
Automated Software Engineering (2025) 32:67
https://doi.org/10.1007/s10515-025-00543-3

Abstract
Vulnerability detection in software systems is a critical challenge due to the in-
creasing complexity of code and the rising frequency of security vulnerabilities.
Traditional approaches typically rely on single-modality inputs and struggle to
distinguish between similar code snippets. However, multi-modal methods find it
challenging to balance performance and efficiency. To address these challenges,
we propose MCL-VD, a framework that leverages multi-modal inputs including
source code, code comments, and AST to capture complementary structural and
contextual information. We employ LoRA, which reduces the computational burden
by optimizing the number of trainable parameters without sacrificing performance.
Additionally, we apply multi-modal contrastive learning to align and differenti-
ate the representations across the three modalities, thereby enhancing the model’s
discriminative power and robustness. We designed and conducted experiments on
three public benchmark datasets, i.e., Devign, Reveal, and Big-Vul. The experi-
mental results show that MCL-VD significantly outperforms the best-performing
baselines, achieving F1-score improvements ranging from 4.86% to 17.26%. These
results highlight the effectiveness of combining multi-modal contrastive learning
with LoRA optimization, providing a powerful and efficient solution for vulner-
ability detection.

Keywords  Vulnerability detection · Contrastive learning · Low-rank adaptation ·
Deep learning

Received: 23 December 2024 / Accepted: 20 July 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

MCL-VD: Multi-modal contrastive learning with LoRA-
enhanced GraphCodeBERT for effective vulnerability
detection

Yi Cao1 · Xiaolin Ju1 · Xiang Chen1 · Lina Gong2

Extended author information available on the last page of the article

1 3

https://doi.org/10.1007/s10515-025-00543-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-025-00543-3&domain=pdf&date_stamp=2025-7-25

Automated Software Engineering (2025) 32:67

1  Introduction

Vulnerability detection in software systems is critical to ensure the security, integ-
rity, and reliability of applications (Neuhaus et al. 2007; Chakraborty et al. 2021;
Yang et al. 2022). As technology advances and software systems grow increasingly
complex, identifying and addressing vulnerabilities before they are exploited has
become paramount. The National Vulnerability Database1 recorded over 20,000 new
vulnerabilities in 2023 alone, marking a consistent upward trend in the discovery
of software vulnerabilities over the past decade. Furthermore, a report published by
Palo Alto Networks Unit 422 highlights that 75% of exploited vulnerabilities in 2023
were associated with unpatched software, emphasizing the critical need for proac-
tive detection and mitigation measures in cybersecurity. Exploited vulnerabilities
frequently serve as entry points for attackers to gain unauthorized access, exfiltrate
sensitive data, or cause severe system failures. These breaches can lead to severe con-
sequences, including data leaks, financial losses, reputational harm, and legal reper-
cussions. The challenges of vulnerability detection are further amplified in modern
distributed architectures and microservices-based systems, underscoring the urgent
need for robust and scalable detection techniques.

Early methods for vulnerability detection primarily relied on static analysis
techniques, which examined source code without executing it. Tools such as Find-
Bugs (Livshits and Lam 2005) and PMD (Ayewah et al. 2008) automated the detec-
tion of known vulnerabilities by matching predefined patterns or rules. These methods
effectively identified well-understood vulnerabilities, such as buffer overflows, SQL
injection, and cross-site scripting (XSS) (Chess and McGraw 2004). However, static
analysis techniques faced several inherent limitations (Shin and Williams 2008;
Nunes et al. 2019; Li et al. 2018). They struggled to detect complex or novel vulner-
abilities that did not conform to existing rules, resulting in high false-positive rates
that required manual effort to review and confirm potential issues. Moreover, static
analysis was ineffective for detecting vulnerabilities arising from runtime behavior,
as it did not execute the code.

Dynamic analysis techniques were introduced to complement static analysis (Kim
et al. 2016; Liu et al. 2016; Li et al. 2024; Kan et al. 2021). These methods monitored
program execution to detect vulnerabilities during runtime, such as memory cor-
ruption or race conditions. Tools like Valgrind (Nethercote and Seward 2007) and
DynamoRIO (Bruening and Amarasinghe 2004) enabled developers to observe and
analyze the actual behavior of programs under various conditions. Although dynamic
analysis offered deeper insights into runtime vulnerabilities, it was computationally
expensive and impractical for large-scale applications due to the need for extensive
test cases and resource-intensive simulations.

In recent years, deep learning has significantly advanced the field of vulner-
ability detection. Models such as Convolutional Neural Networks (CNNs) (LeCun
et al. 1998) and Recurrent Neural Networks (RNNs) (Rumelhart et al. 1986) have
been effectively utilized to analyze source code. For instance, VulDeePecker (Li

1 https://nvd.nist.gov
2 https://unit42.paloaltonetworks.com/

1 3

 67   Page 2 of 35

https://nvd.nist.gov
https://unit42.paloaltonetworks.com/

Automated Software Engineering (2025) 32:67

et al. 2018) leveraged CNNs to identify vulnerabilities in code slices, while SyS-
eVR (Li et al. 2021) employed RNNs to capture semantic relationships within code
sequences. These approaches surpassed traditional rule-based methods by learning
patterns directly from data, enabling better generalization across diverse types of
vulnerabilities. Building on this progress, Graph Neural Networks (GNNs) (Ayewah
et al. 2008) have further expanded deep learning capabilities by modeling structural
relationships in code. For example, Devign (Zhou et al. 2019) utilized GNNs to rep-
resent function call graphs and variable dependencies, achieving more accurate vul-
nerability detection by integrating both the syntactic and semantic aspects of code.

The development of pre-trained language models has revolutionized the field, pro-
viding even greater capabilities for vulnerability detection. Models such as Code-
BERT (Feng et al. 2020), GraphCodeBERT (Guo et al. 2020), and CodeT5 (Wang
et al. 2021) are pre-trained on massive corpora of programming languages and natu-
ral language, enabling them to understand both syntactic and semantic structures of
code. These models have been successfully applied to various tasks, including defect
detection, code summarization, and vulnerability detection. For instance, Code-
BERT learns source code representations and comments, while GraphCodeBERT
incorporates structural information from AST to enhance its understanding of code.
Additionally, ContraBERT (Liu et al. 2023) applies contrastive learning to improve
vulnerability detection performance by aligning code representations with contextual
information. These advancements have significantly improved the performance of
vulnerability detection tasks.

Despite significant advancements in vulnerability detection, existing methods still
face several key challenges. One major limitation is the lack of multi-modal inputs,
as most models rely predominantly on source code alone (Sharma et al. 2021; Rus-
sell et al. 2018; Hanif and Maffeis 2022; Marjanov et al. 2022). This approach fails
to leverage complementary information from other modalities, such as AST and code
comments, which provide critical structural and contextual insights for detecting sub-
tle or complex vulnerabilities. Additionally, many datasets suffer from the absence
of code comments (Svyatkovskiy et al. 2020; Wen et al. 2019), thereby reducing the
potential value of this modality.

Another challenge is the computational overhead introduced by incorporating
multiple modalities (Lahat et al. 2015), which can make model training and optimi-
zation more resource-intensive. While combining multiple modalities has improved
detection accuracy, aligning and integrating these diverse data types remain difficult.
Many existing methods struggle to effectively align and differentiate embeddings
from various modalities, limiting the model’s ability to capture the complex relation-
ships among them. Furthermore, directly fusing multiple modalities can lead to noisy
or redundant information, impeding the model’s learning efficiency.

A particularly pressing issue in vulnerability detection is the challenge of distin-
guishing between similar code snippets (Chakraborty et al. 2021; Liu et al. 2023;
Jiang et al. 2024). Vulnerable code is often very similar to benign code, making it
difficult for models to differentiate between the two. This challenge is exacerbated by
many existing methods struggle with fine-grained feature extraction and alignment,
hindering the model’s ability to capture subtle differences between vulnerable and
non-vulnerable code. Additionally, many vulnerability detection models lack robust-

1 3

Page 3 of 35  67

Automated Software Engineering (2025) 32:67

ness, making them sensitive to minor variations in code that do not significantly affect
their functionality but can still alter the model’s predictions. This lack of robustness
is particularly problematic in real-world scenarios, where code may vary in style or
contain small changes that do not alter its underlying behavior but can negatively
impact vulnerability detection performance.

To address these challenges, we propose a novel approach called MCL-VD (Multi-
modal Contrastive Learning for Vulnerability Detection). Our method incorporates
a three-modal input representation, combining source code, AST, and comments to
understand code comprehensively. To overcome the issue of missing comments in
datasets, we employ the large language model GPT-4o-mini to generate synthetic
comments, enriching the comment modality and ensuring consistency across all
samples. To manage the increased computational cost and parameter load introduced
by the three modalities, we apply LoRA (Low-Rank Adaptation) (Hu et al. 2021),
enabling efficient fine-tuning of model parameters without excessive computational
overhead. Finally, we design a multi-modal contrastive learning framework to align
and differentiate embeddings across the three modalities, capturing both shared and
modality-specific semantic attributes to improve the robustness and accuracy of vul-
nerability detection.

To evaluate the effectiveness of MCL-VD, we conducted experiments on three
widely used vulnerability detection datasets: Devign, Reveal, and Big-Vul (Zhou
et al. 2019; Chakraborty et al. 2021; Fan et al. 2020). These datasets provide diverse
real-world vulnerabilities, offering a comprehensive benchmark for our approach.
We compared MCL-VD against eight state-of-the-art baselines, including SySeVR,
VulDeePecker, Devign, ReGVD, CodeBERT, GraphCodeBERT, ContraBERT, and
SCL-CVD (Li et al. 2021, 2018; Zhou et al. 2019; Nguyen et al. 2022; Feng et al.
2020; Guo et al. 2020; Liu et al. 2023; Wang et al. 2024). The results demonstrate the
advantages of our multi-modal framework in achieving superior vulnerability detec-
tion performance across various software environments.

The main contributions of this paper are:

	● We propose a novel multi-modal framework for vulnerability detection that in-
corporates code, AST, and comments to create a comprehensive representation.

	● We generate supplemental comments during preprocessing to address the issue
of incomplete or missing comments, enriching the comment modality for better
multi-modal learning.

	● We utilize LoRA to fine-tune the model, thereby reducing its computational cost
and training time without compromising performance.

