Automated Software Engineering (2024) 31:38
https://doi.org/10.1007/510515-024-00438-9

®

Check for
updates

ProRLearn: boosting prompt tuning-based vulnerability
detection by reinforcement learning

Zilong Ren' - Xiaolin Ju' - Xiang Chen’ - Hao Shen'

Received: 12 January 2024 / Accepted: 4 April 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Software vulnerability detection is a critical step in ensuring system security and
data protection. Recent research has demonstrated the effectiveness of deep learning
in automated vulnerability detection. However, it is difficult for deep learning mod-
els to understand the semantics and domain-specific knowledge of source code. In
this study, we introduce a new vulnerability detection framework, ProRLearn, which
leverages two main techniques: prompt tuning and reinforcement learning. Since
existing fine-tuning of pre-trained language models (PLMs) struggles to leverage
domain knowledge fully, we introduce a new automatic prompt-tuning technique.
Precisely, prompt tuning mimics the pre-training process of PLMs by rephrasing
task input and adding prompts, using the PLM’s output as the prediction output.
The introduction of the reinforcement learning reward mechanism aims to guide the
behavior of vulnerability detection through a reward and punishment model, ena-
bling it to learn effective strategies for obtaining maximum long-term rewards in
specific environments. The introduction of reinforcement learning aims to encourage
the model to learn how to maximize rewards or minimize penalties, thus enhancing
performance. Experiments on three datasets (FFMPeg+Qemu, Reveal, and Big-Vul)
indicate that ProRLearn achieves performance improvement of 3.27-70.96% over
state-of-the-art baselines in terms of F1 score. The combination of prompt tuning
and reinforcement learning can offer a potential opportunity to improve performance
in vulnerability detection. This means that it can effectively improve the perfor-
mance in responding to constantly changing network environments and new threats.
This interdisciplinary approach contributes to a better understanding of the interplay
between natural language processing and reinforcement learning, opening up new
opportunities and challenges for future research and applications.

Keywords Vulnerability detection - Prompt tuning - Pre-trained language model -
Reinforcement learning

Extended author information available on the last page of the article

Published online: 20 April 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00438-9&domain=pdf

38 Page 2 of 32 Automated Software Engineering (2024) 31:38

1 Introduction

Software security issues (2020. “The exactis breach: 5 things you need to know.”;
Nord 2017) have become increasingly prominent with the rapid development of
information technology. Malicious attackers persistently search for and exploit
vulnerabilities in systems and applications to gain unauthorized access, steal sen-
sitive information, or disrupt systems. The number of disclosed vulnerabilities
constantly increases, causing more and more significant concerns in the field of
software industry and cybersecurity. The National Vulnerability Database in the
USA (NIST, National Vulnerability Database) released 25,096 vulnerabilities in
2022, with an increase of 25% over the last year (Vulnerability and Threat Trends
Report 2023). In the interconnected world today, developing accurate automatic
vulnerability detection techniques for these threats has become an utmost priority.

Currently, detecting source code vulnerabilities can be divided into two broad
categories: traditional vulnerability detection methods (Cherem et al. 2007; Fan
et al. 2019; Kroening and Tautschnig 2014; Heine and Lam 2006) and machine
learning/deep learning-based vulnerability detection methods (Li et al. 2018,
2021a, b; Zhou et al. 2019; Russell et al. 2018; Lomio et al. 2022). Previous vul-
nerability detection methods (Cherem et al. 2007; Fan et al. 2019; Kroening and
Tautschnig 2014; Heine and Lam 2006) mainly use rules defined in advance by
experts to analyze the code. However, such an analysis method (Li et al. 2018,
2021a) cannot easily find some deeply hidden vulnerabilities (Cao et al. 2022;
Cheng et al. 2022). Deep learning (DL) has gained widespread usage in recent
years for detecting source code vulnerabilities via automatic feature extraction.

