities. For
instance, vulnerabilities such as CWE-22 and CWE-415 have a Common
Vulnerability Scoring System (CVSS) score of 7.5 or higher, indicating
a severity rating of ‘‘high’’ [10]. Consider CWE-22(Path Traversal) [11]
as an example. This vulnerability enables attackers to manipulate file
paths to access unauthorized files, potentially leading to the disclo-
sure of sensitive information or the execution of malicious operations.
Therefore, addressing the long-tailed distribution problem is critical
for improving the performance of the SVTC model. Improving the
model’s ability to accurately classify tail class vulnerabilities not only
boosts overall classification performance but also ensures that high-risk
vulnerabilities are effectively identified and mitigated.

Previous SVTC models [12–15] rarely fully consider the long-tailed
problem in the vulnerability type dataset. Since a few common head
classes dominate the number of samples, this oversight causes the
model to tend to learn the characteristics of the head classes during
training, which seriously affects the accuracy of the model in identi-
fying tail classes. While some studies [12,16] have proposed strategies
to mitigate the long-tailed problem, they remain limited in scope. For
instance, Wen et al. [17] introduced the LIVABLE approach, incorporat-
ing an adaptive re-weighting module. This module dynamically adjusts
the loss weight during training based on the number of training rounds
and the distribution of samples. However, this approach primarily
focuses on adjusting the model’s learning bias between head and tail
classes across different training stages. It does not directly address the
insufficient learning of tail class samples within each training iteration,
leaving room for optimization. In contrast, our proposed approach
introduces adaptive data augmentation that dynamically augments the
tail class dataset by studying the model’s classification efficiency of tail
class samples during training and combining it with data augmentation
techniques [18]. By dynamically increasing the number of tail classes
2
samples during training based on model performance, the model can
be encouraged to allocate more attention to underrepresented tail
classes, thereby alleviating the long-tailed problem and improving over-
all classification performance. By dynamically increasing the number of
samples of the tail classes according to the training performance during
training, the model can be encouraged to allocate more attention to the
tail classes in need during learning, thereby alleviating the long tail
problem and improving the overall classification performance.

Currently, most SVTC models usually rely on a single type of vul-
nerability information for classification, such as the source code of the
vulnerability [12,15,19,20] or the vulnerability description [13,14,21].
However, relying solely on one modality limits the model’s ability to
capture the full semantic features of vulnerabilities. In contrast, bi-
modal information combining source code and vulnerability description
can significantly improve the accuracy of SVTC. Unlike some exist-
ing SVTC research approaches, using a pre-trained language model
(PLM) in combination with fine-tuning paradigms [22,23] provides
a new direction for improving SVTC performance. PLMs, trained on
large-scale corpora, capture rich semantic information and complex
language patterns, which can be effectively utilized for downstream
tasks through fine-tuning [24–26]. However, SVTC tasks differ signif-
icantly from traditional pre-training tasks, which may hinder PLMs
from effectively capturing domain-specific semantic information. First,
the general semantic knowledge acquired during pre-training may be
insufficient to meet the specific requirements of SVTC tasks directly.
Second, fine-tuning PLMs typically necessitates a substantial amount of
high-quality data, which is often scarce in SVTC tasks. These challenges
underscore the need for a tailored approach to harness the potential of
PLMs for SVTC tasks fully.

Building on the aforementioned motivation, we propose the VulTC-
LTPF approach, which leverages prompt tuning and incorporates adap-
tive data augmentation. During the training phase, bi-modal informa-
tion of the vulnerability is used as input, and a new input is constructed
by integrating a hybrid prompt. The PLM CodeT5 [27] is then fine-
tuned using the prompt tuning approach to achieve the SVTC task.
At the end of each training round, the size of the required data aug-
mentation is dynamically determined and the corresponding data aug-
mentation is applied specifically to tail class categories. In the model
prediction phase, the source code and vulnerability description of the
target vulnerability are input into the fine-tuned model, which process
the data using the trained hybrid prompt template. Finally, a verbalizer
maps the model’s predicted tokens to their corresponding vulnerabil-
ity types. To evaluate the effectiveness of our proposed VulTC-LTPF
approach, we compared it against four state-of-the-art SVTC base-
lines [15,28,29] (i.e., VulExplainerCodeBERT, VulExplainerCodeGPT, Devign,
and ReGVD). We conducted a comprehensive evaluation of the model’s

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
performance using standard evaluation metrics, including accuracy,
precision, recall, F1 score, and Matthews Correlation Coefficient (MCC).
The experimental results demonstrate that the VulTC-LTPF approach
consistently outperforms the baseline models across all metrics. No-
tably, on the MCC metric, the VulTC-LTPF approach achieves a signifi-
cant performance improvement, ranging from 26.1% to 55.1%. Further-
more, ablation studies confirm the critical contributions of bi-modal
information, hybrid prompt templates, and adaptive data augmentation
in enhancing the performance of the VulTC-LTPF approach.

The findings of this study highlight three promising directions for
future research in SVTC that warrant further investigation. First, de-
veloping more effective strategies to address the long-tailed problem
in SVTC datasets remains a critical area of focus. Second, exploring
advanced prompt tuning-based methods offers significant potential for
enhancing the performance of SVTC tasks. Third, delving deeper into
additional sources of information related to software vulnerabilities,
such as the structural features of source code, presents an opportunity
to further improve the effectiveness of SVTC approaches.

The novelty and contributions of our study can be summarized as
follows:

• Dataset. We refined and update the dataset to enhance its adapt-
ability to the SVTC task. The specific processing steps will be
discussed in detail in Sections 3.1 and 4.2.

• Perspective. We applied prompt tuning and long-tailed learning
techniques to the task of software vulnerability type classification,
achieving a significant and reliable improvement in performance.

• Approach. We propose the VulTC-LTPF approach, which com-
bines adaptive data augmentation with bi-modal inputs (source
code and vulnerability descriptions) into prompt tuning frame-
work to optimize the SVTC task.

• Practical Evaluation. We conducted a comprehensive evalua-
tion of VulTC-LTPF, assessing the effectiveness of our approach
by comparing it against state-of-the-art SVTC baseline methods.
Furthermore, we performed extensive multi-group ablation exper-
iments to validate the robustness and efficacy of the proposed
method.

Open Science. To promote open science and reproducible research,
we share datasets, code, and detailed experimental results.1

Paper Organization. Section 2 is the background of this paper,
introducing software vulnerability type classification, long-tailed learn-
ing, and prompt tuning. Section 3 provides a detailed explanation
of the VulTC-LTPF framework, systematically outlining each stage of
the proposed approach. Section 4 describes the experimental setup,
including the research questions and their design motivations, the
experimental object, the baseline approaches as well as the evaluation
metrics. Section 5 presents the experimental results and their analysis,
covering comparisons with baselines and ablations experiments. Sec-
tion 6 discusses the impact of pre-trained language models and scaling
factors on performance, while summarizing validity threats. Section 7
reviews related work and highlights the paper’s innovations. Finally,
Section 8 summarizes our findings and discusses future directions.

2. Background

This section begins by providing an overview of software vulner-
ability type classification, followed by an introduction to long-tailed
learning and prompt tuning.

1 https://github.com/ntu-juking/VulTC-LTPF.
3
2.1. Software vulnerability type classification

Common Weakness Enumeration (CWE) is a publicly available and
widely used official vulnerability database that plays a vital role in
addressing software vulnerabilities. Maintained by MITRE [30], the
CWE provides a systematic classification, detailed descriptions, and
an analysis of the potential impacts of various software weaknesses
on security and quality. Through standardized vulnerability descrip-
tions and classifications, CWE facilitates the accurate identification and
reporting of vulnerabilities by security professionals, offers evidence-
based recommendations for remediation, and assists in determining
the type and severity of vulnerabilities. In the process of vulnerability
remediation, this information aids in the establishment of appropriate
priorities, thereby enhancing the efficiency of the remediation process.

However, SVTC is a challenging task [14,17] that requires secu-
rity experts to manually analyze code to identify vulnerability types.
But, there are some obvious problems with this process. First, man-
ual analysis is highly dependent on the security expert’s specialized
experience and domain knowledge. Second, the manual classification
process is time-intensive and resource-consuming. These issues make
manual analysis inadequate for meeting the demands of large-scale
vulnerability classification. For instance, the US National Vulnerability
Database (NVD) recorded 28,902 vulnerabilities in 2023, with 4113
cases remaining unclassified [12]. Therefore, there is an urgent need
for an efficient automated software vulnerability type classification
tool that can quickly and accurately predict the potential vulnerability
type, providing valuable reference for security experts to follow up on
software vulnerability repair work.

2.2. Long-tailed learning

The long-tailed learning approach aims to solve the problem of
severe class imbalance in data distribution. In many real-world tasks,
the data set usually has a long-tailed distribution [31], that is, most
data samples are concentrated in a few ‘‘head class’’ categories, while
the vast majority of categories have a small number of samples and are
‘‘tail classes’’. The long-tailed problem is particularly prominent in the
field of SVTC.

Long-tailed learning has become an important research direction
in the field of computer vision [31–33]. There are some popular ap-
proaches to alleviate the long-tailed problem, such as data resam-
pling [34], loss function re-weighting [35], and data augmentation
[36]. Data resampling balances a dataset by adjusting the number of
samples in different categories in the training data, usually by oversam-
pling the tail classes or undersampling the head classes. Loss function
re-weighting makes the model pay more attention to these difficult-
to-classify samples by assigning higher weights to samples in the tail
classes in the loss function. Data augmentation generates new samples
by transforming the original data, thereby increasing data diversity and
improving the generalization ability of the model.

These approaches have been widely used in the field of computer
vision and have effectively alleviated the long-tailed problem. How-
ever, research on long-tailed distributions for the SVTC task is still
limited. Therefore, based on the research and analysis of existing long-
tailed learning approaches, we propose an effective long-tailed learning
approach suitable for SVTC.