	● We apply contrastive learning to improve alignment and differentiation across
modalities, thereby enhancing the robustness and discriminative power of the
detection process.

We share MCL-VD3 to encourage future studies on vulnerability detection. The rest
of this paper is organized as follows. Section 2 summarizes related work of our study.
Next, Section 3 presents the design of MCL-VD. Section 4 analyzes the experimental

3 https://github.com/olivergo7/MCL-VD

1 3

 67   Page 4 of 35

https://github.com/olivergo7/MCL-VD

Automated Software Engineering (2025) 32:67

settings, including the comparative baselines and performance metrics considered.
Section 5 reports the experimental results. Then, Section 6 introduces some discus-
sions and threats to validity. Finally, we conclude our work and show future studies
in Section 7.

2  Related work

2.1  Vulnerability detection

Early work on vulnerability detection focused heavily on static analysis methods,
which often suffered from high false negative rates due to their inability to capture
dynamic program behavior (Russell et al. 2018; Li et al. 2018). Static analysis was
typically used to analyze source code token sequences, but this approach was limited
in its ability to model complex relationships and dependencies within the code.

With the advent of machine learning, traditional approaches began to evolve. The
application of machine learning models to vulnerability detection has gained traction,
enabling more automated and efficient analysis. Early machine learning-based tech-
niques utilized classifiers, such as Support Vector Machines, on features extracted
from source code (Li et al. 2018). However, these methods often struggled with scal-
ability and the complexity of modern software.

Recent advancements in deep learning have introduced models such as RNNs and
CNNs for the automated extraction of meaningful features from source code (Li et al.
2021, 2018; Russell et al. 2018). These deep learning models have demonstrated
effectiveness in detecting vulnerabilities by modeling sequential patterns within code
token sequences. However, they still faced challenges in capturing the structural
dependencies within the source code. These structural relationships are critical for
accurately identifying vulnerabilities, as they encapsulate the contextual and hierar-
chical nature of software systems.

To address these limitations, researchers began exploring the use of GNNs for
vulnerability detection. GNN-based approaches represent source code as graph struc-
tures, capturing the sequential relationships and complex dependencies — such as
data flow, control flow, and function call interactions — among various program
components. For example, Devign (Zhou et al. 2019) proposed a GNN-based model
that learns from a rich set of semantic representations of the code, significantly
improving performance compared to traditional methods. Additionally, GraphCode-
BERT (Guo et al. 2020) and VulCNN (Wu et al. 2022) leveraged GNNs to process
code as graph structures, enhancing vulnerability detection by incorporating graph-
based representations of code.

Our approach builds upon these advancements by combining multiple modalities
of data into a unified model, such as source code, AST, and code comments. By fus-
ing these modalities, we provide a more comprehensive representation of the code,
capturing syntactic and semantic information critical for vulnerability detection.

1 3

Page 5 of 35  67

Automated Software Engineering (2025) 32:67

2.2  Low-rank adaptation of pre-trained models

Low-rank adaptation has emerged as a compelling alternative to previous parame-
ter-efficient fine-tuning (PEFT) methods (Hu et al. 2021). LoRA provides a way to
fine-tune large pre-trained models with a significantly reduced number of trainable
parameters while maintaining competitive generalization performance compared to
full fine-tuning. One of its key advantages is that it does not introduce any additional
latency during the inference phase, making it particularly attractive for real-time
applications.

Since the introduction of LoRA, several efforts have been made to enhance its
learning efficiency and performance. Recent research has focused on improving the
learning curve of LoRA-based models by exploring novel optimization strategies
and regularization techniques (Liu et al. 2024; Hayou et al. 2024; Meng et al. 2024).
These advancements aim to accelerate the convergence of the model and improve its
adaptability to new tasks. Additionally, some studies have sought to further reduce
the number of trainable parameters in LoRA to make it even more computationally
efficient, especially in resource-constrained environments (Zhang et al. 2023; Kopic-
zko et al. 2023; Renduchintala et al. 2023).

Another promising direction involves training LoRA with quantized pre-trained
weights to reduce the memory footprint during training. This approach has sig-
nificantly decreased memory requirements without sacrificing model performance,
making it particularly suitable for large-scale deployment on edge devices or in envi-
ronments with limited resources (Dettmers et al. 2023; Li et al. 2023).

In the context of vulnerability detection, LoRA enables the efficient fine-tuning of
pre-trained models, such as GraphCodeBERT, without requiring the retraining of the
entire network. This is particularly important for multi-modal tasks, where different
data types (e.g., code, AST, and comments) are processed simultaneously. By apply-
ing LoRA, we reduce the computational and storage costs of fine-tuning large models
while maintaining their generalization power.

2.3  Contrastive learning for code representation learning

Contrastive learning, initially developed for visual representation learning (Chen
et al. 2020; He et al. 2020), aims to maximize the similarity between related samples
while minimizing the similarity between unrelated ones. Over the years, contrastive
learning has found applications in various domains, including natural language pro-
cessing (NLP) and code analysis (Neelakantan et al. 2022; Xu et al. 2022; Aberdam
et al. 2021), where it has been utilized to learn robust representations of source code
by contrasting different code variants.

In early applications, contrastive learning relied on data augmentation techniques,
such as rotation, scaling, and cropping, in visual tasks. Similar data augmentation
strategies have been employed for NLP and code tasks, such as generating differ-
ent variants of code through obfuscation or code transformation (Jain et al. 2020).
For instance, ContraBERT (Liu et al. 2023) employed data augmentation methods to
create code variants and then applied contrastive learning to fine-tune a pre-trained
model for tasks like code clone detection, defect detection, and code search.

1 3

 67   Page 6 of 35

Automated Software Engineering (2025) 32:67

In the context of vulnerability detection, contrastive learning has demonstrated
significant promise in enhancing the robustness of models. By creating positive and
negative pairs of code samples, where positive pairs consist of semantically similar
code variants, and negative pairs consist of unrelated code samples, contrastive learn-
ing helps models better understand the underlying structure and semantics of the
code. For example, ContraFlow (Cheng et al. 2022) employed contrastive learning
to strengthen the model’s ability to recognize vulnerabilities despite code syntax and
structure variations.

Our approach adopts contrastive learning to enhance the robustness of multi-
modal models for vulnerability detection. Introducing positive and negative pairs of
multi-modal code samples enables our model to learn richer and more robust repre-
sentations of code, AST, and comments. This contrastive learning process enables the
model to distinguish between meaningful code features and noise, thereby improving
the accuracy and robustness of vulnerability detection.

3  Approach

In this study, we propose MCL-VD, a vulnerability detection model that leverages
multi-modal contrastive learning and LoRA to enhance the model’s ability to capture
and differentiate semantic features across multiple code representations. The overall
architecture of MCL-VD is shown in Fig. 1. MCL-VD consists of three main steps: ①
Code Annotation Supplementation: Missing or incomplete comments are supple-

(c) Multi-modal Contrastive Learning

Source
code

Comment

AST

Prompt

Parsing Tool

LLMs

(a) Multi-modal Data Generation

Positive

Negative

Anchor

Contrastive Learning

NT-Xent loss

O
utput Em

bedding

O
ptim

ized O
utput Em

bedding

(b) LoRA-based Code Embedding

Source code

Comment

Encoder Layer1

Encoder Layer12

...
...

GraphCodeBERT

AST

PEFT + LoRA

Frozen
Pre-trained Model Fine-tuning

O
utput Em

bedding

(d) Vulnerability Detection

Safe code

Vulnerable
code

Trained ModelCode
Trained Model

Fig. 1  The architecture of our approach MCL-VD

1 3

Page 7 of 35  67

Automated Software Engineering (2025) 32:67

mented by generating synthetic annotations using GPT-4o-mini, guided by prompt
tuning to produce contextually relevant comments that enrich the comment modality;
② LoRA-based Fine-tuning for Multi-modal Representation Learning: LoRA is
applied to fine-tune the model and reduce computational cost while maintaining per-
formance. By adapting each modality (source code, comments, AST) with a unique
LoRA-based mechanism, we minimize the number of trainable parameters, decreas-
ing both model loss and training time. These modality-specific representations are
then fed into GraphCodeBERT for further representation learning; ③ Cross-modal-
ity Alignment with Contrastive Learning: Contrastive learning is employed to
align and differentiate the embeddings across the three modalities, ensuring semantic
consistency while preserving the unique characteristics of each modality for robust
vulnerability detection. Details of each step in MCL-VD are presented in the follow-
ing subsections.

3.1  Code comment supplementation with GPT-4o-mini

In many real-world code repositories, the absence or insufficiency of comments poses
a significant challenge, as it limits the contextual information available for multi-
modal models. To address this issue, we utilize GPT-4o-mini, a version of GPT-4
optimized for code-related tasks, to automatically generate annotations for code snip-
pets that lack comments.

The generated comments are guided by a specifically designed prompt instruct-
ing GPT-4o-mini to provide explicit, concise, and contextually relevant annotations.
Figure 2 illustrates the prompt structure that guides the model in generating these
comments.

The design of this prompt is intentional, as it ensures that the generated comments
contain all the essential elements needed for a thorough understanding of the code.
By requesting a brief function summary, the prompt guides the model to capture the
high-level purpose of the code. This provides a quick overview of what the function
is designed to do, which is crucial for understanding its behavior and identifying any
potential vulnerabilities.

Including input parameter descriptions and expected output or return values fur-
ther enriches the comment. This approach ensures that the model understands the
function’s purpose and gains insight into how the inputs interact with the function,
as well as what the expected result is. This level of detail is crucial for identifying
vulnerabilities related to incorrect input handling or unintended side effects in the
output.

Additionally, instructing the model to document any exceptions raised is par-
ticularly significant, as it focuses the model’s attention on potential error-handling
mechanisms. Exceptions often highlight edge cases or unexpected behaviors that
could result in security vulnerabilities. By incorporating this information, we ensure
the model considers all possible scenarios when evaluating the function’s security
implications.

By leveraging GPT-4o-mini in this manner, we supplement missing or incomplete
comments, enriching the comment modality and improving the model’s ability to
learn from a more complete set of features. The generated comments fill in gaps and

1 3

 67   Page 8 of 35

Automated Software Engineering (2025) 32:67

provide additional context essential for detecting vulnerabilities, particularly those
that may be reflected in both the code’s logic and its natural language description.