Recently, several vulnerability-identifying frameworks (Li et al. 2018, 2021a)
utilize DL to detect and learn source code vulnerabilities have been proposed.
For example, Devign (Zhou et al. 2019) and ReVeal (Chakraborty et al. 2021)
use Graph Neural Network (GNN) (Chakraborty et al. 2021; Li et al. 2021b)
on attribute graphs that integrate control flow, data dependencies, and Abstract
Syntax Trees (ASTs) (Zhou et al. 2019). VulDeePecker (Li et al. 2018) employs
static analysis to extract program slices and trains a Bidirectional Long Short-
Term Memory (Bi-LSTM) model to detect function-level vulnerabilities. Li et al.
(2021a) used the Bi-LSTM to detect vulnerabilities. These DL-based techniques
intelligently assist developers in programming and improving their developing
efficiency. The state-of-the-art DL-based approaches for code intelligence exploit
the pre-training and fine-tuning paradigm (Han et al. 2021; Qiu et al. 2020; Raffel
et al. 2020; Brown et al. 2020), in which language models are first pre-trained on
a large unlabeled text corpus and then fine-tuned on downstream tasks. However,
considering that there are often certain gaps between upstream and downstream
tasks, and the unique characteristics and complexity of source code, relying
solely on pre-trained models may not fully utilize the vulnerability information
embedded in the source code.

Specifically, as shown in Fig. 1a, pre-trained models generally employ Masked
Language Modeling (MLM) objectives for the pre-training phase. The input for
MLM consists of representations of tokens randomly masked in natural language

@ Springer

Automated Software Engineering (2024) 31:38 Page3o0f32 38

[CLS] e CLS Head [CLS]
T MASK] - » MLM Head
n2 exec(const char* cmd) Hiscovels d e
[CLS] { string exec(const char* emd) B
pipe(popen (emd , ""),pelose); {
(\ id printArray(intarr[], int [MASK]) £ (pipe) pipe(popen (cmd , "r")pelose); P
H "ERROR"; !pij
or (inti =05 i < size; ++) v char buffer[128]; o plp"cékkok", A0
¢ MLM Head string result =""; wl Non-vul char buffer[128]; :
utss ani] << ' (tfeof(pipe.get()) | string result="; v
} c<ondl; v char ¢ = fgets(buffer, 128, pipe.get()) (!feof(pipe.get())) { Verbalizer
cout <<endl; if (1= NULL) char ¢ = fgets(buffer, 128, pipe.get()
} size result += buffer; if (1=NULL)
length) result += buffer;
[SEP] result;)
) result;
[SEP] ! vul Non-vul
[SEP]
(a) MLM pre-training (b) Fine-tuning (c) Prompt tuning

Fig. 1 Illustration on the process of pre-training, fine-tuning, and prompt tuning

text, and the model is trained to predict the masked tokens via the MLM head.
However, during the fine-tuning phase for downstream tasks, the input is natu-
ral language text, and the training objective shifts to a classification problem. As
illustrated in Fig. 1b, the pre-trained model computes representations for input
text and predicts labels through the CLS head. The inconsistency between the
inputs and objectives in pre-training and fine-tuning makes it challenging to fully
leverage the knowledge of the pre-trained model, resulting in sub-optimal out-
comes for downstream tasks (Schick and Schiitze 2021; Wang et al. 2022). As
shown in Fig. lc, during the prompt tuning phase for downstream tasks, convert
them into cloze-style tasks (Nie et al. 2022). This phase is consistent with the
pre-training phase to fully utilize the knowledge of the pre-training model. In
addition, natural language prompts inserted during the prompt tuning phase can
involve knowledge of specific tasks to facilitate adaptation to downstream tasks
(Li and Liang 2021; Schick and Schiitze 2021).

Therefore, we address the above issues from two perspectives. Firstly, we use
PLM-based prompt tuning to address the shortcomings of fine-tuning. Prompt tun-
ing can make the model more focused on learning features and patterns related to
vulnerability detection. It can make downstream tasks accommodate PLMs, aligning
with the pre-training process. Secondly, as the sample data increases (Li et al. 2023),
the performance gap between fine-tuning and prompt tuning gradually narrows. To
alleviate this limitation, we introduce a novel reward mechanism leveraging policy
gradients, inspired by the adaptive learning capabilities of reinforcement learning.
This approach allows for continuous improvement in model performance as more
data becomes available, as demonstrated in previous studies (Plaat et al. 2023; Arul-
kumaran et al. 2017).