2.3. Prompt tuning

Prompt tuning is a technique in Natural Language Processing (NLP)
aimed at optimizing model performance in downstream tasks by refin-
ing the prompts that guide pre-trained language models (PLMs) [37].
Unlike traditional fine-tuning, which updates model weights, prompt
tuning enhances task adaptation by designing effective prompt tem-
plates. In the SVTC task, this approach helps PLMs better capture
vulnerability-related information and distinguish between source code

https://github.com/ntu-juking/VulTC-LTPF

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Fig. 2. Framework of VulTC-LTPF.
and vulnerability descriptions. Specifically, the template 𝑓prompt(𝑥)
transforms the original input 𝑥 into a new input 𝑥′ [38]. The template
contains two main slots, one for filling in the input data and the
other for filling in the expected answer, corresponding to data entry
and answer prediction, respectively. The verbalizer maps the words
predicted by the model to specific vulnerability type labels. Through
these one-to-one or one-to-many mappings, semantically similar words
are grouped into the same category.

Prompt templates can be classified into hard prompts and soft
prompts [20]. Hard prompts are manually designed static templates
that guide PLMs through specific tasks. In contrast, soft prompts consist
of learnable embeddings added to input tokens, which can be optimized
during training via backpropagation. Soft prompts are represented as
continuous vectors, enabling the model to adapt and fine-tune them
for specific tasks.

In the SVTC task, natural language is added to the input to con-
struct prompt templates that combine source code and vulnerability
descriptions.

A study by Wang et al. [39] applied prompt tuning to a variety
of code intelligence tasks, including defect prediction, code summa-
rization, and code translation. Their experimental results show that
prompt tuning performs well in these tasks. Similarly, Yang et al. [40]
applied prompt tuning to the Stack Overflow title generation task with
satisfactory results. These results show that prompt tuning has signif-
icant performance advantages over traditional fine-tuning approaches
in multiple domains. In this study, we apply prompt tuning to the SVTC
task and explore its effectiveness in depth to verify the potential and
advantages of this approach in vulnerability types classification.

3. Approach

Fig. 2 shows the framework of our proposed VulTC-LTPF approach.
It is divided into three main phases, namely the data preprocessing
phase, the model training phase and the model prediction phase. In
the remainder of this section, we describe these three phases in detail.
4
3.1. Data preprocessing phase

In our study, we chose the dataset MegaVul shared by Ni et al. [41].
as the initial dataset and selected vulnerability functions in the C/C++
programming language. Through in-depth analysis of the MegaVul
dataset, we found that certain elements in the exploit code (e.g., blank
lines, comments, and spaces before paragraphs) may adversely affect
the performance of the model. Specifically, these elements can take
up the length of the input of a pre-trained language model due to
its length limitation, and in the case of comments, the model may
incorrectly recognize them as code. To optimize model performance,
we remove these redundant elements to ensure that the model can focus
on the actual functional part of the code and learn as much relevant
information as possible. The simplified version of the code does not
affect its functionality. These preprocessing steps are intended to help
make the source code more suitable as input for SVTC tasks.

Subsequently, according to our research findings in Section 4.2,
some vulnerability entries in the original dataset used CWE-IDs that had
been deprecated on the official website. For this reason, we optimized
these entries by deleting or updating the vulnerability entries. After
these processes, we obtained an enhanced dataset that is more suitable
for the SVTC task. We then divided the dataset into head and tail
classes.

3.2. Model training phase

In the model training stage, we first consider using the bi-modal
information of vulnerabilities (i.e., source code and vulnerability de-
scription) to construct prompt templates. We apply prompt tuning to
the pre-trained model CodeT5 to perform the downstream task of SVTC.
Then, considering the long-tailed distribution of vulnerability types in
the dataset and the data imbalance problem, we designed an adaptive
data augmentation module that adaptively augments the data for each
tail class based on the model’s predicted performance on these tail
classes. In the framework of our approach, the two components of adap-
tive data augmentation and prompt tuning are closely connected and

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
complement each other. The effectiveness of prompt tuning depends
mainly on the quality and balance of the input data, while adaptive
data augmentation provides a fairer training basis for prompt tuning.
In turn, the prompt tuning fully uses the enhanced sample distribution
to improve further the model’s performance regarding semantic mod-
eling and category discrimination. The two work together to improve
the recognition ability of tail classes and the overall classification
accuracy.The model training part is described in detail below.

3.2.1. Prompt template and verbalizer construction
Prompt tuning approaches utilize prompt templates to modify raw

inputs and generate a new input. The design of prompt templates
is a critical and challenging task that often requires multiple trials
and optimizations to produce high-quality templates for specific down-
stream tasks. Prompt templates can be classified into three types: hard
prompts, soft prompts, and hybrid prompts.

Hard Prompt. Hard prompts [22,42] refer to manually designed
natural language phrases or templates that are usually fixed before
model training and remain unchanged throughout the training process.
Hard prompt templates have two types of slots: input slots and answer
slots. For the SVTC task, considering that our approach uses bi-modal
information as input, two input slots are required. The specific hard
prompt template structure can be expressed as follows:
𝑓ℎ𝑎𝑟𝑑 = The code snippet: [X] The vulnerability description:

[Y] Classify the vulnerability type: [Z] (1)

Here, input slot [X] will be filled with source code and input
slot [Y] with a vulnerability description. PLM predicts the probability
distribution of the label term at position [Z] based on the given input
information, and the label term with the highest probability is used as
the intermediate answer generated by PLM.

Soft Prompt. Soft prompts [22,38,42,43] are a learnable form of
embedding representation that allows optimization during training.
The greatest advantage of soft prompts is their flexibility, as they can
be automatically adjusted according to the specific requirements of the
task, thereby enabling the model to better understand the input and
perform specific downstream tasks. For SVTC, the specific soft prompt
template can be defined as:
𝑓𝑠𝑜𝑓𝑡 = [SOFT] [X] [SOFT] [Y] [SOFT] [Z] (2)

In this template, we initialize the [SOFT] tokens using the natural
language embeddings from the hard prompt above. Specifically, the
first [SOFT] token is initialized to ‘‘The code snippet:’’, the second
[SOFT] token is initialized to ‘‘The vulnerability description:’’, and the
third [SOFT] token is initialized to ‘‘Classify the vulnerability type:’’.

Hybrid Prompt. Hybrid prompting [40,42] combines the advan-
tages of both hard and soft prompting. Specifically, hard prompts are
suitable for denoting important information that is closely related to
downstream tasks because they remain unchanged during training. For
example, in the SVTC task, ‘‘The code snippet:’’ and ‘‘The vulnerability
description:’’ are important markers, so we retain these as hard prompt
tokens. In contrast, soft prompt tokens can be optimized throughout
the training process and are more flexible, so we use them to retain
the token ‘‘Classify the vulnerability type:’’, because there are many
alternative tokens for this phrase, such as ‘‘Classify the CWE:’’ or ‘‘The
vulnerability type is:’’. The use of soft prompts allows the model to dy-
namically adjust its wording based on the context, thereby augmenting
the diversity and adaptability of the prompt. For the SVTC task, the
hybrid prompt can be designed as follows:
𝑓ℎ𝑦𝑏𝑟𝑖𝑑 = The code snippet: [X] The vulnerability description:

[Y] [SOFT] [Z] (3)

In our research, we found that using a hybrid prompt (i.e., Eq. (3))
enables VulTC-LTPF to achieve optimal performance. For a detailed
analysis, see our ablation study section.
5
Verbalizer. Verbalizer is a key component in the prompt tuning
approach. It is responsible for mapping the predictions generated by
the model at the [MASK] position to specific vulnerability type labels.
In this process, the output label words of the model are restricted by a
vocabulary that maps the generated words to the labels of the vulnera-
bility types in the actual task. One label for a specific category can have
one or more label words. Depending on the requirements, Verbalizer
can be divided into the following two types: one-to-one Verbalizer and
one-to-many Verbalizer. In the SVTC task, we designed one-to-one and
one-to-many Verbalizers suitable for the task, as follows:

Verbalizer𝑂2𝑂 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‘‘𝐶𝑊𝐸 − 119’’ ∶ [‘‘𝑏𝑢𝑓𝑓𝑒𝑟𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤’’]
‘‘𝐶𝑊𝐸 − 125’’ ∶ [‘‘𝑜𝑢𝑡 − 𝑜𝑓 − 𝑏𝑜𝑢𝑛𝑑𝑠𝑟𝑒𝑎𝑑’’]

………
‘‘𝐶𝑊𝐸 − 310’’ ∶ [‘‘𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑖𝑠𝑠𝑢𝑒’’]

(4)

Verbalizer𝑂2𝑀 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‘‘𝐶𝑊𝐸 − 119’’ ∶ [⋯ + ‘‘𝑚𝑒𝑚𝑜𝑟𝑦𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛’’]
‘‘𝐶𝑊𝐸 − 125’’ ∶ [⋯ + ‘‘𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑘’’]

………
‘‘𝐶𝑊𝐸 − 310’’ ∶ [⋯ + ‘‘𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦’’]

(5)

In our study, we found that the verbalizer designed in Eq. (5)
enables the best performance of VulTC-LTPF. For a detailed analysis,
please see our ablation study section.

3.2.2. Prompt tuning on CodeT5
The Cross-Entropy(CE) Loss [44] Function is widely used in multi-

class classification tasks, which effectively measures the discrepancy
between the model predictions and the true labels, and thus drives the
optimization of the model parameters. Therefore, in the model training
phase, in order to optimize the performance of the model in the SVTC
task, we choose to use the Cross-Entropy loss function. For each training
sample, the loss function is calculated as follows:

CE = −
𝑛
∑

𝑖=1
𝑦𝑖 log(𝑝𝑖) (6)

where 𝑛 is the number of categories, 𝑦𝑖 is the indicator function of the
true label, and 𝑝𝑖 is the output predicted by the model.

In VulTC-LTPF we have chosen the pre-trained CodeT5 model for
prompt tuning. This is mainly because CodeT5 is specially designed
to handle source code related tasks and performs well in a variety of
code understanding tasks. In addition, studies by Ruan et al. [45] and
Niu et al. [46] have verified the powerful performance of CodeT5 in
different downstream tasks, demonstrating its versatility and reliability.