3.2  Low-rank adaptation for multi-modal inputs

This section introduces an enhanced version of LoRA specifically designed to
improve vulnerability detection with multi-modal inputs. Traditional LoRA tech-
niques apply a uniform low-rank adaptation across model parameters, which works
well for single-modality tasks. However, when dealing with multiple modalities,
such as code, AST, and code comments, a single low-rank adaptation does not fully
exploit the distinct characteristics inherent to each modality. We propose a modality-
specific low-rank adaptation approach to address this limitation, enabling the model
to fine-tune each modality independently while preserving shared semantics through
contrastive learning.

In multi-modal vulnerability detection, different input types (code tokens, AST
structures, and code comments) each provide unique information that cannot be fully
captured by a single low-rank update. To address this, we introduce a unified base
weight Wbase for the pre-trained GraphCodeBERT model and apply separate low-rank
adapters to each modality. Specifically, for modalities m ∈ {code, ast, comment},
we learn two small matrices Am ∈ RD×r and Bm ∈ Rr×D (with rank r ≪ D) and
fuse them into the model as:

Fig. 2  Prompt design for code comment generation

1 3

Page 9 of 35  67

Automated Software Engineering (2025) 32:67

	 Wtotal = Wbase + α
(
AcodeBcode + AastBast + AcommentBcomment

)
� (1)

where α scales the low-rank updates. This formulation ensures that each modal-
ity contributes its specialized adjustment while sharing the bulk of the pre-trained
parameters.

For the code modality, Acode, Bcode capture syntactic and control-flow pat-
terns that signal vulnerabilities. For the AST modality, Aast, Bast emphasize hier-
archical relationships and data-flow dependencies. For the comment modality,
Acomment, Bcomment extract semantic cues from natural language annotations,
aligning contextual descriptions with code behavior. By cumulatively adding these
low-rank adapter outputs to the shared Wbase, the model retains a compact param-
eter footprint—only 3Dr additional parameters—while independently tuning each
modality’s representation.

We further integrate this modality-specific LoRA within our multi-modal contras-
tive learning framework, so that shared semantics across modalities are preserved and
aligned, enhancing robustness without incurring the cost of full-parameter tuning.

3.3  Enhanced multi-modal contrastive learning for representation
differentiation

Algorithm 1  Enhanced Multi-Modal Contrastive Learning for MCL-VD

To address the unique challenges of multi-modal vulnerability detection, we intro-
duce an enhanced multi-modal contrastive learning framework designed to leverage
and differentiate the representations of code, AST, and comment modalities. Unlike
traditional contrastive learning frameworks, which are typically designed for single-
modality or homogeneous data, our cross-modal approach modifies the framework

1 3

 67   Page 10 of 35

Automated Software Engineering (2025) 32:67

to suit the heterogeneous and complementary nature of code, AST, and comments,
allowing the model to capture shared insights while maintaining modality-specific
distinctions crucial for effective vulnerability detection.

Our enhanced multi-modal learning strategy computes pairwise contrastive losses
tailored for each modality pair, specifically targeting the unique semantic relation-
ships between code, AST, and comments. By defining modality-specific contrastive
objectives, our approach ensures that the model can learn common and distinctive
patterns across modalities, ultimately improving the robustness of the multi-modal
embeddings.

Algorithm 1 outlines the steps involved in our enhanced contrastive learning
framework. Specifically, within each mini-batch, the embeddings of code, AST,
and comments originating from the same function are treated as positives, while all
embeddings belonging to different functions in that batch serve as negatives. For
example, a code embedding h(i)

code uses {h(i)
ast, h

(i)
comment} as its positive set and all

{h(j)
code, h

(j)
ast, h

(j)
comment} for j ̸= i as its negative set.

For the multi-modal contrastive loss calculations, we employ the NT-Xent loss
function (Normalized Temperature-scaled Cross Entropy Loss), which maximizes
similarity for positive pairs while ensuring distinctiveness for negative pairs. For
each positive pair (hm, hn) across modalities, the contrastive loss is defined as:

	
Lcontrast = − log

exp
(
sim(hm, hn)/τ

)
∑

a∈N (hm) exp
(
sim(hm, ha)/τ

) ,� (2)

where sim(·, ·) denotes cosine similarity, τ is the temperature, and N (hm) is the set
of negatives for hm. We then combine this contrastive term with our classification
loss Lcls, which is the average binary cross-entropy over the batch:

	
Lcls = − 1

B

B∑
i=1

[
yi log p̂i + (1 − yi) log(1 − p̂i)

]
,� (3)

where B is the batch size, yi ∈ {0, 1} is the ground-truth label for the i-th sample,
and p̂i is the model’s predicted probability that the sample is vulnerable. The total
loss is thus expressed as a convex combination of the two terms:

	 Ltotal = (1 − λ) Lcls + λ Lcontrast.� (4)

Experiments show that setting λ = 0.3 yields the best F1 performance, and this value
is used in all our reported results. The model learns multi-modal embeddings that bal-
ance shared semantics with modality-specific distinctions by applying this weighted
objective across code–AST, code–comment, and AST–comment pairs.

1 3

Page 11 of 35  67

Automated Software Engineering (2025) 32:67

4  Experimental setup

4.1  Research questions

To evaluate MCL-VD, we aim to answer the following five research questions:
RQ1: How effective is MCL-VD in vulnerability detection compared to exist-

ing methods?
To answer this question, we compare MCL-VD with eight state-of-the-art

approaches for vulnerability detection. The aim is to evaluate its accuracy, efficiency,
and applicability across various vulnerabilities.

RQ2: How does multi-modal integration of code, AST, and comments impact
the performance of MCL-VD?

To address this question, we evaluate how the combination of source code, AST,
and comments as separate modalities affects the performance of MCL-VD. We aim to
measure the improvements in vulnerability detection accuracy, efficiency, and robust-
ness when integrating these modalities.

RQ3: How does multi-modal contrastive learning enhance the alignment and
differentiation of embeddings in MCL-VD?

Multi-modal contrastive learning is a cornerstone of MCL-VD, enabling the
model to align representations across modalities while maintaining their distinctive-
ness. This RQ investigates how contrastive learning improves embeddings’ seman-
tic alignment and differentiation, enhancing the model’s robustness in detecting
vulnerabilities.

RQ4: What role does LoRA-based fine-tuning play in optimizing MCL-VD
for vulnerability detection?

LoRA is employed in MCL-VD to enable efficient fine-tuning while preserving
pre-trained knowledge and reducing model consumption. This RQ examines the
impact of LoRA-based fine-tuning on the model’s performance, focusing on its role
in lowering model resource usage, such as reducing trainable parameters and accel-
erating training time, while maintaining detection accuracy.

RQ5: How does supplementing incomplete comments during preprocessing
improve the performance of MCL-VD?

In MCL-VD, the source code in the datasets often contains incomplete or missing
comments. To address this limitation, we supplement the missing comments using
GPT-4o-mini during the preprocessing phase. This RQ explores how enriching the
comment modality affects the model’s performance in vulnerability detection.

4.2  Datasets

To evaluate the effectiveness of MCL-VD, we conduct experiments on three
widely used datasets for vulnerability detection: Devign (Zhou et al. 2019),
Reveal (Chakraborty et al. 2021), and Big-Vul (Fan et al. 2020). The details of these
datasets are as follows:

	● Devign (Zhou et al. 2019): This dataset comprises functions collected from
FFmpeg and QEMU, including approximately 12k vulnerable and about 14k

1 3

 67   Page 12 of 35

Automated Software Engineering (2025) 32:67

non-vulnerable functions. It is a relatively balanced dataset, with a substantial
number of both vulnerable and non-vulnerable functions.

	● Reveal (Chakraborty et al. 2021): The Reveal dataset, collected from the Linux
Debian Kernel and Chromium, contains around 1.6k vulnerable functions and
about 16k non-vulnerable functions. This dataset is imbalanced, with a significant
disparity between the number of vulnerable and non-vulnerable functions.

	● Big-Vul (Fan et al. 2020): The Big-Vul dataset, collected by Fan et al., consists of
approximately 10k vulnerable functions and around 176k non-vulnerable func-
tions. Like the other datasets, Big-Vul is imbalanced, with a notable disparity
between the number of vulnerable and non-vulnerable functions.

Table 1 presents the details of the three datasets used in our experiments. Due to the
length of some code snippets in the datasets, which made it impossible to gener-
ate their ASTs, we excluded those code snippets. The datasets include vulnerable
and non-vulnerable code, with the proportion of vulnerable code varying across the
datasets. Big-Vul contains 187,318 samples, with 5.5% being vulnerable and 94.5%
non-vulnerable. Reveal consists of 18,169 samples, with 9.16% vulnerable code, and
Devign includes 26,621 samples with 45.5% vulnerable code.

4.3  Baselines

We compare our proposed approach against eight state-of-the-art baselines in vulner-
ability detection, covering a variety of models from traditional deep learning methods
to transformer-based architectures:

	● SySeVR (Li et al. 2021): A syntax-based vulnerability detection model that uses
code representations and syntactic features to classify vulnerable and non-vul-
nerable code.

	● VulDeePecker (Li et al. 2018): A CNN-based model designed to detect vulner-
abilities by learning deep representations of source code sequences.

	● Devign (Zhou et al. 2019): A graph-based model for vulnerability detection that
leverages graph neural networks to capture structural dependencies in code.

	● ReGVD (Nguyen et al. 2022): A transformer-based approach tailored for vulner-
ability detection, primarily designed to capture semantic and structural context in
source code.

	● CodeBERT (Feng et al. 2020): A pre-trained transformer model that learns code
and natural language representations, commonly used for code-related tasks, in-
cluding vulnerability detection.

	● GraphCodeBERT (Guo et al. 2020): A transformer-based model pre-trained on
code and graphs to enhance code understanding by incorporating data flow and
structural information.

Dataset Samples Non-vul Vul Non-vul (%) Vul (%)
Big-Vul 187,318 176,951 10,367 94.5% 5.5%
Reveal 18,169 16,505 1,664 90.8% 9.2%
Devign 26,621 14,493 12,128 54.5% 45.5%

Table 1  Statistics of the datasets

1 3

Page 13 of 35  67

Automated Software Engineering (2025) 32:67

	● ContraBERT (Liu et al. 2023): Introduces nine distinct data augmentation op-
erators, encompassing both simple and complex transformations, applicable to
programming language (PL) and natural language (NL) data. These operators are
employed to generate diverse model variants. Additionally, it further pre-trains
existing models using masked language modeling (MLM) and contrastive learn-
ing on both original and augmented samples to enhance robustness.