In this study, we propose ProRLearn, a novel vulnerability detection framework
that effectively learns representation information from code. ProRLearn has two
main components: (1) Guiding the model to generate features and patterns relevant
to vulnerability detection by providing specific prompt templates. (2) Further opti-
mize the model’s performance through interactive learning with the environment
and reinforcement learning. The model can continuously adjust the detection results

@ Springer

38 Page 4 of 32 Automated Software Engineering (2024) 31:38

based on feedback from the environment to maximize performance metrics for vul-
nerability detection.

To evaluate the effectiveness of ProRLearn, we employed three widely used
datasets for vulnerability detection: FFMPeg+Qemu (Zhou et al. 2019), Reveal
(Chakraborty et al. 2021), and Big-Vul (Fan et al. 2020). We conducted a compara-
tive experiment between ProRLearn and seven existing software vulnerability detec-
tion methods, namely Sysevr, VulDeePecker, IVDetect, Devign (Zhou et al. 2019),
Reveal (Chakraborty et al. 2021), AMPLE (Wen et al. 2023) and LineVul (Fu and
Tantithamthavorn 2022). The experimental results on three datasets indicate that
ProRLearn can improve F1 scores by 3.58%, 4.07%, and 3.27%, respectively, while
improving accuracy by 1.13%, 2.02%, and 2.96%, respectively.

The main contributions of this study are as follows:

e We propose ProRLearn, a PLM-based method that applies improved prompts
with pre-trained knowledge to specific tasks and employs a reward mechanism to
guide the learning process to enhance vulnerability detection.

e We compare ProRLearn with seven state-of-the-art baselines. Experimental
results show that it outperforms baselines by 3.58%, 4.07%, and 3.27% in F1
score and by 1.13%, 2.02%, and 2.96% in accuracy, respectively.

e We design a set of ablation experiments, which can explore the effectiveness of
each component of ProRLearn.

e We also share ProRLearn to encourage future studies on vulnerability detection.

2 Background
2.1 Vulnerability detection

Deep learning (DL)-based vulnerability detection methods can be classified into two
categories. One category treats the source code as a natural language sequence and
employs NLP techniques to represent the input code (Li et al. 2018; Russell et al.
2018; Dam et al. 2017; Wang et al. 2022). For example, VulDeePecker (Li et al. 2018)
embeds source code through word2vec. Then it is fed into a Bi-LSTM neural network
with an attention mechanism. SySeVR (Li et al. 2021a) extracts code statements, pro-
gram dependencies, and program slices as features, and inputs them into a bidirectional
recurrent neural network. LineVul (Fu and Tantithamthavorn 2022) leverages Code-
BERT to embed the whole sequence of tokens in a function for vulnerability detection.
Although these methods have shown acceptable performance, they come with certain
limitations. It cannot capture the code syntax well or effectively encode unknown iden-
tifiers among source code. Another category attempts to leverage the structural infor-
mation in code, abstracting code into a graph representation (Li et al. 2021a, b; Wu
et al. 2022; Chakraborty et al. 2021), such as Abstract Syntax Trees (AST), Control
Flow Graphs (CFG), Data Flow Graphs (DFG), and Program Dependency Graphs

! https://github.com/ProRLearn/ProRLearn001.

@ Springer

https://github.com/ProRLearn/ProRLearn001

Automated Software Engineering (2024) 31:38 Page50f32 38

(PDG). Devign (Zhou et al. 2019), IVDetect (Li et al. 2021b), and AMPLE (Wen et al.
2023) utilize graphs (such as AST CFG, DFG, PDG) as inputs and extract informa-
tion from them or simplify them, ultimately inputting them into a graph neural network
for vulnerability detection. Our research aims to address the limitations and issues that
arise when transforming source code into flat sequences to overcome some of the con-
straints of traditional methods.