3.2.3. Adaptive data augmentation
According to our study of the SVTC dataset, we found that the

types of vulnerabilities in the dataset show a long-tailed distribution,
which can lead to data imbalance problems. To address the long-tailed
problem in the SVTC task, we designed adaptive data augmentation in
VulTC-LTPF, as detailed in Algorithm 1.

The adaptive data augmentation module is designed to improve
the model’s classification performance for tail classes. This module
dynamically evaluates the error rate of tail classes on the validation
set after each training round, and determines the number of augmented
samples to be generated based on these error rates. Then, tail classes are
augmented adaptively using multiple data augmentation approaches.
Finally, the augmented training set is generated for subsequent training.
This approach efficiently augments the tail class sample by dynamically
adjusting the augmentation strength of the tail class sample, which can
effectively improve the negative impact caused by data imbalance and
improve the model’s classification ability for the tail class. The details
of this module are described in detail below.

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Algorithm 1 Adaptive Data Augmentation
Input: Training set 𝐷𝑡𝑟𝑎𝑖𝑛, Validation set 𝐷𝑣𝑎𝑙, Trained model 𝑀 ,
Scaling factor 𝐾, Set of augmentation approaches 𝑆
Output: Augmented dataset 𝐷𝑎𝑢𝑔

1: Initialize 𝐷𝑎𝑢𝑔 ← 𝐷𝑡𝑟𝑎𝑖𝑛
2: Initialize 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠 ← ∅
3: Initialize 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑠 ← ∅
4: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
5: 𝑁𝑖 ← number of samples of category 𝑖 in 𝐷𝑣𝑎𝑙

 where 𝑌𝑖 = 𝑖
6: 𝑇𝑖 ← number of samples correctly predicted as

 category 𝑖 by model 𝑀
7: if 𝑁𝑖 > 0 then
8: 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖 ← 1 − 𝑇𝑖

𝑁𝑖
9: else
10: 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖 ← 0
11: end if
12: 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠[𝑖] ← 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑖
13: end for
14: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
15: 𝐴𝑖 ← ⌊𝐾 × 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒𝑠[𝑖]⌋
16: 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑠[𝑖] ← 𝐴𝑖
17: end for
18: for each class 𝑖 ∈ 𝐶𝑡𝑎𝑖𝑙 do
19: 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 ← select 𝐴𝑖 samples from 𝐷𝑡𝑟𝑎𝑖𝑛 with

 category 𝑖
20: for each sample 𝑋𝑖 in 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 do
21: 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ← randomly apply one

 approach from 𝑆 to 𝑋𝑖
22: 𝐷𝑎𝑢𝑔 ← 𝐷𝑎𝑢𝑔 ∪ {(𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒, 𝑌𝑖)}
23: end for
24: end for
25: return 𝐷𝑎𝑢𝑔

Evaluate the error rate of the tail class and determine the aug-
mentation scale. In order to achieve adaptive data augmentation, the
model’s performance on the tail class categories needs to be evaluated
at the end of each training round, so we first need to quantify the error
rate of the tail class categories (Lines 4–13). The error rate for the tail
class 𝑖 is calculated as follows:

ErrorRate𝑖 = 1 −
𝑇𝑖
𝑁𝑖

(7)

where 𝑁𝑖 denotes the total number of samples in the validation set
belonging to class 𝑖, while 𝑇𝑖 denotes the number of samples that
the model correctly predicts to belong to class 𝑖. These quantities are
formally defined as follows:

𝑇𝑖 =
𝑁𝑖
∑

𝑗=1
I(𝑦̂𝑗 = 𝑦𝑗 ∧ 𝑦𝑗 = 𝑖) (8)

After obtaining the error rate of the model in each tail class cate-
gory, we designed an adaptive data augmentation calculation formula
to determine the scale of data augmentation required for each tail class
category (Lines 14–17). The formula is as follows:

𝐴𝑖 = ⌊𝑘 × ErrorRate𝑖⌋ (9)

where 𝑘 is a predefined scaling factor that determines the amplification
rate of augmented samples.

To determine an appropriate value for the scaling factor 𝑘 in adap-
tive data augmentation, we experimented with the grid search ap-
proach [47] (detailed in Section 6.1) using values ranging from 1 to
20. The results demonstrated that 𝑘 = 15 provided the best balance
between enhancing tail classes representation and avoiding overfitting.
6
This empirical evaluation ensures the reproducibility and scalability of
the proposed strategy.

Data Augmentation Approaches. To generate augmented samples,
we choose to augment the source code of the vulnerability. We con-
struct a data augmentation approach library that contains multiple data
augmentation techniques. When the tail class category’s augmentation
scale is determined, each category will perform a determined number
of data augmentations. Each time, a data augmentation approach is
randomly selected from the approach library and applied to the original
sample (Lines 18–24). In this way, we can effectively increase the
diversity of augmented samples and improve the robustness of the
model. In the data augmentation approach library, we have designed
the following data augmentation approaches:

• Variable name substitution. This approach identifies variable
names in code snippets through regular expressions and replaces
them with randomly generated new names. This approach in-
creases the divsamples’ diversity without changing the code’s
semantics augmenting the model’s ability to handle potentially
diverse inputs.

• Insertion of redundant code. This approach simulates the ad-
ditional non-functional parts that may exist in the actual code
by inserting non-functional code at random locations. In this
way, the complexity and diversity of the training samples are
increased.

3.3. Model prediction phase

In the model prediction stage, we combine the bi-modal information
of the vulnerability with the hybrid prompt template we designed as
an input, and then input it into the trained SVTC model for software
vulnerability type classification.

4. Experimental setup

In this section, we first describe the research questions and their
design motivations. We then detail the experimental subject, baseline,
evaluation metrics, and experimental settings in turn.

4.1. Research questions

To demonstrate the competitiveness of VulTC-LTPF and justify its
component configurations, we formulate the following five research
questions (RQs) for our study.

RQ1: What is the performance of VulTC-LTPF in SVTC?
Motivation: In RQ1, the goal of our study is to evaluate the overall

effectiveness of the VulTC-LTPF approach in solving the SVTC task. To
this end, five automated performance evaluation metrics (i.e., Accu-
racy, Precision, Recall, F1 score, and MCC) were used to comprehen-
sively measure its classification performance.

RQ2: What is the impact of adaptive data augmentation on the
performance of the VulTC-LTPF?

Motivation: Adaptive data augmentation aims to alleviate the prob-
lem of long-tailed distribution of the dataset and optimize the training
process of the model by enhancing the data quality and diversity of
the samples in the tail class. A study of its impact on VulTC-LTPF
performance will not only help to demonstrate the effectiveness of
the strategy, but also validate its actual contribution in enhancing the
model capability.

RQ3: What is the impact of bi-modal information on the per-
formance of the VulTC-LTPF?

Motivation: In our VulTC-LTPF approach, the two modal data,
source code and vulnerability description, are fused through a prompt
template we designed to form a new bi-modal information input into
the model. Therefore, in RQ3, our research goal is to explore whether
this bi-modal input configuration can achieve the best performance

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Table 1
Comparison between Big-Vul and MegaVul.
 Statistic Big-Vul MegaVul
 Number of repositories 310 1062
 Number of Vul function 10,547 17,380
 Number of commits 4058 9288
 Number of CVE IDs 3539 8476
 Date range of crawled CVEs 2013/01∼2019/03 2006/01∼2024/04
 Number of CWE IDs 92 176
 Function extract approach/(Quality) Lizard/(Low) Tree-sitter/(High)
 Code integrality Partial Full

of VulTC-LTPF. In addition, we would like to determine which input
modality contributes the most to the performance of VulTC-LTPF by
comparing different modal configurations (using only source code or
only vulnerability description).

RQ4: What is the impact of the prompt tuning paradigm on the
performance of the VulTC-LTPF?

Motivation: Our approach VulTC-LTPF conducts experiments based
on prompt tuning, which capitalizes on the latent knowledge in the
pre-trained model. In RQ4, the goal of our research is to explore the
applicability of prompt tuning in SVTC tasks and the magnitude of its
performance improvement over traditional fine-tuning approaches.

RQ5: What is the impact of different prompt settings on VulTC-
LTPF performance?

Motivation: In prompt tuning approaches, the design of the
prompts template and the verbalizer can directly affect the performance
of the model. Settings such as the use of different prompt templates, the
choice between soft and hard prompts, and the selection of the type of
the verbalizer can significantly impact the performance of the model.
Therefore, selecting the appropriate prompt template and verbalizer
for downstream tasks is a challenging and open problem. In RQ5, we
aim to explore the effects of different prompt settings and demonstrate
that the hybrid prompt strategy adopted by VulTC-LTPF is the optimal
solution. Additionally, we also investigate the impact of the number of
mapping words in the verbalizer on the performance of the VulTC-LTPF
approach.

4.2. Experimental subjects

This study uses the latest version of MegaVul [41] as its ini-
tial dataset. MegaVul contains 17,975 vulnerabilities from 1062 open
source repositories, covering 176 different types of vulnerabilities dis-
closed between January 2006 and April 2024. In previous SVTC studies,
the most widely used dataset was BigVul [48]. Compared to the BigVul
dataset, MegaVul contains 64.9% more vulnerabilities and covers a
wider range of vulnerability types. In addition, the BigVul dataset
only contains vulnerability data from 2003 to 2019 and is of lower
quality, with a number of problems including incomplete functions,
incorrect function merging and missing commit information. Unlike
BigVul, which uses regular expressions to extract functions, MegaVul
uses a complex syntax rule-based parse tree to extract functions. The
specific differences between these two datasets are shown in Table 1,
and the tabular results indicate that MegaVul is more suitable than
BigVul for SVTC tasks.

The MegaVul dataset provides a wealth of vulnerability information,
including vulnerable code, descriptions, and vulnerability types. How-
ever, some vulnerability entries in MegaVul use deprecated CWE-IDs.
For example, vulnerability CVE-2016-1640 has the vulnerability type
CWE-17. However, according to the information on the official CWE
website [49], it can be confirmed that this vulnerability type has been
deprecated. In order to ensure the quality of the dataset and to make it
better suited to the SVTC task, we have updated or removed data with
this condition.