	● SCL-CVD (Wang et al. 2024): Supervised Contrastive Learning for Code Vul-
nerability Detection via GraphCodeBERT. This method represents each function
as a flattened AST graph along with its code tokens, applies a single NT-Xent
contrastive loss over graph–code pairs, and employs R-Drop regularization to
improve robustness.

These baselines represent various state-of-the-art approaches in vulnerability detec-
tion, providing a comprehensive comparison across diverse approaches. SySeVR and
VulDeePecker represent earlier models that utilize syntax-based and convolutional
neural network (CNN) techniques to extract syntactic features for vulnerability iden-
tification. Devign, GraphCodeBERT, and SCL-CVD adopt graph-based techniques,
emphasizing the importance of capturing code structure and data flow. Notably, SCL-
CVD integrates supervised contrastive learning applied to graph–code pairs, further
enhancing its analytical capabilities. Transformer-based models, including ReGVD,
CodeBERT, and ContraBERT offer advanced solutions for vulnerability detection.
ReGVD combines semantic and structural analysis to address vulnerabilities com-
prehensively, while CodeBERT serves as a versatile pre-trained model for general-
purpose code understanding. ContraBERT leverages contrastive learning and data
augmentation techniques to refine representation quality, improving the model’s
robustness and accuracy. These baselines ensure a robust comparison across different
methodologies, demonstrating the effectiveness of the proposed multi-modal contras-
tive learning approach in advancing vulnerability detection.

4.4  Evaluation metrics

In this study, we employed the following four widely used evaluation metrics to
assess the performance of MCL-VD:

True positive (TP)  TP refers to the instances where the model correctly predicts the
presence of vulnerabilities in the code. These are the cases where the model identifies
vulnerabilities in the code, ensuring that genuine issues are not overlooked.

True negative (TN)  TN represents the cases where the model correctly identifies code
as free from vulnerabilities. In other words, when the model assesses code that does
not contain vulnerabilities, it classifies it correctly as benign, preventing unnecessary
alerts.

False positive (FP):  FP occurs when the model incorrectly classifies code without
vulnerabilities as containing vulnerabilities. This results in the model raising false
alarms, wasting time and resources for developers who investigate non-issues.

1 3

 67   Page 14 of 35

Automated Software Engineering (2025) 32:67

False negative (FN):  FN represents the instances where the model fails to detect a
vulnerability in the code. These missed vulnerabilities are critical because they can
go unnoticed.

Accuracy  quantifies the proportion of correct predictions made by the model out of
all predictions. It is a general measure of model performance, though it may not be
sufficient in cases where class imbalance is present. The formula is defined as:

	
Accuracy = TP + TN

TP + TN + FP + FN
� (5)

Precision  measures the proportion of correctly predicted vulnerable instances among
all instances predicted as vulnerable by the model. Precision is especially crucial
when the cost of false positives is high, as it reflects the model’s ability to avoid
incorrectly labeling benign instances as vulnerable. The formula is:

	
Precision = TP

TP + FP
� (6)

Recall  refers to the proportion of actual vulnerable instances correctly identified by
the model. It is crucial when the cost of false negatives is high, as it reflects the
model’s ability to detect all vulnerable instances. The formula for recall is:

	
Recall = TP

TP + FN
� (7)

F1-score  provides a balanced measure of both Precision and Recall by calculating
their harmonic mean. It is particularly valuable in cases of class imbalance, where the
model must navigate the trade-off between false positives and false negatives. The
F1-score is calculated as:

	
F1-score = 2 × Precision × Recall

Precision + Recall
� (8)

These metrics collectively offer a comprehensive evaluation of the model’s ability
to detect vulnerabilities across different datasets. In this study, the F1-score is par-
ticularly interesting as it provides a robust assessment of the model’s performance,
especially in imbalanced class distributions.

4.5  Experimental settings

In terms of model reproduction, we followed all baseline experimental settings. The
datasets were divided into training, validation, and test sets in an 8:1:1 ratio, follow-
ing established practices (Li et al. 2021; Feng et al. 2020). This partitioning was uni-
formly applied across all baselines and our proposed model. For the Devign dataset,

1 3

Page 15 of 35  67

Automated Software Engineering (2025) 32:67

where pre-processed code was unavailable, we replicated the methodology described
in Reveal (Chakraborty et al. 2021) to ensure consistency.

GraphCodeBERT was employed as the pre-trained backbone with a maximum
input sequence length of 512 tokens in our experiments. If the input consisted of
two modalities, the tokens from each modality were evenly distributed with a 1:1
ratio. The tokens were distributed in a 2:1:1 ratio for three-modal inputs, with code,
comments, and AST tokens occupying the respective proportions. The learning rate
was set to 5 × 10−5, and gradient accumulation was utilized to simulate an adequate
batch size of 16 with mini-batches of size 2. For LoRA, we set the rank r = 16 and
applied a dropout rate of 0.1 to regularize the model and prevent overfitting. Training
was performed on an NVIDIA GeForce RTX 4090 GPU, leveraging mixed preci-
sion to improve computational efficiency and reduce memory usage. The model was
trained for up to 50 epochs, with early stopping triggered if the validation F1-score
did not improve for 10 consecutive epochs.

5  Result analysis

5.1  RQ1: effectiveness of MCL-VD

To address this research question, we compared MCL-VD against eight state-of-the-
art methods, including graph-based, sequence-based, and LLM-based. As shown in
Table 2, MCL-VD demonstrates superior performance across all three datasets, i.e.,
Devign, Reveal, and Big-Vul, outperforming the best existing methods in most evalu-
ated metrics. Specifically, on the Devign dataset, MCL-VD improves the F1-score by
8.49% compared to the best baseline SCL-CVD. On the Reveal dataset, the F1-score
increases by 4.86% compared to the best-performing baseline. The largest gains are
observed on the Big-Vul dataset, where MCL-VD achieves an F1-score improvement
of 17.26%, demonstrating the performance improvements of the proposed method.

In terms of performance categories, pre-trained models such as GraphCodeBERT
and ContraBERT show better results compared to traditional sequence-based meth-
ods (e.g., VulDeePecker and SySeVR) and graph-based methods (e.g., SCL-CVD
and ReGVD). However, MCL-VD consistently outperforms these models, confirm-
ing multi-modal integration and contrastive learning advantages. Unlike pre-trained
models that primarily leverage semantic and syntactic information, MCL-VD effec-
tively integrates diverse modalities such as code, AST, and comments. This allows
the model to capture rich structural, contextual, and annotation-based features critical
for accurate vulnerability detection.

The improvements brought by MCL-VD can be attributed to several key factors.
First, multi-modal embeddings leverage complementary information from source
code, AST, and comments, enabling better feature representation. Second, applying
contrastive learning ensures effective alignment and differentiation of embeddings
across modalities, improving generalization to unseen code structures. Finally, LoRA
fine-tuning enhances the model’s efficiency by optimizing specific parameters with-
out overfitting.

1 3

 67   Page 16 of 35

Automated Software Engineering (2025) 32:67

Ta
bl

e
2 

C
om

pa
ris

on
 re

su
lts

 b
et

w
ee

n
M

C
L-

V
D

 a
nd

 b
as

el
in

es
 o

n
th

e
th

re
e

da
ta

se
ts

 in
 v

ul
ne

ra
bi

lit
y

de
te

ct
io

n
D

ev
ig

n
R

ev
ea

l
B

ig
-V

ul

 B
as

el
in

e
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

F1
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

Sy
Se

V
R

48
.5

9
47

.0
8

60
.0

2
52

.7
7

73
.2

1
43

.5
6

27
.8

4
33

.9
7

90
.1

0
30

.9
1

14
.0

8
19

.3
4

V
ul

D
ee

Pe
ck

er
50

.1
2

47
.8

9
33

.3
4

39
.3

1
78

.5
1

20
.6

3
14

.5
9

17
.0

9
81

.1
9

38
.4

4
12

.7
5

19
.1

5
D

ev
ig

n
60

.6
1

58
.5

6
48

.7
6

53
.2

2
87

.4
9

31
.5

5
21

.7
7

25
.7

6
92

.7
8

30
.6

1
15

.9
6

20
.9

8
R

eG
V

D
62

.1
5

61
.7

2
46

.1
3

52
.8

0
91

.1
6

53
.3

3
25

.3
3

34
.3

5
94

.7
5

64
.5

7
13

.6
5

22
.5

4
C

od
eB

ER
T

59
.7

7
57

.9
8

56
.5

9
57

.2
8

91
.0

9
59

.3
8

31
.6

7
41

.3
0

64
.2

5
56

.7
4

54
.5

8
55

.6
4

G
ra

ph
C

od
eB

ER
T

63
.2

6
59

.8
1

55
.6

2
57

.6
4

90
.9

0
60

.2
2

23
.5

5
33

.8
6

95
.3

8
69

.3
6

32
.0

8
43

.8
6

C
on

tra
B

ER
T

65
.7

0
64

.5
3

56
.3

4
60

.1
6

90
.8

0
34

.0
4

60
.0

9
43

.4
6

94
.8

9
67

.6
6

67
.6

3
67

.6
4

SC
L-

C
V

D
63

.5
8

60
.5

5
64

.7
6

62
.5

8
91

.4
2

46
.7

0
47

.5
3

47
.1

1
95

.8
3

62
.2

6
35

.2
6

45
.0

2
M

C
L-

V
D

66
.2

0
55

.6
7

86
.9

7
67

.8
9

91
.5

3
42

.9
1

58
.2

2
49

.4
0

96
.8

2
91

.5
4

69
.9

8
79

.3
2

1 3

Page 17 of 35  67

Automated Software Engineering (2025) 32:67

5.2  RQ2: Impact of multi-modal integration

To investigate the impact of multi-modal integration, we conducted an ablation study
using different combinations of modalities across three datasets: Devign, Reveal,
and Big-Vul. Specifically, MCL-A represents using only the AST, MCL-C represents
using only the source code, and MCL-M represents using only the comments. MCL-
A-C represents combining code and AST, MCL-A-M represents combining AST and
comments, and MCL-C-M represents combining code and comments. Finally, MCL-
all represents using all three modalities: code, AST, and comments.