2.2 Prompt tuning

Prompt tuning (Li et al. 2023; Liu et al. 2023) is a method for pre-trained language
models (Liu et al. 2023) to improve their adaptation to specific tasks by designing and
adjusting prompt information in the model input. In the context of vulnerability detec-
tion tasks, prompt tuning can guide PLM to comprehend better the semantics and con-
text related to vulnerabilities, thereby enhancing the model’s ability to discover poten-
tial vulnerabilities. By adding relevant prompts about vulnerable codes to the model
input, prompt tuning encourages the model to make more accurate judgments about
potential vulnerabilities.

According to the flexibility of prompt templates, prompt tuning can be divided
into two types: hard prompt and soft prompt (Han et al. 2022). Specifically, the hard
prompt, a discrete prompt, defines the task by including specific information as part
of the input and providing clear guidance. Taking vulnerability detection as an exam-
ple, discrete prompts can include descriptions about the type of vulnerability, code
structure, or examples of specific vulnerabilities that are included as part of the input.
Such templates are usually created manually and require some domain knowledge. The
soft prompt, known as the continuous prompt, is different from the traditional discrete
prompt in that it guides the model’s learning and inference process by using continu-
ous values as input to the model. The benefit of using continuous prompts is the ability
to provide more flexible task descriptions. Models can better understand task require-
ments, context, and reason by learning relationships and semantics in continuous space.

Recently, Wang et al. (2022) conducted an empirical study on applying prompt tun-
ing to code intelligence tasks based on research in the field of NLP. They conducted
prompt tuning on popular pre-trained models (such as CodeBERT and CodeT5) and
considered three code intelligence tasks, including defect prediction, code summari-
zation, and code translation. Furthermore, Li et al. (2023) applied a combination of
vulnerability code description and prompt tuning to vulnerability assessment. Yu et al.
(2023) proposed a smart contract slicing method to reduce irrelevant code while com-
bining the sliced code with prompt tuning. These studies have demonstrated the effec-
tiveness of prompt tuning. In our work, we combined RL and prompt tuning to exploit
knowledge about programming languages captured by pre-trained models to detect
vulnerability.

2.3 Reinforcement learning

Reinforcement learning (RL) possesses goal-directed advantages as it does not rely
on exemplary supervision or comprehensive modeling of sample features (Sutton

@ Springer

38 Page 6 of 32 Automated Software Engineering (2024) 31:38

and Barto 1999). Instead, RL (Zeng et al. 2018; Rosenstein et al. 2004; Lagouda-
kis and Parr 2003; Kaelbling et al. 1996) optimizes its strategy through multiple
rounds of environment exploration and experience mining. RL performs well with-
out prior expert knowledge and exhibits the following characteristics (Mnih et al.
2015; Caicedo and Lazebnik 2015; Silver et al. 2016; Sallab et al. 2017; Shao et al.
2019). First, the trial-and-error learning strategy ensures that the PLMs may have
more feature choices, allowing them to explore different possibilities effectively.
Second, the long-term reward mechanism is the feature selection of PLMs’ long-
term pursuit of reward maximization. These two characteristics can help the model
better understand the task.

Classified according to maximizing long-term rewards, current reinforcement
learning can be divided into value-based and policy-based methods. The value-based
method focuses on learning and optimizing the state value function, which measures
the quality of taking different actions in different states. Typical representatives of
value function methods include Q-learning (Watkins and Dayan 1992), Deep Q-Net-
works (Osband et al. 2016), etc. Policy-Based method: this method aims to directly
learn the optimal policy without involving the value function. It represents the prob-
ability distribution of actions by parameterizing the policy and then uses various
optimization techniques to maximize the expected reward. Policy gradient methods
(Silver et al. 2014) and deep deterministic policy gradient methods (Qiu et al. 2019)
are examples of policy optimization methods.