We ended up with an enhanced dataset that contains 13, 124
vulnerabilities. The contents of the dataset are shown in Table 2. We
grouped the categories with a sample size of less than 70 into a new
7
Table 2
The types of vulnerabilities in the experimental dataset and their
corresponding proportions, as well as the distribution of the head
and tail classes. Categories with a sample size of less than 70 are
classified into the ‘‘Remain’’ class.
Types Ratio Group Types Ratio Group

CWE-119 11.43%

Head

CWE-835 1.76%

Tail

CWE-125 10.09% CWE-772 1.36%
CWE-787 9.75% CWE-287 1.29%
CWE-476 9.40% CWE-369 1.28%
CWE-20 8.15% CWE-22 1.13%
CWE-416 6.95% CWE-415 1.12%
CWE-190 4.51% CWE-674 0.92%
CWE-200 3.90% CWE-122 0.85%
CWE-399 3.38% CWE-254 0.74%
CWE-264 3.35% CWE-834 0.68%
CWE-120 3.16% CWE-770 0.66%

CWE-362 2.89%

Tail

CWE-295 0.58%
CWE-400 2.58% CWE-74 0.55%
CWE-401 2.06% CWE-310 0.54%
CWE-189 1.95% Remain 1.14%
CWE-617 1.86%

class called ‘‘Remain’’. The table shows the distribution of vulnerability
types in the dataset, and it can be seen that the head and tail classes
account for 74.1% and 25.9% of the samples, respectively. During
the dataset partitioning process, we ensured that vulnerabilities with
the same CVE ID (they have different source code snippets with the
same descriptive information) are kept in the same dataset to maintain
validity and fairness. We partitioned the data into non-overlapping
training, validation and testing sets at a ratio of 8:1:1.

4.3. Baselines

We compare our approach to the state-of-the-art SVTC model VulEx-
plainer [15]. We also compare our approach to models designed for bi-
nary classification vulnerability detection tasks, including Devign [28]
and ReGVD [29]. The baseline approach is described below:

• VulExplainer: The transformer-based hierarchical distillation
model proposed by Fu et al. [15] for handling highly unbalanced
CWE labels to improve the performance of SVTC. In this ap-
proach, the data distribution is made more balanced by grouping
similar CWE-IDs based on CWE abstract types.

• Devign: The GNN-based approach for vulnerability detection pro-
posed by Zhou et al. [28] The model first converts source code
functions into graph structures, and then updates the node rep-
resentations using Gated GNNs [50] to capture semantic and
structural features in the source code. Finally, Devign uses a
1-D CNN-based pooling operation for vulnerability prediction.
Although the authors of Devign [28] have not released an offi-
cial implementation, we used the re-implementation provided by
[29] and followed the training protocol of the original Devign for
experimental validation.

• ReGVD: The GNN-based approach for source code vulnerability
detection proposed by Nguyen et al. [29]. The approach repre-
sents a source code function as a flat sequence of tokens and
constructs a graph based on these tokens, where the nodes of the
graph are initialized by embedding vectors generated by a pre-
trained programming language model. ReGVD learns graphical
embeddings of the source code by introducing residual connectiv-
ity between the GCN [51] layers and combining it with pooling
operations, which ultimately performs vulnerability prediction.

4.4. Evaluation metrics

In our study, we use five evaluation metrics: accuracy, precision,
recall, F1 score, and Matthews correlation coefficient (MCC) to provide
a comprehensive performance evaluation.

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
According to previous research, the first four metrics are more
common for SVTC tasks, while MCC is particularly suitable for datasets
with class imbalance problems. Since multiple vulnerability types need
to be predicted, we use macro-averaged metrics to compute the final
results. These metrics measure the performance of the model in multi-
class classification from different perspectives, especially how well it
handles class imbalance problems. Next, we describe in detail the
approach to calculating these evaluation metrics.

TP: True Positive, which indicates the number of samples that were
correctly categorized into the positive category. In the SVTC task, it
indicates that the model correctly identifies samples with different
types.

TN: True Negative, which indicates the number of samples that
were correctly categorized as negative categories. For each type, it
indicates the number of samples that were accurately categorized as
not belonging to that type.

FN: False Negative, which indicates the number of samples in
the positive category that were misclassified as being in the negative
category. For each type, it indicates the number of samples that were
misclassified as not belonging to that type.

FP: False Positive, which indicates the number of samples in the
negative category that were misclassified as being in the positive
category. For each type, it indicates the number of samples that were
misclassified as belonging to that type.

For each type 𝑖, these metrics can be represented as: 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑁𝑖,
𝐹𝑃𝑖.

Accuracy: Accuracy is the ratio of the number of correctly predicted
vulnerability type samples to the total number of all predicted samples.

Accuracy =
∑

𝑖 𝑇𝑃𝑖
∑

𝑖(𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑁𝑖)
(10)

Precision: Precision rate indicates the proportion of all samples
predicted to be in the positive category that are actually in the positive
category. Macro-precision rate is averaged over each type and is used
to measure the overall precision of the model over all categories. Where
𝑁 denotes the number of vulnerability types.

Precision𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

(11)

Recall: Recall indicates the proportion of samples that are correctly
predicted to be positive out of those that actually fall into the posi-
tive category. Macro-recall is averaged over each type and is used to
measure the overall recall ability of the model over all categories.

Recall𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(12)

F1 score: The F1 score is a reconciled average of precision and
recall and is used to assess the precision and recall of the model in
aggregate. Macro-F1 score is the average of the F1 scores for each type.

F1-score𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖
2 ×

Precision𝑖 × Recall𝑖
Precision𝑖 + Recall𝑖

(13)

MCC: The Matthews Correlation Coefficient is a metric that com-
bines True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN) and is particularly well suited for dealing with
type imbalances. Macro MCC is the average of each type of MCC.

MCC𝑚𝑎𝑐𝑟𝑜 =
1
𝑁

∑

𝑖

𝑇𝑃𝑖 ⋅ 𝑇𝑁𝑖 − 𝐹𝑃𝑖 ⋅ 𝐹𝑁𝑖
√

(𝑇𝑃𝑖 + 𝐹𝑃𝑖)(𝑇𝑃𝑖 + 𝐹𝑁𝑖)(𝑇𝑁𝑖 + 𝐹𝑃𝑖)(𝑇𝑁𝑖 + 𝐹𝑁𝑖)

(14)

For performance evaluation, we use macro versions of the metrics
precision, recall, F1 score and MCC as default metrics for evaluating
the performance of different approaches.
8
Table 3
Performance comparison between VulTC-LTPF and SVTC baselines, with the best results
for each metric highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 VulExplainerCodeBERT 0.446 0.458 0.349 0.357 0.405
 VulExplainerCodeGPT 0.432 0.365 0.282 0.273 0.385
 Devign 0.221 0.190 0.130 0.122 0.152
 ReGVD 0.175 0.194 0.153 0.140 0.115
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

4.5. Experimental settings

In our experiments, we performed the following experimental set-
tings:

Prompt template construction. To achieve prompt tuning, we use
the OpenPrompt framework [52] and build hard templates, soft tem-
plates and hybrid templates through the ManualTemplate, SoftTemplate
and MixedTemplate APIs.

Model hyperparameter configuration. In our experiments, we
followed the default parameter configuration of CodeT5. Specifically,
the word embedding dimension and hidden layer size are both set
to 768, and the model contains 12 attention heads and 12 layers
of Transformer encoders. The optimization process uses the AdamW
optimizer [53], with an initial learning rate of 5e−5. During training,
the batch size is set to 32, and the maximum length of the input
sequence is 512. To avoid overfitting the model, an early stop strategy
[54] is used, i.e., when the performance of the validation set does not
improve for 10 epochs in a row, training is stopped, and the model with
the best validation set performance is selected as the final model.

Input length analysis and truncation strategies. Due to the input
length limitation of CodeT5, in order to maximize the retention of
vulnerability information, we implemented truncation of the bi-modal
input based on code simplification of the source code information in
the dataset, where the maximum length of the code snippet was set
to 384 words and the maximum length of the vulnerability description
was set to 64 words.

Experimental environment. All experiments were performed on a
computer equipped with an Intel(R) Core(TM) i5-13600K processor, a
GeForce RTX 4090 GPU with 24 GB of graphics memory, and Windows
10 operating system.

5. Experimental results

5.1. RQ1: What is the performance of VulTC-LTPF in SVTC?

Approach: To evaluate the effectiveness of our approach, we adopt
commonly used evaluation metrics (including accuracy, precision, re-
call, F1 score and MCC) and comprehensively compare them with four
state-of-the-art baselines. In the experiment, the experimental settings
of all baselines are kept consistent, and their respective optimized
hyperparameters are used.

Results: As shown in Table 3, VulTC-LTPF significantly outperforms
existing baseline approaches in all evaluation metrics, demonstrating its
strong performance in the SVTC task. Specifically, VulTC-LTPF’s accu-
racy metric improved by 24.2% to 51.3%, precision metric improved
by 18.2% to 45%, recall metric improved by 29.3% to 51.2%, F1 score
improved by 26.3% to 49.8%, and MCC metric improved by 26.1% to
55.1%.

The superior performance of VulTC-LTPF can be attributed to sev-
eral key innovations. First, VulTC-LTPF employs adaptive data aug-
mentation, which effectively mitigates the long-tailed problem and
improves the classification on tail class vulnerability types. In contrast,
other baseline approaches, do not employ a similar long-tailed learning
approach. Second, VulTC-LTPF introduces prompt tuning, which allows
the model to leverage the latent knowledge of the pre-trained model

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Table 4
Comparative results between our approach VulTC-LTPF and VulTC-LTPF without ADA,
with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 w/o ADA 0.654 0.600 0.615 0.582 0.629
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

Table 5
Comparative results between our approach VulTC-LTPF and VulTC-LTPF using tradi-
tional data augmentation, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 w/o Adaptive 0.661 0.589 0.617 0.584 0.637
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

and enhances the model’s generalization ability and adaptability. Fi-
nally, unlike the baseline approaches, VulTC-LTPF employs a bi-modal
input strategy that combines information from source code and vul-
nerability descriptions. With the bi-modal input, VulTC-LTPF is able to
capture the potential correlation between source code and vulnerability
descriptions, addressing the limitations of single-modal input.