The results shown in Table 3 demonstrate that integrating multiple modalities sig-
nificantly improves performance in terms of F1-score, with all multi-modal configu-
rations outperforming single-modality models.

On the Devign dataset, incorporating all three modalities yields substantial rela-
tive improvements compared to both single- and double-modal models. Relative
to MCL-A, MCL-M, and MCL-C, the MCL-all configuration achieves F1-score
increases of 6.77%, 5.86%, and 6.31%, respectively. Furthermore, when compared
with the double-modal baselines MCL-A-C, MCL-A-M, and MCL-C-M, MCL-all
outperforms them by around 3.10%, 5.29%, and 2.03%, respectively.

On the Reveal dataset, the advantages of multi-modal integration are more pro-
nounced. In comparison to the single-modal baselines MCL-A, MCL-C, and MCL-
M, the MCL-all’s F1-score improves by 24.96%, 19.38%, and 17.59%, respectively.
Similarly, against the double-modal configurations MCL-A-C, MCL-A-M, and
MCL-C-M, MCL-all achieves relative gains of about 7.32%, 3.91%, and 5.67%,
respectively.

On the Big-Vul dataset, the triple-modal approach also demonstrates robust perfor-
mance gains. Compared to the single-modal models MCL-A, MCL-C, and MCL-M,
MCL-all’s F1-score increases by 11.61%, 11.14%, and 8.64%, respectively. Against
the double-modal approaches MCL-A-C, MCL-A-M, and MCL-C-M, MCL-all
achieves relative improvements of around 6.45%, 5.65%, and 4.77%, respectively.

The performance improvement achieved by multimodality can be attributed to
the complementarity of different information sources. The code provides syntactic
structure, the AST captures structural relationships within the code, and the com-
ments offer additional contextual information. Combining these modalities allows
the model to leverage all available information, leading to better performance in
detecting vulnerabilities.

1 3

 67   Page 18 of 35

Automated Software Engineering (2025) 32:67

Ta
bl

e
3 

Th
e

im
pa

ct
 o

f d
iff

er
en

t i
np

ut
 m

od
al

iti
es

 o
n

th
e

pe
rf

or
m

an
ce

 o
f M

C
L-

V
D

 o
n

th
e

th
re

e
da

ta
se

ts
D

ev
ig

n
R

ev
ea

l
B

ig
-V

ul

 M
et

ho
d

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

F1
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

F1
M

C
L-

A
60

.1
7

47
.8

0
94

.9
7

63
.5

9
78

.1
2

30
.7

3
55

.4
0

39
.5

3
95

.4
0

82
.7

1
62

.3
0

71
.0

7
M

C
L-

C
61

.2
5

49
.8

6
88

.7
9

63
.8

6
88

.2
5

33
.7

3
53

.5
2

41
.3

8
96

.5
2

85
.1

6
61

.4
3

71
.3

7
M

C
L-

M
57

.2
7

47
.4

8
98

.7
6

64
.1

3
85

.5
7

34
.0

1
54

.9
3

42
.0

1
96

.0
5

84
.9

1
64

.0
3

73
.0

1
M

C
L-

A
-C

63
.7

1
50

.8
5

93
.4

0
65

.8
5

88
.9

0
41

.5
1

51
.6

4
46

.0
3

95
.5

1
85

.1
3

66
.2

5
74

.5
1

M
C

L-
A

-M
61

.2
9

48
.8

3
94

.8
9

64
.4

8
89

.8
4

42
.1

8
54

.4
6

47
.5

4
95

.1
3

88
.1

7
65

.3
8

75
.0

8
M

C
L-

C
-M

62
.7

1
53

.8
2

87
.1

4
66

.5
4

86
.7

4
41

.2
2

53
.9

9
46

.7
5

94
.8

3
89

.3
7

65
.6

7
75

.7
1

M
C

L-
al

l
66

.2
0

55
.6

7
86

.9
7

67
.8

9
91

.5
3

42
.9

1
58

.2
2

49
.4

0
96

.8
2

91
.5

4
69

.9
8

79
.3

2

1 3

Page 19 of 35  67

Automated Software Engineering (2025) 32:67

5.3  RQ3: Influence of multi-modal contrastive learning

To address this research question, we investigated the influence of multi-modal con-
trastive learning by comparing the performance of MCL-VD with and without con-
trastive learning (MCL-C and MCL-wo-C) across three datasets: Devign, Reveal,
and Big-Vul. As shown in Fig. 3, applying contrastive learning consistently improved
the model’s performance across all metrics on three datasets.

Specifically, on the Devign dataset, the F1-score improved by 8.05%, when con-
trastive learning was applied. Additionally, accuracy increased by 4.78%, and recall
showed a significant improvement of 29.77%. This demonstrates that contrastive
learning effectively enhances the model’s ability to identify vulnerabilities.

On the Reveal dataset, the F1-score increased by 7.09%, while accuracy improved
by 3.96%. Precision also saw a modest increase of 2.91%, and recall improved by
6.92%, confirming the benefits of contrastive learning in enhancing both precision
and recall.

The Big-Vul dataset exhibited the largest performance gains. The F1-score
improved by 3.27%, and accuracy showed a 1.25% increase. Precision and recall
also saw improvements of 1.94% and 4.20%, respectively. These results suggest that
contrastive learning has a powerful impact on performance in large-scale datasets.

To investigate the impact of multi-modal contrastive learning, we utilized t-dis-
tributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton 2008)
to visualize the effect of contrastive learning on the model’s ability to distinguish
between vulnerable and benign code. t-SNE allows us to map high-dimensional fea-
ture spaces into a two-dimensional representation, providing a clear visual under-
standing of how the model separates the two types of code. In Fig. 4, the purple and
red points represent benign and vulnerable code, respectively.

We randomly selected 1000 samples for each dataset, proportional to the vulner-
ability distribution, to ensure a balanced representation in the visualizations. The
scatter plots clearly show the differences in the separability of the two classes with
and without contrastive learning.

In the case of the Devign dataset (Fig. 4a), when contrastive learning is not applied,
the vector representations of benign and vulnerable code overlap significantly, indi-
cating that the model struggles to distinguish between the two classes. However,
when contrastive learning is applied, the separation between the two classes becomes
clearer, with the two categories becoming more distinct, and the samples of the same
class are more tightly clustered.

A similar trend is observed in the Reveal (Fig. 4b) and Big-Vul (Fig. 4c) datas-
ets. Without contrastive learning, the embeddings of benign and vulnerable code are

1 3

 67   Page 20 of 35

Automated Software Engineering (2025) 32:67

mixed, making it difficult to distinguish between them. In contrast, applying contras-
tive learning leads to a more defined separation, where the vulnerable and benign
code samples are more distinguishable and better separated in the feature space.

These visualizations demonstrate that contrastive learning enhances the model’s
ability to differentiate between vulnerable and benign code. Contrastive learning
improves the overall model performance by forcing the model to learn embed-
dings that better separate these two classes, making it more effective in vulnerability
detection.

5.4  RQ4: LoRA in fine-tuning efficiency

To investigate the impact of LoRA on model performance, we compared the MCL-L
model (which incorporates LoRA) with the MCL-wo-L model (which does not). The
comparison was conducted across three datasets: Devign, Reveal, and Big-Vul. As
shown in Table 4, the results demonstrate the efficiency gains achieved by LoRA in
terms of trainable parameters and training time, without compromising the model’s
ability to detect vulnerabilities.

On the Devign dataset, MCL-L reduces trainable parameters from 125.83 mil-
lion to 1.77 million, and the training time per epoch decreases from 24 minutes to
18 minutes. Similarly, training time decreases from 18 to 14 minutes on the Reveal
dataset. On the Big-Vul dataset, the training time drops from 120 minutes to 89 min-
utes, with trainable parameters remaining reduced across all datasets. Despite these
significant reductions in trainable parameters and training time, the model’s perfor-

Fig. 3  The impact of multi-modal contrastive learning on the performance of MCL-VD on the three
datasets

1 3

Page 21 of 35  67

Automated Software Engineering (2025) 32:67

Fig. 4  t-SNE visualization on Devign, Reveal, and Big-Vul datasets

1 3

 67   Page 22 of 35

Automated Software Engineering (2025) 32:67

mance remains unchanged, with MCL-L achieving similar F1-scores as MCL-wo-L
across all three datasets.

The results highlight the effectiveness of LoRA in reducing the complexity of the
model while maintaining its performance. By applying low-rank updates to only a
subset of the model’s parameters, LoRA reduces the number of trainable parameters
and the computational cost associated with training, allowing the model to adapt more
efficiently without compromising performance. This leads to a more efficient model
that retains its vulnerability detection capabilities while requiring fewer resources for
training.

5.5  RQ5: Effect of comment supplementation in preprocessing

To investigate the effect of supplementing incomplete comments, we compared the
performance of MCL-VD with and without comment supplementation across three
datasets: Devign, Reveal, and Big-Vul. In the absence of comments, the model is
trained with the original datasets containing incomplete or missing comments. In
contrast, the enriched dataset uses GPT-4o-mini to supplement the missing com-
ments, providing more complete context and improving the quality of the comment
modality.

As shown in Table 5, the results indicate that supplementing comments with GPT-
4o-mini generally enhances the model’s performance across the evaluated datasets.
Compared to MCL-wo-S, the MCL-S model trained with supplemented comments
achieves notable relative improvements in most metrics. On the Devign dataset,
MCL-S provides approximately a 6.45% relative increase in accuracy, a 16.46%
increase in recall, and a 5.88% increase in F1-score, though it experiences a slight
0.91% relative decrease in precision. The Reveal dataset shows a similar pattern,
with about a 3.76% improvement in accuracy, a 1.18% improvement in precision,
a 22.31% improvement in recall, and a 10.11% improvement in F1-score. For the
Big-Vul dataset, MCL-S demonstrates relative improvements of roughly 2.16% in
accuracy, 4.49% in precision, 3.67% in recall, and 4.03% in F1-score. These find-

Table 4  The impact of LoRA on the performance of MCL-VD
Devign Reveal Big-Vul

 Method Trainable
Params
(M)

Time
(min)

F1(%) Trainable
Params
(M)

Time
(min)

F1(%) Trainable
Params
(M)

Time
(min)

F1(%)

MCL-wo-L 125.83M 24 67.64 125.83M 18 49.26 125.83M 120 79.25
MCL-L 1.77M 18 67.89 1.77M 14 49.40 1.77M 89 79.32

1 3

Page 23 of 35  67

Automated Software Engineering (2025) 32:67

ings suggest that comment supplementation can be a valuable strategy for enhanc-
ing multi-modal vulnerability detection, even though the magnitude of improvement
may vary across different datasets and metrics.