3 Approach

The overall architecture of ProRLearn is shown in Fig. 2, which is divided into three
main phases. For the preprocessing phase, we preprocess the collected datasets to
remove noise that may affect vulnerability detection and ensure that the input only
considers code, that is without mixing with other aspects(such as comments) and
focuses on performing specific tasks (De Luca and Restivo 1980). For the training
phase, the reinforcement learning environment is set up. The code and correspond-
ing labels are used as the current environment, the pre-trained model is used as the
agent, the strategy algorithm is determined, and the model is updated with the cur-
rent strategy algorithm as the core. Next, we construct prompt tuning templates and
use the CodeBERT (Feng et al. 2020) encoder to convert these inputs into vector
representations. Following these steps, we obtain a trained model for identifying
vulnerabilities during detection. For the detection phase, we input a combination of
ode and prompt templates into the trained model to detect the presence of vulner-
abilities in the current code segment.

3.1 Preprocessing phase
While examining the dataset, we identified noise in the code snippets that could

affect the predictions made by PLM. Specifically, as shown in Fig. 2, there
are three main types of noise: blank lines (extra indentation or line breaks),

@ Springer

Automated Software Engineering (2024) 31:38 Page70f32 38

Preprocessing Phase

()

GitHub

Training Phase Detecting Phase

Hybrid

|
|
|
|
|
Code Templue | _|| o
{ |
|
|
|
|
|

|
|
|
|
|
|
|
I P t Hybrid
Tom| . i
S— ! Upioe [Cote gbrid
| Muti-Head
| Attention
777777777 |
/ Removemoise N\ | Policy Add&Norm €)
I = [Gradient Trained
} X blank line } | Feedforward | Model
I [|
! @ comments } | T AGRERGT S |
! | ﬁ voX12 !
| debu; | +
! @ statemfnt) ! Reward !
e ~ | |
I T . I
| Reward Function / w0\ [
| { | Verbalizer | Non-Vul vl
_|| B DD | |
| Label Action AN |
Code Label | S |
| |
| |
Fig.2 Overview of ProRLearn
Fig.3 Code snippets before data e1. | int main () {
. 02. pthread_key_create (& threadkey , nullptr) ;
prOCGSSlng 3. // Initialize the 'Debug’' and 'Error' objects.
04. Utils : : init (& Debug , & Error) ;
05. {
06. cout << end << "===================== Test 1" << endl;
07.
08. Utils : : HeaderValuelList whitelistCookies ;
09.
10. whitelistCookies . push_back ("c1") ;
11. whitelistCookies . push_back ("c2") ;
2.0
13. }
14. cout << endl << "All tests passed!" << endl ;
15. return 0@ ;
16. | }

comments, and debugging statements. These are defined as noise primarily
because PLM’s input length is limited. To remove this noise, we implemented the
following procedures.

Our experiments aimed to input code directly into the model. However, the
code snippets in the dataset contained numerous line breaks. These line breaks
would be encoded during the input process and mistakenly treated as part of
the code, occupying space within the original code. To address this issue, we
removed the excess line breaks.

Furthermore, the code snippets in the dataset include some comments. If these
comments were input directly into the model, the model might mistakenly recog-
nize them as code, potentially leading to incorrect assumptions about code vul-
nerabilities. Similarly, some debugging or output statements within code snippets
occupy input space, such as the content printed by a cout statement in Fig. 3,

@ Springer

38 Page 8 of 32 Automated Software Engineering (2024) 31:38

Fig.4 Code snippets after data 01. | int main () {

processing 02. pthread_key_create (& threadKey , nullptr) ;
3. Utils : : init (& Debug , & Error) ;
04. {
5. Utils : : HeaderValuelList whitelistCookies ;
06. whitelistCookies . push_back ("c1") ;
07. whitelistCookies . push_back ("c2") ;
es. | ..
09. }
10. return 0 ;
1. | }

which is solely used for displaying code execution progress and is unrelated to
the variables in the code snippet. To address these noises, we carried out removal
operations.

Figure 3 illustrates three types of noise in a given code: excess line breaks,
comments, and irrelevant debugging or output statements. Figure 4
displays the style and structure of the code after our data processing. These process-
ing steps help reduce noise and make the code more suitable for direct input into the
model for analysis and prediction.