Summary for RQ1: Our proposed approach, VulTC-LTPF
outperforms the baselines across all evaluated metrics. Specifi-
cally, VulTC-LTPF achieves improvements in F1 score ranging
from 26.3% to 49.8% and in MCC from 26.1% to 55.1%.
These results underscore the effectiveness of VulTC-LTPF in
addressing SVTC tasks.

5.2. RQ2: What is the impact of adaptive data augmentation on the perfor-
mance of the VulTC-LTPF approach?

Approach: To demonstrate the effectiveness of the adaptive data
augmentation component, we validate it through ablation experiments,
with ‘‘w/o ADA’’ representing the approach without adaptive data
augmentation. The rest of the experimental settings are kept constant.
The comparison results are shown in Table 4.

Results: The results of the ablation experiments, as shown in Table
4, indicate that the ADA strategy has a significant effect on the model
performance. When the ADA strategy is removed (i.e., ‘‘w/o ADA’’),
the model’s accuracy is 0.654 (3.4% reduction), precision is 0.6 (4%
reduction), recall is 0.615 (2.7% reduction), F1 score is 0.582 (3.8% re-
duction), and MCC is 0.629 (3.7% reduction). This shows that the ADA
strategy effectively mitigates the problem of long-tailed distribution of
the data set by enhancing the diversity and quality of the tail class
samples, which improves the model’s ability to detect vulnerabilities
in a small number of classes and enhances the overall performance of
the model.

To verify the effectiveness of adaptive data augmentation further,
we designed additional experiments. We compared VulTC-LTPF with
a version of the model that uses a traditional data augmentation
strategy [55], where the adaptive mechanism is removed(i.e., ‘‘w/o
Adaptive’’).

The experimental results are shown in Table 5. The results show
that the adaptive data augmentation approach is better than the tra-
ditional data augmentation model in all evaluation metrics. This may
be because the traditional data augmentation strategy uses a static
approach to treat all tail classes equally and cannot be dynamically
adjusted according to the actual performance of the categories during
training. As a result, it is difficult for the model to pay extra attention to
the poorly performing categories during training, limiting its learning
ability on these categories and the final overall classification effect.

This confirms that the adaptive mechanism is crucial for better miti-
gating the long-tailed distribution problem and improving classification
performance.
9
Table 6
Comparison results between our approaches VulTC-LTPF and VulTC-LTPF alone using
different modal information as input, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 w/o Desc 0.182 0.215 0.152 0.146 0.118
 w/o Code 0.641 0.606 0.581 0.560 0.616
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

Summary for RQ2: The results of the ablation experiments
indicate that the adoption of adaptive data augmentation
leads to significant improvements across multiple metrics. This
demonstrates the effectiveness of ADA in enabling the model
to address the long-tailed distribution present in the dataset.

5.3. RQ3: What is the impact of bi-modal information on the performance
of the VulTC-LTPF approach?

Approach: In order to demonstrate the effectiveness of the bi-modal
information input, we verified it through ablation experiments, using
‘‘w/o Desc’’ to represent the approach that does not use the description
as input and ‘‘w/o Code’’ to represent the approach that does not use
the source code as input. The rest of the experimental settings are kept
constant. The comparison results are shown in Table 6.

Results: The results of the ablation experiments are shown in
Table 6. Specifically, when only the vulnerability description (‘‘w/o
Desc’’) is used as input, the performance of the model is significantly
degraded, with a F1 score of 0.146, and an MCC of 0.118. This
suggests that relying on source vulnerability information alone is not
sufficient to effectively capture critical information about vulnerabil-
ities. In contrast, when only the source code (‘‘w/o Code’’) is used
as input, the performance improves with a F1 score of 0.56, and
MCC of 0.616. This suggests that the vulnerability description provides
valuable information (e.g., contextual information and details that are
not immediately apparent from the source code), but still falls short of
optimal performance.

When source code and vulnerability descriptions are used together
as input, there is a significant improvement in all metrics to achieve
the best results. For example, the F1 score is 0.62 and the MCC is
0.666. These results show that by fusing source code and vulnerability
descriptions, the input of bi-modal information can help the model cap-
ture richer vulnerability information. This information fusion approach
provides a more comprehensive understanding of vulnerabilities, which
significantly improves the model’s performance on SVTC.

Summary for RQ3: The model performance is relatively
weak when using only source code or vulnerability descrip-
tions, while the bi-modal inputs combining both significantly
enhance the model performance.

5.4. RQ4: What is the impact of the prompt tuning paradigm on the
performance of the VulTC-LTPF approach?

Approach: In order to bridge the gap between the pre-trained
model and the downstream task, we introduce a specially tailored
prompt tuning paradigm for the SVTC task. In this study, we validate
the effectiveness of this paradigm by comparing the performance of
VulTC-LTPF with traditional fine-tuning approaches. Specifically, tradi-
tional fine-tuning approaches focus only on tuning pre-trained models
and do not involve task-based prompt design. In order to introduce
the pre-training fine-tuning approach in bi-modal inputs, we include
a special identifier <desc> before the vulnerability description to

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Table 7
Comparison between VulTC-LTPF using the prompt tuning paradigm and VulTC-LTPF
using the fine-tuning paradigm, with the best results highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 VulTC-LTPFf t 0.623 0.556 0.537 0.519 0.597
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

distinguish different parts of the input data. The input format is defined
as follows:
𝑋 = 𝑋code + ⟨desc⟩ +𝑋desc

where 𝑋 represents the overall input data, 𝑋code is the source code
part, and 𝑋desc is the vulnerability description part. In this framework,
the model using the traditional fine-tuning approach is represented as
VulTC-LTPFf t .

Results: The experimental results are shown in Table 7, and from
the results in the table, it can be seen that the VulTC-LTPF approach
significantly outperforms VulTC-LTPFf t in all the evaluation metrics.
For example, VulTC-LTPFf t has an F1 score of 0.519 (10.1% reduction)
and an MCC of 0.597 (6.9% reduction).

These results indicate that the prompt tuning approach is able to
better utilize the latent knowledge of the pre-trained model, thus show-
ing significant performance improvement in the SVTC task. Traditional
fine-tuning approaches rely on large-scale annotated data for fine-
tuning model parameters, however, this approach does not fully utilize
the potential of the pre-trained model, resulting in lower efficiency
and more limited performance when processing the task. Compared
to the fine-tuning approach, prompt tuning is able to enhance the
model’s comprehension of vulnerability information more effectively
by designing task-specific prompt templates that more accurately guide
the knowledge of the pre-trained model to align with the requirements
of the downstream tasks.

Summary for RQ4: Compared with the fine-tuning ap-
proach, the prompt tuning paradigm significantly improves the
performance of VulTC-LTPF.

5.5. RQ5: What is the impact of different prompt settings on VulTC-LTPF
performance?

Approach: To validate the effectiveness of our proposed hybrid
prompt templates, we designed comparison experiments comparing
the hybrid prompt templates (i.e., Eq. (3)) with hard prompts only
(i.e., Eq. (1)) and soft prompts only (i.e., Eq. (2)). The rest of the
experimental settings were kept constant. The comparison results are
shown in Table 8. In addition, to verify the effectiveness of the one-
to-many verbalizer we used. We also set up a comparison experiment
between the approaches of one-to-one and one-to-many verbalizers (as
described by Eqs. (4) and (5), which have different numbers of mapping
words). The results are shown in Table 9

Results: Tables 8 and 9 show the impact of different prompt settings
and mapping words configurations on the performance of the VulTC-
LTPF model. First, Table 8 shows a comparison between hard prompt,
soft prompt and hybrid prompt templates. The results show that the
F1 score and MCC are 0.6 and 0.63 when only hard prompt are used.
The F1 score and MCC are 0.605 and 0.657 when only soft prompt are
used. We found that the hybrid prompt template outperforms both hard
prompt and soft prompt when used alone on all evaluation metrics.

The above results can be attributed to the fact that hybrid prompts
can effectively combine the structured format of hard prompting with
the flexibility of soft prompting. Hard prompting provides a clear
structure that helps the model maintain consistency with pre-trained
knowledge, while soft prompting increases the adaptability of the
model and enables it to better capture the nuances in the data. Through
10
Table 8
Comparison of our approach VulTC-LTPF with approaches using different types of
prompt templates. The best result is highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 Hard 0.654 0.610 0.619 0.600 0.630
 Soft 0.679 0.614 0.641 0.605 0.657
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

this balance, hybrid prompting can more comprehensively capture
vulnerability information, thereby achieving higher performance.

In addition, Table 9 shows the impact of different verbalizer con-
figurations with different mapping words on the performance of the
VulTC-LTPF model. In this experiment, the model performs best when
using one-to-many verbalizer with two mapping words. In contrast, the
MCC decreased by 3.8% when using a configuration of three mapping
words, and the F1 score decreased by 8.4% and the MCC decreased
by 5.4% when using a one-to-one verbalizer. Therefore, the configura-
tion of two mapping words has achieved the best balance, which not
only enriches the mapping representation, but also does not introduce
irrelevant information, making it the most effective configuration.

Summary for RQ5: Our proposed hybrid prompt template
and one-to-many verbalizer achieve significant performance
improvements over other settings. These results show that the
performance of VulTC-LTPF can be effectively improved by
optimizing the settings of prompt templates and verbalizers.

6. Discussion

6.1. Influence of the choice of scaling factor 𝑘

In the design of our adaptive data augmentation, the scaling factor
𝑘 plays a crucial role in determining the number of augmented samples
generated for each tail class based on its error rate. The value of 𝑘
influences how aggressively the augmentation is applied to tail classes,
which can impact both the model’s performance and the class balance
in the training dataset.

To ensure the robustness and reproducibility of our adaptive data
augmentation, we experiment with the grid search approach [47] to
select a suitable scaling factor 𝑘. Specifically, we tested values of 𝑘 ∈
{1, 5, 10, 15, 20}, covering both conservative and aggressive augmen-
tation strategies. These values range from conservative to aggressive
augmentation strategies, reflecting different augmentation strengths.
By experimentally comparing the model performance under each can-
didate value, we aim to determine an appropriate parameter value that
can augment the tail classes while maintaining overall performance.
The experimental results are shown in Table 10.