6  Discussion

6.1  The impact of different lora parameter settings on model performance

In this section, we explore the effect of varying the LoRA parameter, specifically the
rank r, on the performance of our model. LoRA introduces a low-rank matrix to mod-
ify the model’s weights, enhancing computational efficiency while maintaining model
performance. We experiment with several values of r, including r = 4, 8, 16, 32, 64,
to evaluate how different ranks impact our model’s performance. All experiments are
conducted on the Devign dataset.

As shown in Fig. 5, we observed the impact of varying LoRA ranks on the model’s
performance across several metrics. Specifically, we measured accuracy, precision,
recall, and F1-score for each rank r value. The experimental results indicate that the
rank r = 16 strikes the best balance between model performance and computational
efficiency.

Our experiments indicate that while increasing the rank to r = 32 and r = 64
resulted in higher computational costs, the performance improvements were mar-
ginal and did not surpass the results achieved with r = 16. Conversely, smaller ranks,
such as r = 4 and r = 8, provided a good trade-off between performance and effi-
ciency, though with a slight drop in performance. Therefore, our findings suggest that
r = 16 offers the optimal configuration, balancing performance and computational
efficiency, making it the ideal choice for vulnerability detection without incurring
unnecessary computational overhead. This outcome is likely because r = 16 strikes
a sufficient balance between model complexity and the data’s capacity to capture

Dataset Method Accuracy
(%)

Preci-
sion
(%)

Recall
(%)

F1-
score
(%)

Devign MCL-wo-S 62.19 56.18 74.68 64.12
MCL-S 66.20 55.67 86.97 67.89

Reveal MCL-wo-S 88.21 42.41 47.60 44.86
MCL-S 91.53 42.91 58.22 49.40

Big-Vul MCL-wo-S 94.77 87.61 67.50 76.25
MCL-S 96.82 91.54 69.98 79.32

Table 5  Comparison of perfor-
mance with and without com-
ment supplementation across
three datasets

1 3

 67   Page 24 of 35

Automated Software Engineering (2025) 32:67

meaningful features. At the same time, higher ranks add more trainable parameters,
which, although they increase the model’s expressiveness, lead to diminishing returns
in performance but significantly raise the computational cost.

6.2  The effect of different pre-trained models on performance

In our experiments, we evaluate four pre-trained models: CodeBERT, GraphCode-
BERT, CodeT5, and UniXcoder (Wang et al. 2021; Guo et al. 2022, 2020; Feng et al.
2020). Each model has its unique strengths in handling different types of code rep-
resentations. Each model has unique strengths in handling different code representa-
tions. For models without a native graph encoder (CodeBERT, CodeT5, UniXcoder),
we serialize the AST into a token sequence using the Structure-Based Traversal
(SBT) algorithm (Wu et al. 2021), then concatenate it as the input sequence. Graph-
CodeBERT, by contrast, consumes the AST directly via its built-in graph module.

We assessed the performance of these pre-trained models on the Devign dataset,
measuring key evaluation metrics including accuracy, precision, recall, and F1-score.
The results are summarized in Table 6, where we compare the performance of these
models across various metrics.

As shown in Table 6, GraphCodeBERT consistently outperforms the other models
across key metrics: F1-score, accuracy, and precision. This performance advantage
is likely attributed to its ability to integrate semantic and structural code information,
essential for effectively detecting vulnerabilities. CodeBERT, while still performing
well, does not achieve the same level of performance, possibly due to its limited
ability to capture graph-based contextual information compared to GraphCodeBERT.

Fig. 5  Impact of different ranks on the performance of MCL-VD

1 3

Page 25 of 35  67

Automated Software Engineering (2025) 32:67

CodeT5 and UniXcoder also show competitive performance but slightly trail
GraphCodeBERT in all metrics. CodeT5 demonstrates solid performance, particularly
in tasks requiring code-to-code translation. However, it appears less effective in cap-
turing the structural features necessary for vulnerability detection. UniXcoder, with
its cross-lingual capabilities, shows promising results in general code representation.
Still, it falls short in precision and recall on the Devign dataset compared to Graph-
CodeBERT, indicating that its performance is sensitive to dataset characteristics.

GraphCodeBERT’s superior performance can be attributed to its integration of
both semantic and structural information. By incorporating graph-based representa-
tions, GraphCodeBERT can capture hierarchical relationships and syntactic depen-
dencies within the code, making it particularly effective in identifying vulnerabilities
that rely on understanding complex code structures. This ability to capture high-level
semantic meaning and low-level syntactic patterns gives GraphCodeBERT a signifi-
cant edge in vulnerability detection tasks.

6.3  How LoRA compares to full-parameter fine-tuning in efficiency and
performance

LoRA was originally proposed to reduce the memory footprint when fine-tuning large
models (7B+ parameters). However, our experiments show that applying modality-
specific LoRA adapters to a mid-sized model like GraphCodeBERT can achieve sub-
stantial resource savings without compromising vulnerability detection performance.
We compare standard full-parameter fine-tuning with LoRA fine-tuning under identi-
cal hyperparameter settings.

As Table 7 shows, LoRA fine-tuning reduces GPU memory requirements by
approximately 85% and cuts per-epoch training time by about 25%, while main-
taining F1-scores within 0.5 percentage points of full-parameter tuning on all three
datasets. These savings arise because LoRA replaces full-gradient updates with
low-rank adapter updates, capturing essential modality-specific adjustments with
far fewer trainable weights. Moreover, by assigning separate adapters to code, AST,

Table 7  Efficiency and performance comparison: Full-Parameter vs. LoRA fine-tuning
Method Devign Reveal Big-Vul

F1 (%) GPU
Mem
(GB)

Time
(min)

F1 (%) GPU
Mem
(GB)

Time
(min)

F1 (%) GPU
Mem
(GB)

Time
(min)

Full FT 67.79 12.0 24 49.43 11.5 18 79.22 12.3 120
LoRA 67.89 1.8 18 49.40 1.7 14 79.32 1.9 89

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

GraphCodeBERT 66.20 55.67 86.97 67.89
CodeBERT 62.45 51.54 92.58 66.21
CodeT5 55.71 47.61 95.14 63.36
UniXcoder 62.19 53.13 91.18 67.30

Table 6  Performance of dif-
ferent pre-trained models on
vulnerability detection

1 3

 67   Page 26 of 35

Automated Software Engineering (2025) 32:67

and comments, LoRA enhances feature separation and reduces overfitting risk com-
pared to monolithic full-parameter updates. This demonstrates that LoRA provides
an effective and efficient fine-tuning strategy for multi-modal vulnerability detection
in resource-constrained settings.

6.4  Generated-comment quality assessment

To illustrate the style and content of GPT-4o-mini’s automatic annotations, Fig. 6
shows one representative example: the source code on the left and the generated
comment on the right.

We then conducted human evaluation on 50 randomly sampled samples in Devign.
Three senior software engineers rated each generated comment based on two crite-
ria—Relevance to the code’s functionality and Clarity of the comment—using a 1–5
score. Table 8 summarizes the results.

These high scores demonstrate that GPT-4o-mini’s annotations reliably capture
both the semantic intent of the code and the readability of the comments, supporting
the validity of MCL-VD.

6.5  How do different contrastive learning loss functions impact performance?

To investigate the impact of different contrastive learning loss functions on the per-
formance of our model, we conducted experiments with several commonly used loss
functions: NT-Xent Loss (our method), InfoNCE Loss, Triplet Loss, and SimCLR
Loss. In our experiments, we evaluated the performance of these contrastive learn-
ing formulations on the Devign dataset, measuring accuracy, precision, recall, and
F1-score. The results of these experiments are presented in Table 9.

Metric Mean Score Std. Dev.
Relevance 4.2 0.5
Clarity 4.0 0.6

Table 8  Human evaluation of
generated comment quality (1 =
worst, 5 = best)

Fig. 6  Example of source code and GPT-4o-mini–generated comment

1 3

Page 27 of 35  67

Automated Software Engineering (2025) 32:67

As shown in Table 9, NT-Xent loss method consistently outperforms the other con-
trastive learning formulations across all evaluated metrics. Specifically, it achieves
the highest F1-score of 67.89%, as well as the best precision and recall values. The
InfoNCE Loss, Triplet Loss, and SimCLR Loss exhibit comparable performance,
with slight variations across the metrics. However, none of these alternatives sur-
passed the performance of our NT-Xent loss approach, confirming the efficacy of
our approach in improving multi-modal representation learning for vulnerability
detection.

The superior performance of our method can be attributed to the way the NT-Xent
loss ensures that each modality (code, AST, and comments) is treated separately, yet
aligned with the other modalities. This helps the model capture modality-specific
features while maintaining the shared semantics necessary for accurate vulnerability
detection.

6.6  Effectiveness in distinguishing similar code snippets

To investigate the effectiveness of our method in distinguishing similar code snip-
pets, we conducted experiments. Figure 7 presents a case study of a CWE-17 Denial
of Service vulnerability from the Big-Vul dataset. Snippet (a) implements DCCP
connection tracking but never verifies that the corresponding kernel module (nf_
conntrack_dccp) is loaded before use; the code immediately proceeds to build
the DCCP attributes, which can cause a crash or DoS if the module is absent. Snippet
(b) handles SCTP connection tracking instead, and it correctly checks ATTR_SCTP_
STATE before proceeding, so it cannot trigger the same failure.

Traditional methods such as GraphCodeBERT and ReGVD both fail to detect the
missing kernel-module check in snippet (a), incorrectly labeling it as safe and result-
ing in a false negative. However, our approach correctly identifies snippet (a) as
vulnerable and snippet (b) as safe, demonstrating its effectiveness in distinguishing
similar code snippets.