3.2 Prompt tuning implementation

In our method, predicting and classifying vulnerable code based on prompt tun-
ing primarily involves two steps. Firstly, selecting an appropriate PLM, as different
PLMs are suitable for different tasks. Secondly, we apply a combination of prompt
tuning (Jiang et al. 2020; Qin and Eisner 2021) to the selected PLM to achieve clas-
sification predictions for vulnerable code. Next, we will provide a detailed explana-
tion of these steps.

Carefully selecting the Pretrained Language Model (PLM) for prompt tuning is
of utmost importance. We have chosen the CodeBERT model (Feng et al. 2020), an
extension of BERT designed specifically for handling source code. BERT is a bidi-
rectional pre-training model based on the transformer architecture (Vaswani et al.
2017), which captures the global bidirectional context by considering the contextual
information of each position. Meanwhile, the pre-training process of BERT includes
a Masked Language Model, which is similar to our prompt tuning. However, GPT is
an autoregressive pre-training model based on transformer architecture. Autoregres-
sive pre-training means that the model generates text gradually, one token at a time,
and relies on the previously generated tokens. This approach is commonly applied in
text-generation tasks. Therefore, in handling classification tasks, CodeBERT inherits
the bidirectional nature of BERT, enabling the model to better understand the over-
all context of the source code text. CodeBERT, as an extension of the BERT (Devlin
et al. 2018) model, offers a unique advantage: it undergoes training on both natural
language and source code. This training imparts a certain level of code knowledge
to CodeBERT, and further fine-tuning with downstream task (Schick and Schiitze
2021; Li and Liang 2021; Lester et al. 2021; Gu et al. 2022; Han et al. 2022) corpora
enhances its understanding of specific tasks. Therefore, we selected the widely used
CodeBERT (Feng et al. 2020; Wolf et al. 2019) for the vulnerability classification
task in our study.

@ Springer

Automated Software Engineering (2024) 31:38 Page90of32 38

Here is <answer> vulnerability . Source code

[CLS] Here is [MASK] vulnerability . Source ... code [SEP]

BN

Verbalizer H
false: [

wrong: [
fake: [

Fig.5 The model architecture of prompt tuning

Below is the specific prompt tuning process. As shown in Fig. 5, the processed
source code and prompt template are combined and converted into new input by
building a prompt template. Subsequently, these constructed prompt templates are
input into the PLM. The model leverages its pre-trained knowledge to predict the
masked positions within the input. The predicted results are then mapped to the
actual labels through the definition of a Verbalizer (Schick and Schiitze 2021). This
process effectively transforms the downstream task into a masked prediction task,
resembling what occurs during the pre-training phase.

The prompt template consists of three components: the input part (the source
code in Fig. 5), the answer part (< answer > in the figure), and the prompt words
(such as “Here,” “is,” “vulnerability” in the figure). The input part is filled with the
vulnerable code to be predicted. The answer part is filled with the vocabulary ulti-
mately predicted by the PLM. The final predicted vocabulary output is subject to
certain constraints, and its output is mapped to the target category labels through a
verbalizer.

The construction of prompt words and prompt templates can also exist in various
forms. Next, we will introduce the templates and verbalizers used. We use a Hybrid
Prompt template as a novel technique to prompt tuning. It combines the advantages
of hard prompts and soft prompts, consisting of hard tokens and soft tokens. Hard
tokens are usually task-related important tokens that are not tuned during training,
while soft tokens are tunable embeddings that combine the two to generate richer
and more diverse results.

We used and tested this template, and the results showed that the hybrid prompt
performed best in vulnerability detection tasks. Hybrid prompt allows for discrete
and continuous information, providing the model with more comprehensive task
guidance. The following is the specific template creation process.