Our experimental results indicate that 𝑘 = 15 yielded the best
performance in terms of model accuracy and generalization. Specif-
ically, this value of 𝑘 produced a sufficient number of augmented
samples to address the underrepresentation and misclassification of tail
classes, without introducing excessive redundancy or noise into the
training data. Although a higher 𝑘 value (e.g., 20) may bring about
further improvements in some tail classes, it also leads to overfitting
and longer training times. In addition, a higher 𝑘 value means that
stronger augmentation is applied to the tail classes, which may lead to
an excessive number of samples in some tail classes, thereby weakening
the model’s ability to learn from the head classes. This situation may
trigger a decrease in the classification accuracy of the head classes,
which will have a negative impact on the overall performance of the
model. Conversely, smaller values of 𝑘 (e.g., 5) were insufficient to
alleviate the challenges posed by tail classes, resulting in suboptimal
performance.

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Table 9
Comparison of different verbalizers on VulTC-LTPF, with the best result highlighted in bold.
 Verbalizer Accuracy Precision Recall F1 MCC
 ‘‘CWE-119’’: [‘‘buffer overflow’’]
‘‘CWE-125’’: [‘‘out-of-bounds read’’]
.
‘‘CWE-310’’: [‘‘cryptographic issue’’]

0.637 0.535 0.583 0.536 0.612

 ‘‘CWE-119’’: [. . .+ ‘‘memory violation’’]
‘‘CWE-125’’: [. . .+ ‘‘information leak’’]
.
‘‘CWE-310’’: [. . .+ ‘‘insecure cryptography’’]

0.688 0.640 0.642 0.620 0.666

 ‘‘CWE-119’’: [. . .+ ‘‘out-of-bounds access’’]
‘‘CWE-125’’: [. . .+ ‘‘data exposure’’]
.
‘‘CWE-310’’: [. . .+ ‘‘weak encryption’’]

0.652 0.646 0.637 0.628 0.628
Table 10
The effect of different scaling factor 𝑘 values on the classification performance of VulTC-
LTPF, with the best result highlighted in bold.
 Value of 𝑘 Accuracy Precision Recall F1 MCC
 1 0.665 0.600 0.622 0.591 0.641
 5 0.669 0.601 0.635 0.593 0.647
 10 0.675 0.614 0.627 0.600 0.652
 15 0.688 0.640 0.642 0.620 0.666
 20 0.665 0.614 0.630 0.601 0.641

Table 11
The results of the VulTC-LTPF performance comparison when considering different
PLMs are shown, with the best result for each performance metric highlighted in
bold.
 Approach Accuracy Precision Recall F1 MCC
 T5 0.609 0.518 0.522 0.506 0.581
 UnixCoder 0.644 0.548 0.570 0.545 0.619
 CodeBERT 0.646 0.556 0.577 0.551 0.621
 GraphCodeBERT 0.636 0.575 0.594 0.558 0.610
 CodeT5 0.688 0.640 0.642 0.620 0.666

In summary, in the implementation of adaptive data enhancement,
we designed a fixed 𝑘 value and found a suitable 𝑘 value through
experiments. In the experiment, our main purpose is not to find the best
parameters, but to prove the effectiveness of our approach. Our results
suggest that 𝑘 = 15 strikes a good balance between augmentation
intensity and model efficiency, making it the most effective choice for
improving the classification performance of tail classes in this study.
In future work, we can further explore more adaptive dynamic scaling
strategies, such as automatically adjusting parameters based on the
distribution characteristics or training performance of samples in each
category, so as to achieve more flexible, responsive and data-driven
adaptive data augmentation.

6.2. Influence of PLMs

To comprehensively evaluate our proposed VulTC-LTPF approach,
we conducted a comparison experiment using different pre-trained
language models (PLMs) to assess their effectiveness in the SVTC
task. Specifically, we selected five widely used PLMs for comparison:
T5 [56], UnixCoder [57], CodeBERT [58], GraphCodeBERT [59], and
CodeT5 [27]. To ensure a fair comparison, we only replaced the PLM
and kept all other experimental settings the same. The results of this
experiment are shown in Table 11.

The experimental results show that VulTC-LTPF using CodeT5 con-
sistently outperforms those using other PLM models in all evaluation
metrics. Compared with using T5, a general pre-trained model, the
use of CodeT5 in the VulTC-LTPF achieved a significant improvement.
T5 has a MCC of 0.581, which is relatively average. Since T5 is not
specifically optimized for programming languages, it is difficult for it
to effectively capture the source code syntax and semantic features
11
required for the SVTC task, which affects its performance in the SVTC
task. The MCC obtained by using UnixCoder’s VulTC-LTPF is improved
to 0.619, but it is still lower than that of using CodeT5. UnixCoder is
based on the UniLM style of design, and may be subject to interference
between tasks when processing multiple tasks, limiting its performance
in specific tasks.

Although CodeBERT and GraphCodeBERT are models optimized for
coding tasks, unlike CodeT5, they rely on the BERT architecture, which
may limit their ability to fully capture the deep semantic relationship
between source code and vulnerability descriptions.

The reason why CodeT5 outperforms other models in various met-
rics is due to its design specifically for code syntax and natural language
understanding. Unlike other models, CodeT5 is optimized to better han-
dle the bi-modal input (source code and vulnerability description) in
the SVTC task, which makes CodeT5 the best choice for the VulTC-LTPF
approach.

6.3. Influence of the design of the prompt template

As shown in Section 5.5, we conducted comparative experiments on
soft prompt, hard prompt, and hybrid prompt templates to study the
effectiveness of different types of prompt templates. The experimental
results show that the hybrid prompt in VulTC-LTPF has the best perfor-
mance. To further study the impact of different prompt designs on the
performance of our approach, we refer to previous research [18] and
explore it by designing different prompt templates.

Since soft prompt tokens are automatically optimized during model
training, we only initialize them at the beginning of the experiment
for reproducibility. Therefore, we focus on the hard prompt part in this
experiment. We designed two other prompt templates by modifying the
hard prompt parts. One of them uses longer hard prompt tokens, and
the template is as follows:
𝑓Long = The following is a source code that contains

a security vulnerability: [X]
The following is the description text of the vulnerability:

 [Y] [SOFT] [Z]

(15)

The other uses shorter hard prompt tokens, and the template is as
follows:
𝑓𝑆ℎ𝑜𝑟𝑡 = code: [X] description: [Y] [SOFT] [Z] (16)

We conducted comparative experiments based on these three dif-
ferent prompt template designs, and the detailed results are shown in
Table 12.

From the experimental results, we can see that the design of differ-
ent prompt templates does have a certain impact on the performance
of VulTC-LTPF. In the experiment, we found that when using prompt
templates with hard prompt tokens of appropriate length, better per-
formance was obtained on all evaluation metrics. In contrast, the long
prompt may introduce redundant information and distract the model’s

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
Table 12
Comparison of our approach VulTC-LTPF with approaches using prompt templates with
different prompt tokens. The best result is highlighted in bold.
 Approach Accuracy Precision Recall F1 MCC
 Long 0.668 0.629 0.637 0.612 0.645
 Short 0.664 0.605 0.629 0.592 0.642
 VulTC-LTPF 0.688 0.640 0.642 0.620 0.666

Table 13
Wilcoxon signed-rank test between VulTC-LTPF and the baselines on MCC.
 Approach p-values
 VulExplainerCodeBERT **
 VulExplainerCodeGPT **
 Devign **
 ReGVD **
Note: *** means p-value < 0.001, ** means p-value < 0.01, * means p-value < 0.005

attention, while the short prompt may lack sufficient guidance to
help the model align with the task objective. These findings further
emphasize the critical importance of the appropriate prompt design for
the effectiveness of prompt tuning.

6.4. Statistical significance test

The Wilcoxon signed-rank test [60] is commonly used to assess
whether there is a significant difference between two paired sample
distributions. We performed the Wilcoxon signed-rank test to assess
further the statistical significance of the improvement observed in our
approach over the baselines.

Specifically, we ran our approach and each baseline model mul-
tiple times independently under the same experimental settings and
recorded their corresponding MCC metrics. We then used the Wilcoxon
signed-rank test to compare the score distributions of our approach and
each baseline model to assess whether the differences between the two
were statistically significant. The comparison results with the baselines
are shown in Table 13.

The experimental results show that the p-values between VulTC-
LTPF and all baselines are less than 0.01, indicating that there is a
statistically significant difference in performance. This means that the
performance improvement of our approach compared to the baselines
is not due to random fluctuations, but has statistical support. The above
results further verify the effectiveness and robustness of our approach.

6.5. Threats to validity

In this section, we discuss potential threats to the validity of our
study.

Internal Validity. This threat is mainly related to the implemen-
tation of the VulTC-LTPF and baseline approaches. To mitigate this
threat, we conduct a detailed code review and thorough testing of the
approach implementation. In addition, to avoid the impact of config-
uration differences on baseline performance, we conduct experiments
according to the recommended hyperparameter settings of these base-
lines. Although the hyperparameters of the model optimizer, learning
rate, etc., as well as the design of prompt templates and verbalizers,
may still affect the results, it is more difficult to comprehensively
optimize these factors. However, the experimental results show that
under the current configuration, the performance of the VulTC-LTPF
approach is always better than that of the baseline and the traditional
fine-tuning paradigm, thus verifying its effectiveness.

External Validity. This threat is mainly related to the choice of
dataset. First, we selected the high-quality MegaVul dataset as the
initial dataset, which covers a wide range of time (from 2006 to 2024),
has a wealth of vulnerability types and real-world code scenarios, and
is highly representative. To further improve its adaptability, we have
12
optimized the dataset, such as cleaning up redundant data and updating
deprecated CWE-IDs, to serve the SVTC task better. Second, the current
experiment only uses the C/C++ code dataset, which may limit the
generality of the approach. However, the core design of VulTC-LTPF
does not rely on a specific programming language. In theory, it can be
extended to datasets of other languages to support a broader range of
vulnerability classification tasks. In addition, the potential drawbacks
of the hybrid prompt tuning process or scalability concerns may pose
a threat to the validity of the approach. Since the current design relies
on manually crafted templates and verbalizer mappings, applying the
approach to other domains or tasks may require substantial human
effort. Future work could address these issues by introducing automated
or semi-automated prompt engineering approaches.