6.7  Robustness testing

To evaluate the robustness of our method, we conducted a robustness test using the
Metropolis-Hastings Modifier (MHM) perturbation method (Zhang et al. 2020). This
approach introduces modifications to the code by perturbing variable names, function
names, and other identifiers, while preserving the code’s overall functionality and
structure. The goal is to simulate real-world code changes, such as refactoring and
renaming, and assess how well the model performs under such small perturbations.

Loss Function Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

NT-Xent Loss
(Ours)

66.20 55.67 86.97 67.89

InfoNCE Loss 64.24 54.10 85.20 66.10
Triplet Loss 63.21 53.01 84.50 65.30
SimCLR Loss 65.15 54.85 85.92 66.75

Table 9  Performance com-
parison of different contrastive
learning loss functions

1 3

 67   Page 28 of 35

Automated Software Engineering (2025) 32:67

We applied MHM perturbations to the source code across three datasets and evalu-
ated the F1-scores before and after the perturbations to assess the impact of these
changes on model performance. The results, presented in Table 10, demonstrate that
the drop in F1-score due to MHM perturbations is minimal, ranging from 0.01 to 0.02
across all datasets. These findings affirm the robustness of MCL-VD.

6.8  How accurate is MCL-VD for predicting the Top-25 Most Dangerous CWEs?

To evaluate the practical effectiveness of MCL-VD in real-world security scenarios,
we conduct an additional evaluation focusing on the Top-25 most dangerous CWEs4.
These CWEs represent the most common and impactful vulnerabilities over the past
two years.

4 ​h​t​t​p​s​:​​​/​​/​c​w​​e​.​m​i​t​r​​e​.​o​​​r​g​/​t​o​​p​​2​5​/​a​​r​c​h​​i​v​​e​/​2​​0​​2​4​/​​2​0​2​4​​_​c​w​e​_​​t​o​p​2​5​.​h​t​m​l

Dataset F1 before
Perturbation

F1 after
Perturbation

Change
in F1

Devign 0.68 0.67 -0.01
Reveal 0.49 0.47 -0.02
Big-Vul 0.79 0.77 -0.02

Table 10  Performance
comparison before and after
perturbations using the
Metropolis-Hastings Modifier
on three datasets

Fig. 7  Case study of CWE-17 DoS vulnerability. (a) build_l4proto_dccp without module check
leads to potential crash or DoS. (b) build_l4proto_sctp includes module check and is safe

1 3

Page 29 of 35  67

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

Automated Software Engineering (2025) 32:67

Since the dataset does not sufficiently represent all of the Top-25 most dangerous
CWEs, we selected a subset of these CWEs for evaluation. Due to the limited number
of examples available for certain CWE IDs, traditional metrics such as F1-score, pre-
cision, and recall may lack stability and reliability in providing meaningful insights.
Consequently, we employed the True Positive Rate (TPR) as the primary evaluation
metric to ensure robust assessment of the model’s performance.

As shown in Table 11, MCL-VD achieves high true positive rates across a variety
of critical vulnerability types. For instance, the model reaches perfect TPR for CWE-
22 (Path Traversal) and CWE-77 (Command Injection), which often exhibit distinc-
tive patterns, making them easier to detect accurately. On the other hand, CWE-79
(Cross-site Scripting) shows a relatively lower TPR of 80%, likely due to the diverse
and context-dependent nature of input sanitization. Overall, MCL-VD achieves an
average TPR of 88% on these selected high-risk CWEs, demonstrating its effective-
ness in identifying critical software vulnerabilities.

The differentiated performance across Top-25 CWEs reflects MCL-VD’s archi-
tectural alignment with vulnerability characteristics. Structural vulnerabilities, such
as CWE-22 and CWE-77, achieve near-perfect TPR due to AST’s explicit syntactic
pattern recognition, which detects risky API calls and unsanitized input flows. Mem-
ory-related flaws (CWE-119/125/190) exhibit 90% TPR through synergistic AST-
boundary checks and comment-augmented context, enabling precise correlation of
code semantics with buffer allocations. Context-dependent vulnerabilities, such as
CWE-79, exhibit a moderated TPR due to semantic ambiguity: the AST struggles to
distinguish between secure encoding functions and vulnerable outputs, while com-
ments often lack security-specific nuance.

These variations highlight the reliance of MCL-VD on explicit structural patterns
for high-confidence detections and reveal challenges in resolving semantic ambi-
guity within complex web security contexts. The multi-modal fusion demonstrates
superior effectiveness for vulnerabilities with clear syntactic markers compared to
those requiring deeper semantic understanding. This performance dichotomy stems
from the inherent tradeoff between structural precision and semantic flexibility in the
model’s design.

6.9  Threats to validity

In this section, we discuss potential threats to the validity of our research results and
the measures taken to mitigate them.

Rank CWE Name Proportion TPR
1 CWE-79 Cross-site Scripting 20/25 0.80
5 CWE-22 Path Traversal 5/5 1.00
6 CWE-125 Out-of-bounds Read 38/46 0.83
12 CWE-20 Improper Input Validation 102/121 0.84
13 CWE-77 Command Injection 3/3 1.00
17 CWE-200 Information Exposure 46/53 0.87
20 CWE-119 Improper Memory Access 180/198 0.91
23 CWE-190 Integer Overflow 29/31 0.94
Average 423/482 0.88

Table 11  The Accuracy of
MCL-VD for the Top-25 Most
Dangerous CWEs

1 3

 67   Page 30 of 35

Automated Software Engineering (2025) 32:67

Threats to internal validity  primarily concern factors like hyperparameter selection
that could influence experimental outcomes. LoRA depends on hyperparameters such
as rank r, learning rate, and the number of layers, which can significantly affect
performance. We conducted comprehensive experiments to mitigate this, selecting
reasonable and stable parameter values based on standard practices and preliminary
trials. While our main objective was to demonstrate the model’s effectiveness rather
than optimize every parameter, we believe that the chosen configurations fairly reflect
the model’s capabilities.

Threats to external validity  involve the generalizability of our results to other data-
sets and programming languages. To alleviate this threat, our evaluation was con-
ducted on the Devign, Reveal, and Big-Vul datasets, which are widely used in the
research community for vulnerability detection tasks. Despite this, these datasets
consist primarily of code written in specific programming languages, which may
limit the applicability of our findings to other languages or domains. Furthermore,
because our comment modality relies on annotations generated by a large language
model, which can exhibit inherent stochastic variation, reproducing results exactly
may be challenging. To address broader applicability, we have designed the model to
remain flexible and easily adaptable to other domains, though our experiments were
focused on these specific datasets.

Threats to construct validity  relate to the suitability of the metrics used to evaluate
our model. To alleviate this threat, we employed a set of well-established metrics,
including F1-score, accuracy, precision, and recall, to provide a balanced assessment
of the model’s performance. These metrics are widely used in the vulnerability detec-
tion literature, providing a comprehensive view of the model’s classification capa-
bilities. However, to mitigate potential issues with class imbalance in the datasets,
we also considered the weighted and effort-aware evaluation metrics to ensure the
robustness of our evaluation.

7  Conclusion and future work

This paper introduces MCL-VD, a multi-modal vulnerability detection model that
leverages contrastive learning and LoRA for enhanced model performance and com-
putational efficiency. By incorporating contrastive learning with pre-trained models
like GraphCodeBERT, MCL-VD generates more effective semantic representations
of source code, improving its ability to distinguish between benign and vulnerable
code. Furthermore, integrating LoRA optimization ensures a good trade-off between
performance and efficiency by reducing the number of trainable parameters without
compromising overall detection capabilities. We designed and experimented on three
widely recognized vulnerability detection datasets, i.e., Devign, Reveal, and Big-
Vul, demonstrating that MCL-VD significantly outperforms existing state-of-the-art
methods across all key performance metrics. The integration of multi-modal contras-
tive learning leads to substantial improvements in F1-score, accuracy, recall, and
precision, with F1-score gains ranging from 4.86% to 17.26%.

1 3

Page 31 of 35  67

Automated Software Engineering (2025) 32:67

In future work, we plan to expand the application of MCL-VD to additional data-
sets and programming languages to further validate its generalizability. We also aim
to explore more advanced contrastive learning techniques, such as self-supervised
learning and domain adaptation, to further enhance model performance. Finally, we
aim to refine the LoRA optimization process to strike a balance between model size,
training efficiency, and performance across various vulnerability detection tasks.

Acknowledgements  This work is partly supported by the National Natural Science Foundation of China
(Grant No. 61872263) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province
(Grant No. SJCX25_2000).

Author Contributions  All authors contributed significantly to the research and preparation of this paper.
Yi Cao conceptualized the study, designed the MCL-VD framework, and led the development of the
LoRA-enhanced GraphCodeBERT model. Xiaolin Ju implemented the multi-modal contrastive learn-
ing approach and conducted the experiments, including dataset preparation and performance evaluation.
Xiang Chen focused on the theoretical aspects of contrastive learning and contributed to the analysis and
interpretation of the results. Lina Gong provided expertise in vulnerability detection, reviewed existing
methods, and assisted in benchmarking the proposed framework against state-of-the-art baselines. All
authors contributed to the writing and editing of the manuscript, with Yi Cao and Xiaolin Ju coordinat-
ing the overall structure and ensuring technical accuracy. All authors reviewed and approved the final
manuscript.

Data Availability  No datasets were generated or analysed during the current study.

Declarations

Competing interests  The authors declare no competing interests.