@ Springer

38 Page 10 of 32 Automated Software Engineering (2024) 31:38

(" Policy Gradient | Agent)

| update 1 i

| == pCACIDATATIEE, _ | i action
o T '

© I Loss le———-+-— !

| [_ B I

| |
(S M

? f reward

Fig.6 Agent-environment interaction in RL

Hard prompt templates are often intuitive and simple. An example template is as
follows:

f = linput] Is the code vulnerable? [answer] (1)

Soft prompt templates are usually relatively abstract, but prompts are more flexible,
allowing the model to play freely. An example template is as follows:

f = linput] [MASK] [MASK] [MASK] [MASK]?[answer] 2)

Hybrid prompt templates combine the best of both worlds. In this template, vulner-
ability is a token related to the task. We do not want this token to be replaced.

f = [input] [IMASK] [MASK] code vulnerable? [answer] 3)

Verbalizer is a label-to-word mapping that aims to project target category labels
onto words within the Verbalizer. These label words constrain the Pre-trained Lan-
guage Model (PLM) output range, meaning that the model’s output probabilities are
focused exclusively on these label words. Each target category label can correspond
to one or multiple label words. By utilizing the Verbalizer, the label word with the
highest probability is mapped to the target category label, serving as the model’s
final prediction output.

In this task, the Verbalizer’s corresponding label words can be added as needed
or can directly use the target category as the label word. This design ensures that the
model’s output aligns with the task objective, enabling the model to generate lan-
guage descriptions related to the target category, thereby enhancing model interpret-
ability and comprehensibility. The Verbalizer is crucial in bridging the gap between
the model’s output and the task objective through this approach.

3.3 Reinforcement learning implementation

In our experiments, we did not employ unsupervised methods for prompt tuning the
pre-trained model. We opted to leverage labeled vulnerability information to expe-
dite the pre-trained model’s learning process. This approach allowed us to use our
existing labeled data more effectively.

In our study, we leveraged reinforcement learning principles to adjust pre-trained
models to further improve their performance in vulnerability detection tasks. The

@ Springer

Automated Software Engineering (2024) 31:38 Page110f32 38

method is based on the following ideas, as shown in Fig. 6. Firstly, we created an
RL environment of vulnerability detection comprising vulnerability source codes,
their corresponding ground true labels, and prompt template, labels were utilized to
define the reward mechanism. Second, we merged the prompt template and code to
new input for RL, aiming to provide additional contextual vulnerability information
and task guidance for the pre-trained model. This process corresponds to the state in
the diagram. Next, The pre-trained model is designed as an Agent in the RL frame-
work, enabling it to interact with the code to learn vulnerability information. In the
current task, when the Agent reaches the verbalizer mapping target class stage, we
define a reward function. This reward function is based on the accuracy of the map-
ping, generates reward signals, and encourages the model to generate accurate detec-
tion actions for vulnerabilities through the feedback of the reward signals. Finally,
based on the current state, action, and reward, we calculated the gradient of the pol-
icy and used these gradients to update the parameters of the pre-trained model. This
iterative process enables the model to continuously optimize itself through feedback
signals from reinforcement learning to better adapt to vulnerability detection tasks.
The whole method framework combines the language understanding of pre-trained
models and the task orientation nature of reinforcement learning, providing a novel
approach to improve vulnerability detection performance. In our experimental study,
we further explore different reward functions and prompt templates to optimize
model performance.

The reinforcement learning (RL) elements in this context can be summarized as
follows: (1) Using a pre-trained model as the agent within the RL framework. (2)
The transformation of vulnerability code into a format the neural network under-
stands, representing the state. (3) Actions correspond to the predictions made by the
pre-trained model in classification tasks. (4) Reward function to measure the vulner-
ability detection model’s performance in performing specific actions in the current
state. (5) The policy which determines the agent’s behavioral strategy in selecting
actions to maximize rewards. (6) Given the discrete nature of classification tasks, the
RL environment is effectively constructed based on a training sample pool of sam-
ples and their corresponding labels.

Traditional RL typically relies on Markov decision processes where the value of a
state (s) depends on the value of the current action chosen and the value of the sub-
sequent state (s”). The value of actions within a state is determined by a combination
of rewards (r) and the values of the following state-action pairs. However, in classifi-
cation tasks, states are often independent of each other. Therefore, we have adopted
a different approach using a discrete Markov chain. In this setup, we consider only
combinations of given states and available actions without considering logical sub-
sequent states. In essence, our reinforcement learning framework comprises the fol-
lowing elements: the current state, the predicted action, the probability of selecting
the current action, and the ultimately determined reward magnitude.