Construct Validity. This threat is mainly related to the selection of
evaluation metrics. To mitigate this threat, we use multiple commonly
used and reliable evaluation metrics to comprehensively evaluate the
performance of VulTC-LTPF and the baseline approaches.

7. Related work

Software vulnerability type classification is a key step in the soft-
ware vulnerability repair process. It can effectively help developers
quickly identify the type of vulnerability, providing an important basis
for subsequent vulnerability repair. With the rapid increase in the num-
ber of vulnerabilities, the traditional manual classification approach has
difficulty coping with the processing requirements of a large number of
vulnerabilities. Therefore, there is an urgent need to design an efficient
automated SVTC approach to improve the accuracy and efficiency of
vulnerability classification. From the perspective of vulnerability infor-
mation input, current SVTC research can be broadly divided into two
categories: approaches that utilize vulnerability descriptions [13,14,21]
and approaches based on source code analysis [12,15,19,20]. These
approaches have different perspectives and use different modalities
of vulnerability information to propose their own solutions to the
problem of SVTC. In addition, since the distribution of vulnerability
types in the dataset often shows a long-tailed distribution, the lack
of a small number of tail class samples makes the classification effect
of the model worse in these classes. Therefore, in recent years, some
studies [12,16,17] have begun to try to introduce long-tailed learning
approaches to improve the model’s ability to identify tail classes, and
thus improve the overall performance of the model in the SVTC task.

Vulnerability Description-Based Approaches Vulnerability de-
scriptions provide a textual description of software vulnerabilities,
usually detailing their characteristics, potential consequences and ex-
ploitation scenarios. This textual data has been extensively studied
for the purpose of automating SVTC tasks [21]. Aota et al. [13] used
machine learning models to classify vulnerability types based on the
textual features of vulnerability descriptions. Pan et al. [14] adopted a
deep learning approach combining BiGRU and TextCNN models, which
effectively captured the sequential features and contextual information
in vulnerability descriptions, improving the accuracy of vulnerability
classification.

Source Code-Based Approaches In addition to textual descriptions,
analyzing source code has become another important approach in
SVTC [19,20]. Code-level analysis provides fine-grained and detailed
information, capturing structural and contextual aspects of vulnerabili-
ties. For example, Fu et al. [15] open by introducing a hierarchical dis-
tillation mechanism that uses vulnerability code information to provide
higher classification transparency and more accurate vulnerability type
classification . Ji et al. [12] explore the application of the contrastive
learning approach in code vulnerability types classification, using a
contrastive learning strategy to enhance the classification ability of the
model through an efficient representation of code features.

Long-tailed Learning-Based Approaches The long-tailed learning
approach offers an effective solution to address the imbalanced dis-
tribution of vulnerability types within software vulnerability datasets

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
[16]. Wen et al. [17] explored the loss function re-weighting approach
in long-tailed learning and proposed the LIVABLE framework. This
framework addresses the long-tailed problem by designing an adaptive
re-weighting module, which dynamically adjusts the category weights
based on the samples size and the training progress. By ensuring
that the tail categories receive sufficient attention during training,
this dynamic weighting strategy significantly improves the model’s
performance on SVTC.

Compared with existing work, our approach focuses on the in-
tegration bi-modal information from source code and vulnerability
descriptions. By leveraging prompt tuning, we effectively fuse this
bi-modal information to improve the performance of SVTC. Further-
more, in addressing the challenges posed by long-tailed learning, we
introduce adaptive data augmentation informed by a comprehensive
analysis of existing data augmentation approaches. This strategy suc-
cessfully alleviates the long-tailed distribution problem and improves
model performance.

8. Conclusion

We propose a novel SVTC approach, refer to as VulTC-LTPF, which
combines source code and vulnerability descriptions to accurately pre-
dict vulnerability types. To address the long-tailed distribution of vul-
nerability types within datasets, we introduce adaptive data augmenta-
tion to improve the model’s learning ability for tail classes. Addition-
ally, the performance of the model is further improved through the
optimization of the prompt tuning paradigm. To achieve a more com-
prehensive representation of vulnerabilities, VulTC-LTPF employs bi-
modal information fusion, combining the structured features of source
code with the textual information of vulnerability descriptions. Exper-
imental results show that VulTC-LTPF outperforms existing baseline
approaches in terms of accuracy, precision, recall, F1 score and MCC
metrics. These findings validate the superiority of VulTC-LTPF in the
SVTC task.

For future work, we plan to explore more sophisticated augmenta-
tion techniques, such as code refactoring and syntax transformations, to
further enhance the diversity of training data. Additionally, we aim to
explore a dynamic scaling strategy that can automatically adjust param-
eters further to enhance the flexibility and adaptability of adaptive data
augmentation. Lastly, we plan to develop more effective prompt config-
urations specifically tailored for SVTC to improve model performance
continuously. We also intend to explore automated or semi-automated
prompt optimization techniques to reduce manual effort and enhance
the scalability of the approach, thereby further improving the prompt
tuning module.

CRediT authorship contribution statement

Long Zhang: Writing – original draft, Visualization, Validation,
Software, Methodology. Xiaolin Ju: Writing – review & editing, Su-
pervision, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Lina Gong: Writing – review & editing, Supervision,
Methodology, Investigation, Conceptualization. Jiyu Wang: Writing –
review & editing, Software, Resources, Data curation. Zilong Ren: Val-
idation, Software, Methodology, Investigation, Formal analysis, Data
curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.
13
References

[1] V. Smyth, Software vulnerability management: how intelligence helps reduce the
risk, Netw. Secur. 2017 (3) (2017) 10–12.

[2] C. Zhang, H. Liu, J. Zeng, K. Yang, Y. Li, H. Li, Prompt-enhanced software
vulnerability detection using chatgpt, in: Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion Proceedings,
2024, pp. 276–277.

[3] R.L. Alaoui, E.H. Nfaoui, Deep learning for vulnerability and attack detection on
web applications: A systematic literature review, Futur. Internet 14 (4) (2022)
118.

[4] CWE top 25 most dangerous software weaknesses, 2024, Accessed: 2025 https:
//cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html.

[5] CWE-787: out-of-bounds write, 2025, Accessed: 2025 https://cwe.mitre.org/
data/definitions/787.html.

[6] Y. Liu, C. Wang, Y. Ma, DL4SC: a novel deep learning-based vulnerability
detection framework for smart contracts, Autom. Softw. Eng. 31 (1) (2024) 24.

[7] C. Liu, X. Chen, X. Li, Y. Xue, Making vulnerability prediction more practical:
Prediction, categorization, and localization, Inf. Softw. Technol. 171 (2024)
107458.

[8] G. Lu, X. Ju, X. Chen, W. Pei, Z. Cai, GRACE: Empowering LLM-based software
vulnerability detection with graph structure and in-context learning, J. Syst.
Softw. 212 (2024) 112031.

[9] Z. Cai, Y. Cai, X. Chen, G. Lu, W. Pei, J. Zhao, CSVD-TF: Cross-project software
vulnerability detection with TrAdaBoost by fusing expert metrics and semantic
metrics, J. Syst. Softw. 213 (2024) 112038.

[10] Common vulnerability scoring system SIG, 2025, Accessed: 2025 https://www.
first.org/cvss.

[11] CWE-22: improper limitation of a pathname to a restricted directory (‘path
traversal’), 2025, Accessed: 2025 https://cwe.mitre.org/data/definitions/22.html.

[12] C. Ji, S. Yang, H. Sun, Y. Zhang, Applying contrastive learning to code
vulnerability type classification, in: Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, 2024, pp. 11942–11952.

[13] M. Aota, H. Kanehara, M. Kubo, N. Murata, B. Sun, T. Takahashi, Automation of
vulnerability classification from its description using machine learning, in: 2020
IEEE Symposium on Computers and Communications, ISCC, IEEE, 2020, pp. 1–7.

[14] M. Pan, P. Wu, Y. Zou, C. Ruan, T. Zhang, An automatic vulnerability classifi-
cation framework based on BiGRU-TextCNN, Procedia Comput. Sci. 222 (2023)
377–386.

[15] M. Fu, V. Nguyen, C.K. Tantithamthavorn, T. Le, D. Phung, Vulexplainer: A
transformer-based hierarchical distillation for explaining vulnerability types, IEEE
Trans. Softw. Eng. (2023).

[16] X. Deng, F. Duan, R. Xie, W. Ye, S. Zhang, Improving long-tail vulnerability
detection through data augmentation based on large language models, in: 2024
IEEE International Conference on Software Maintenance and Evolution, ICSME,
IEEE, 2024, pp. 262–274.

[17] X.-C. Wen, C. Gao, F. Luo, H. Wang, G. Li, Q. Liao, LIVABLE: exploring long-
tailed classification of software vulnerability types, IEEE Trans. Softw. Eng.
(2024).

[18] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, M.R. Lyu, Prompt tuning in code
intelligence: An experimental evaluation, IEEE Trans. Softw. Eng. 49 (11) (2023)
4869–4885.

[19] M. Fu, C.K. Tantithamthavorn, V. Nguyen, T. Le, Chatgpt for vulnerability
detection, classification, and repair: How far are we? in: 2023 30th Asia-Pacific
Software Engineering Conference, APSEC, IEEE, 2023, pp. 632–636.

[20] G. Lu, X. Ju, X. Chen, S. Yang, L. Chen, H. Shen, Assessing the effectiveness
of vulnerability detection via prompt tuning: An empirical study, in: 2023 30th
Asia-Pacific Software Engineering Conference, APSEC, IEEE, 2023, pp. 415–424.

[21] Q. Wang, Y. Gao, J. Ren, B. Zhang, An automatic classification algorithm for
software vulnerability based on weighted word vector and fusion neural network,
Comput. Secur. 126 (2023) 103070.