References

Aberdam, A., Litman, R., Tsiper, S., Anschel, O., Slossberg, R., Mazor, S., Manmatha, R., Perona, P.:
Sequence-to-sequence contrastive learning for text recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15302–15312 (2021)

Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix, J.: Using static analysis to find bugs.
IEEE Softw. 25(5), 22–29 (2008)

Bruening, D., Amarasinghe, S.: Efficient, transparent, and comprehensive runtime code manipulation
(2004)

Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability detection: Are we there
yet? IEEE Trans. Softw. Eng. 48(9), 3280–3296 (2021)

Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual
representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020). PMLR

Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via contrastive learning for soft-
ware vulnerability detection. In: Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 519–531 (2022)

Chess, B., McGraw, G.: Static analysis for security. IEEE Sec. Privacy. 2(6), 76–79 (2004)
Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: efficient finetuning of quantized llms

(2023). 52:3982–3992 (2023). arXiv:2305.14314
Fan, J., Li, Y., Wang, S., Nguyen, T.N.: Ac/c++ code vulnerability dataset with code changes and cve sum-

maries. In: Proceedings of the 17th International Conference on Mining Software Repositories, pp.
508–512 (2020)

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., et al.:
Codebert: A pre-trained model for programming and natural languages (2020). arXiv:2002.08155

1 3

 67   Page 32 of 35

http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2002.08155

Automated Software Engineering (2025) 32:67

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J.: Unixcoder: Unified cross-modal pre-training for
code representation. In: Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7212–7225 (2022)

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., et al.:
Graphcodebert: Pre-training code representations with data flow (2020). arXiv:2009.08366

Hanif, H., Maffeis, S.: Vulberta: Simplified source code pre-training for vulnerability detection. In: 2022
International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2022). IEEE

Hayou, S., Ghosh, N., Yu, B.: Lora+: Efficient low rank adaptation of large models (2024). arXiv:2402.12354
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation

learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9729–9738 (2020)

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora: Low-rank adapta-
tion of large language models (2021). arXiv:2106.09685

Jain, P., Jain, A., Zhang, T., Abbeel, P., Gonzalez, J.E., Stoica, I.: Contrastive code representation learning
(2020). arXiv:2007.04973

Jiang, C., Xu, H., Dong, M., Chen, J., Ye, W., Yan, M., Ye, Q., Zhang, J., Huang, F., Zhang, S.: Hallucina-
tion augmented contrastive learning for multimodal large language model. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27036–27046 (2024)

Kan, X., Sun, C., Liu, S., Huang, Y., Tan, G., Ma, S., Zhang, Y.: Sdft: A pdg-based summarization for effi-
cient dynamic data flow tracking. In: 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), pp. 702–713 (2021). IEEE

Kim, S., Kim, R.Y.C., Park, Y.B.: Software vulnerability detection methodology combined with static and
dynamic analysis. Wireless Personal Commun. 89, 777–793 (2016)

Kopiczko, D.J., Blankevoort, T., Asano, Y.M.: Vera: Vector-based random matrix adaptation (2023).
arXiv:2310.11454

Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and pros-
pects. Proceed. IEEE. 103(9), 1449–1477 (2015)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.
Proceed. IEEE 86(11), 2278–2324 (1998)

Li, L., Ding, S.H., Walenstein, A., Charland, P., Fung, B.C.: Dynamic neural control flow execution: an
agent-based deep equilibrium approach for binary vulnerability detection. In: Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management, pp. 1215–1225 (2024)

Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N., Chen, W., Zhao, T.: Loftq: Lora-fine-tuning-aware
quantization for large language models (2023). arXiv:2310.08659

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.: Vuldeepecker: A deep learning-
based system for vulnerability detection (2018). arXiv:1801.01681

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Trans. Dependable Secure Comput. 19(4), 2244–2258 (2021)

Liu, T., Curtsinger, C., Berger, E.D.: Doubletake: Fast and precise error detection via evidence-based
dynamic analysis. In: Proceedings of the 38th International Conference on Software Engineering,
pp. 911–922 (2016)

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang, Y.-C.F., Cheng, K.-T., Chen, M.-H.: Dora: Weight-
decomposed low-rank adaptation (2024). arXiv:2402.09353

Liu, S., Wu, B., Xie, X., Meng, G., Liu, Y.: Contrabert: Enhancing code pre-trained models via contrastive
learning. In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp.
2476–2487 (2023). IEEE

Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static analysis. In:
USENIX Security Symposium, vol. 14, pp. 18–18 (2005)

Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)
Marjanov, T., Pashchenko, I., Massacci, F.: Machine learning for source code vulnerability detection:

What works and what isn’t there yet. IEEE Sec. Privacy. 20(5), 60–76 (2022)
Meng, F., Wang, Z., Zhang, M.: Pissa: Principal singular values and singular vectors adaptation of large

language models (2024). arXiv:2404.02948
Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J.M., Tworek, J., Yuan, Q., Tezak, N., Kim, J.W.,

Hallacy, C., et al.: Text and code embeddings by contrastive pre-training (2022). arXiv:2201.10005
Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM

Sigplan Notices. 42(6), 89–100 (2007)

1 3

Page 33 of 35  67

http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2402.12354
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2310.11454
http://arxiv.org/abs/2310.08659
http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/2402.09353
http://arxiv.org/abs/2404.02948
http://arxiv.org/abs/2201.10005

Automated Software Engineering (2025) 32:67

Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software components. In: Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security, pp. 529–540
(2007)

Nguyen, V.-A., Nguyen, D.Q., Nguyen, V., Le, T., Tran, Q.H., Phung, D.: Regvd: Revisiting graph neural
networks for vulnerability detection. In: Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings, pp. 178–182 (2022)

Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M., Vieira, M.: An empirical study on combining
diverse static analysis tools for web security vulnerabilities based on development scenarios. Com-
puting. 101, 161–185 (2019)

Renduchintala, A., Konuk, T., Kuchaiev, O.: Tied-lora: Enhacing parameter efficiency of lora with weight
tying (2023). arXiv:2311.09578

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors.
Nature. 323(6088), 533–536 (1986)

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P., McConley, M.:
Automated vulnerability detection in source code using deep representation learning. In: 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 757–762
(2018). IEEE

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., Sarro, F.: A survey on machine
learning techniques for source code analysis (2021). arXiv:2110.09610

Shin, Y., Williams, L.: Is complexity really the enemy of software security? In: Proceedings of the 4th
ACM Workshop on Quality of Protection, pp. 47–50 (2008)

Svyatkovskiy, A., Deng, S.K., Fu, S., Sundaresan, N.: Intellicode compose: Code generation using trans-
former. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pp. 1433–1443 (2020)

Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation (2021). arXiv:2109.00859

Wang, R., Xu, S., Tian, Y., Ji, X., Sun, X., Jiang, S.: Scl-cvd: Supervised contrastive learning for code
vulnerability detection via graphcodebert. Comput. Sec. 145, 103994 (2024)

Wen, F., Nagy, C., Bavota, G., Lanza, M.: A large-scale empirical study on code-comment inconsistencies.
In: 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC), pp. 53–64
(2019). IEEE

Wu, H., Zhao, H., Zhang, M.: Code summarization with structure-induced transformer. In: Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1078–1090 (2021)

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H.: Vulcnn: An image-inspired scalable vulnerability
detection system. In: Proceedings of the 44th International Conference on Software Engineering, pp.
2365–2376 (2022)

Xu, S., Zhang, X., Wu, Y., Wei, F.: Sequence level contrastive learning for text summarization. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11556–11565 (2022)

Yang, Y., Xia, X., Lo, D., Grundy, J.: A survey on deep learning for software engineering. ACM Comput.
Surv. (CSUR). 54(10s), 1–73 (2022)

Zhang, Q., Chen, M., Bukharin, A., Karampatziakis, N., He, P., Cheng, Y., Chen, W., Zhao, T.: Adalora:
Adaptive budget allocation for parameter-efficient fine-tuning (2023). arXiv:2303.10512

Zhang, H., Li, Z., Li, G., Ma, L., Liu, Y., Jin, Z.: Generating adversarial examples for holding robustness
of source code processing models. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 1169–1176 (2020)

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective vulnerability identification by learning com-
prehensive program semantics via graph neural networks. Adv. Neural Inf. Process. Syst. 32 (2019)

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and appli-
cable law.

1 3

 67   Page 34 of 35

http://arxiv.org/abs/2311.09578
http://arxiv.org/abs/2110.09610
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2303.10512

Automated Software Engineering (2025) 32:67

Authors and Affiliations

Yi Cao1 · Xiaolin Ju1 · Xiang Chen1 · Lina Gong2

	
 Xiaolin Ju
ju.xl@ntu.edu.cn

	
 Xiang Chen
xchencs@ntu.edu.cn

Yi Cao
ntucaoyi@outlook.com

Lina Gong
gonglina@nuaa.edu.cn

1	 School of Artificial Intelligence and Computer Science, Nantong University, Nantong,
Jiangsu, China

2	 School of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, Jiangsu, China

1 3

Page 35 of 35  67

	﻿MCL-VD: Multi-modal contrastive learning with LoRA-enhanced GraphCodeBERT for effective vulnerability detection
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related work
	﻿2.1﻿ ﻿Vulnerability detection
	﻿2.2﻿ ﻿Low-rank adaptation of pre-trained models
	﻿2.3﻿ ﻿Contrastive learning for code representation learning

	﻿﻿3﻿ ﻿Approach
	﻿3.1﻿ ﻿Code comment supplementation with GPT-4o-mini
	﻿3.2﻿ ﻿Low-rank adaptation for multi-modal inputs
	﻿3.3﻿ ﻿Enhanced multi-modal contrastive learning for representation differentiation

	﻿﻿4﻿ ﻿Experimental setup
	﻿4.1﻿ ﻿Research questions
	﻿4.2﻿ ﻿Datasets
	﻿4.3﻿ ﻿Baselines
	﻿4.4﻿ ﻿Evaluation metrics
	﻿4.5﻿ ﻿Experimental settings

	﻿﻿5﻿ ﻿Result analysis
	﻿5.1﻿ ﻿RQ1: effectiveness of MCL-VD
	﻿5.2﻿ ﻿RQ2: Impact of multi-modal integration
	﻿5.3﻿ ﻿RQ3: Influence of multi-modal contrastive learning
	﻿5.4﻿ ﻿RQ4: LoRA in fine-tuning efficiency
	﻿5.5﻿ ﻿RQ5: Effect of comment supplementation in preprocessing

	﻿﻿6﻿ ﻿Discussion
	﻿6.1﻿ ﻿The impact of different lora parameter settings on model performance
	﻿6.2﻿ ﻿The effect of different pre-trained models on performance
	﻿6.3﻿ ﻿How LoRA compares to full-parameter fine-tuning in efficiency and performance
	﻿6.4﻿ ﻿Generated-comment quality assessment
	﻿6.5﻿ ﻿How do different contrastive learning loss functions impact performance?
	﻿6.6﻿ ﻿Effectiveness in distinguishing similar code snippets
	﻿6.7﻿ ﻿Robustness testing
	﻿6.8﻿ ﻿How accurate is MCL-VD for predicting the Top-25 Most Dangerous CWEs?
	﻿6.9﻿ ﻿Threats to validity

	﻿﻿7﻿ ﻿Conclusion and future work
	﻿References