[22] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language
processing, ACM Comput. Surv. 55 (9) (2023) 1–35.

[23] L. Yu, J. Lu, X. Liu, L. Yang, F. Zhang, J. Ma, PSCVFinder: A prompt-tuning
based framework for smart contract vulnerability detection, in: 2023 IEEE 34th
International Symposium on Software Reliability Engineering, ISSRE, IEEE, 2023,
pp. 556–567.

[24] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, R. Feris, Spottune: trans-
fer learning through adaptive fine-tuning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4805–4814.

[25] X.L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation, in:
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 2021, pp. 4582–4597.

[26] Z. Shen, Z. Liu, J. Qin, M. Savvides, K.-T. Cheng, Partial is better than all:
Revisiting fine-tuning strategy for few-shot learning, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35, 2021, pp. 9594–9602.

http://refhub.elsevier.com/S1568-4946(25)00923-8/sb1
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb1
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb1
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb2
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb3
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb3
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb3
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb3
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb3
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb6
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb6
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb6
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb7
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb7
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb7
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb7
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb7
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb8
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb8
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb8
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb8
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb8
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb9
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb9
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb9
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb9
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb9
https://www.first.org/cvss
https://www.first.org/cvss
https://www.first.org/cvss
https://cwe.mitre.org/data/definitions/22.html
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb12
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb12
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb12
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb12
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb12
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb13
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb13
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb13
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb13
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb13
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb14
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb14
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb14
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb14
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb14
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb15
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb15
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb15
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb15
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb15
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb16
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb17
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb17
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb17
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb17
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb17
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb18
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb18
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb18
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb18
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb18
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb19
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb19
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb19
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb19
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb19
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb20
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb20
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb20
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb20
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb20
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb21
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb21
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb21
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb21
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb21
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb22
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb22
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb22
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb22
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb22
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb23
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb24
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb24
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb24
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb24
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb24
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb25
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb26
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb26
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb26
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb26
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb26

L. Zhang et al. Applied Soft Computing 182 (2025) 113612
[27] Y. Wang, W. Wang, S. Joty, S.C. Hoi, CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation, in: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing,
2021, pp. 8696–8708.

[28] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effective vulnerability identifica-
tion by learning comprehensive program semantics via graph neural networks,
Adv. Neural Inf. Process. Syst. 32 (2019).

[29] V.-A. Nguyen, D.Q. Nguyen, V. Nguyen, T. Le, Q.H. Tran, D. Phung, ReGVD: Re-
visiting graph neural networks for vulnerability detection, in: Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings, 2022, pp. 178–182.

[30] Common vulnerabilities and exposures, 2024, Accessed: 2025 https://cwe.mitre.
org.

[31] Y. Zhang, B. Kang, B. Hooi, S. Yan, J. Feng, Deep long-tailed learning: A survey,
IEEE Trans. Pattern Anal. Mach. Intell. 45 (9) (2023) 10795–10816.

[32] J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, J. Yan, Equalization loss for
long-tailed object recognition, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11662–11671.

[33] L. Yang, H. Jiang, Q. Song, J. Guo, A survey on long-tailed visual recognition,
Int. J. Comput. Vis. 130 (7) (2022) 1837–1872.

[34] J.-X. Shi, T. Wei, Y. Xiang, Y.-F. Li, How re-sampling helps for long-tail
learning? Adv. Neural Inf. Process. Syst. 36 (2023).

[35] H. Peng, W. Pian, M. Sun, P. Li, Dynamic re-weighting for long-tailed semi-
supervised learning, in: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2023, pp. 6464–6474.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recognition
challenge, Int. J. Comput. Vis. 115 (2015) 211–252.

[37] C. Wei, S.M. Xie, T. Ma, Why do pretrained language models help in downstream
tasks? an analysis of head and prompt tuning, Adv. Neural Inf. Process. Syst. 34
(2021) 16158–16170.

[38] X. Han, W. Zhao, N. Ding, Z. Liu, M. Sun, Ptr: Prompt tuning with rules for text
classification, AI Open 3 (2022) 182–192.

[39] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, M.R. Lyu, No more fine-tuning? an
experimental evaluation of prompt tuning in code intelligence, in: Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 382–394.

[40] S. Yang, X. Chen, K. Liu, G. Yang, C. Yu, Automatic bi-modal question title
generation for stack overflow with prompt learning, Empir. Softw. Eng. 29 (3)
(2024) 63.

[41] C. Ni, L. Shen, X. Yang, Y. Zhu, S. Wang, MegaVul: AC/C++ vulnerability dataset
with comprehensive code representations, in: 2024 IEEE/ACM 21st International
Conference on Mining Software Repositories, MSR, IEEE, 2024, pp. 738–742.

[42] Z. Ren, X. Ju, X. Chen, H. Shen, ProRLearn: boosting prompt tuning-based
vulnerability detection by reinforcement learning, Autom. Softw. Eng. 31 (2)
(2024) 38.
14
[43] M. Tsimpoukelli, J.L. Menick, S. Cabi, S. Eslami, O. Vinyals, F. Hill, Multimodal
few-shot learning with frozen language models, Adv. Neural Inf. Process. Syst.
34 (2021) 200–212.

[44] Z. Zhang, M. Sabuncu, Generalized cross entropy loss for training deep neural
networks with noisy labels, Adv. Neural Inf. Process. Syst. 31 (2018).

[45] X. Ruan, Y. Yu, W. Ma, B. Cai, Prompt learning for developing software exploits,
in: Proceedings of the 14th Asia-Pacific Symposium on Internetware, 2023, pp.
154–164.

[46] C. Niu, C. Li, V. Ng, D. Chen, J. Ge, B. Luo, An empirical comparison of pre-
trained models of source code, in: 2023 IEEE/ACM 45th International Conference
on Software Engineering, ICSE, IEEE, 2023, pp. 2136–2148.

[47] I. Syarif, A. Prugel-Bennett, G. Wills, SVM parameter optimization using
grid search and genetic algorithm to improve classification performance,
TELKOMNIKA (Telecommun. Comput. Electron. Control) 14 (4) (2016)
1502–1509.

[48] J. Fan, Y. Li, S. Wang, T.N. Nguyen, AC/C++ code vulnerability dataset with
code changes and CVE summaries, in: Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 508–512.

[49] Category ID: 17. deprecated, 2025, Accessed: 2025 https://cwe.mitre.org/data/
definitions/17.html.

[50] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural
networks, 2015, arXiv preprint arXiv:1511.05493.

[51] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[52] N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H. Zheng, M. Sun, OpenPrompt: An
open-source framework for prompt-learning, in: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations,
2022, pp. 105–113.

[53] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, 2015.
[54] L. Prechelt, Early stopping-but when? in: Neural Networks: Tricks of the Trade,

Springer, Berlin, Heidelberg, 2002, pp. 55–69.
[55] C. Shorten, T.M. Khoshgoftaar, B. Furht, Text data augmentation for deep

learning, J. Big Data 8 (1) (2021) 101.
[56] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W.

Li, P.J. Liu, Exploring the limits of transfer learning with a unified text-to-text
transformer, J. Mach. Learn. Res. 21 (140) (2020) 1–67.

[57] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, J. Yin, Unixcoder: Unified cross-modal
pre-training for code representation, 2022, arXiv preprint arXiv:2203.03850.

[58] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al., Codebert: A pre-trained model for programming and natural
languages, 2020, arXiv preprint arXiv:2002.08155.

[59] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu, et al., Graphcodebert: Pre-training code representations with data flow,
2020, arXiv preprint arXiv:2009.08366.

[60] R.F. Woolson, Wilcoxon signed-rank test, Encycl. Biostat. 8 (2005).

http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb27
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb28
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb28
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb28
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb28
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb28
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb29
https://cwe.mitre.org
https://cwe.mitre.org
https://cwe.mitre.org
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb31
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb31
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb31
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb32
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb32
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb32
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb32
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb32
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb33
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb33
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb33
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb34
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb34
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb34
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb35
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb35
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb35
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb35
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb35
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb36
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb36
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb36
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb36
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb36
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb37
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb37
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb37
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb37
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb37
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb38
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb38
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb38
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb39
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb40
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb40
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb40
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb40
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb40
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb41
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb41
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb41
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb41
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb41
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb42
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb42
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb42
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb42
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb42
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb43
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb43
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb43
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb43
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb43
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb44
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb44
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb44
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb45
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb45
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb45
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb45
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb45
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb46
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb46
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb46
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb46
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb46
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb47
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb48
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb48
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb48
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb48
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb48
https://cwe.mitre.org/data/definitions/17.html
https://cwe.mitre.org/data/definitions/17.html
https://cwe.mitre.org/data/definitions/17.html
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb52
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb53
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb54
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb54
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb54
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb55
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb55
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb55
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb56
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb56
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb56
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb56
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb56
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2009.08366
http://refhub.elsevier.com/S1568-4946(25)00923-8/sb60

	Enhancing long-tailed software vulnerability type classification via adaptive data augmentation and prompt tuning
	Introduction
	Background
	Software Vulnerability Type Classification
	Long-Tailed Learning
	Prompt Tuning

	Approach
	Data Preprocessing Phase
	Model Training Phase
	Prompt Template and Verbalizer Construction
	Prompt Tuning on CodeT5
	Adaptive Data Augmentation

	Model Prediction Phase

	Experimental Setup
	Research Questions
	Experimental Subjects
	Baselines
	Evaluation Metrics
	Experimental Settings

	Experimental Results
	RQ1: What is the performance of VulTC-LTPF in SVTC?
	RQ2: What is the impact of adaptive data augmentation on the performance of the VulTC-LTPF approach?
	RQ3: What is the impact of bi-modal information on the performance of the VulTC-LTPF approach?
	RQ4: What is the impact of the prompt tuning paradigm on the performance of the VulTC-LTPF approach?
	RQ5: What is the impact of different prompt settings on VulTC-LTPF performance?

	Discussion
	Influence of the Choice of Scaling Factor k
	Influence of PLMs
	Influence of the Design of the Prompt Template
	Statistical Significance Test
	Threats to Validity

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