Since states are discrete, each state value or action value may have a lim-
ited impact on the final classification task. Therefore, we have introduced a novel
approach for training the classification model. The core idea of this method is to
integrate the reward mechanism from reinforcement learning into the training
process, employing a reward-based optimization approach. Our method draws

@ Springer

38 Page 12 of 32 Automated Software Engineering (2024) 31:38

inspiration from reinforcement learning, specifically the Vanilla Policy Gradient
(VPG) method, which is used to update and train our model rather than directly
using the traditional cross-entropy loss function. VPG is a policy-based optimization
algorithm with the primary objective of mapping the policy (or the probability of
action selection) to the corresponding labels as effectively as possible, thereby maxi-
mizing cumulative rewards. The policy gradient expression is as follows:

B
VJ = _é ; Vlog z(a,|s,)R({),)

where B represents the batch size given in a single training run. t denotes the exam-
ple code within the given batch B. s, stands for the input example code, a, is the pre-
dicted action category made by the agent, and z(q,|s,) represents the probability of
selecting a, given the current state s,. R(f) corresponds to the reward function, which
determines how well the model’s action in state s, performs based on task-specific
criteria. Introducing VPG can better adjust the training process of our model to meet
the specific requirements of the classification task.

According to the current gradient strategy, each step increases the log prob-
ability of each action, which is proportional to R(f) (the sum of rewards at all past
moments). However, the general logic should be that the agent intensifies its actions
according to its consequences. Rewards received before taking an action have noth-
ing to do with the quality of the action; only rewards received after the action will
impact the agent’s behavior. Therefore, the policy gradient expression of this idea is:

B B
1
Vi=— Y Viogn(a,ls) Y Risy.ay), (5)
=1 t'=t

The reward function is defined as follows: In each training batch, with a batch size
of B, every input in the batch is considered a step. At each step, the agent’s pre-
dicted action category y, is compared to the actual class label y,. If a, equals y,, the
agent receives a reward of 1; otherwise, the reward is 0. Throughout this process,
the reward function R(#) accumulates continuously, updating based on the prediction
results at each step. This reward mechanism provides feedback to the agent, encour-
aging it to make correct predictions.

otherwise.

R() = { o e ®)

4 Experimental evaluation
4.1 Research questions

To evaluate ProRLearn, we aim to answer the following four research questions:

@ Springer

Automated Software Engineering (2024) 31:38 Page130f32 38

RQ1 How effective is ProRLearn in vulnerability detection?

To answer this question, we will compare ProRLearn with other approaches,
including some graph based and token based vulnerability detection methods.

RQ2 How effective is prompt tuning for improving ProRLearn’s performance on
vulnerability detection?

For ProRLearn, the performance of the model is optimized by adjusting the
Prompt template to meet the special requirements of vulnerability detection
tasks. To answer this question, we will investigate the effectiveness of using dif-
ferent prompt templates

RQ3 How effective is reinforcement learning for improving ProRLearn’s perfor-
mance on vulnerability detection?

For ProRLearn, the performance of the model is optimized by adjusting the
reinforcement learning methods to meet the special requirements of vulnerabil-
ity detection tasks. To answer this question, we will investigate the effectiveness
of using different reinforcement learning methods.

RQ4 What is the effectiveness of ProRLearn in different pre-trained models?

For ProRLearn, the choice of different model architectures may have some
impact on the results, and we aim to find a suitable pre-trained model that
meets the specific requirements of the vulnerability detection task. To answer
this question, we will investigate the effectiveness of using different pre-trained
models.

4.2 Datasets

Our research used three vulnerability datasets, including FFMPeg+Qemu (Zhou
et al. 2019), Reveal (Chakraborty et al. 2021) and Big-Vul (Fan et al. 2020). The
FFMPeg+Qemu dataset is a balanced dataset widely used in previous studies
(Wen et al. 2023). It is derived from two open-source C projects and comprises
approximately 10k vulnerable entries and 12k non-vulnerable entries, vulner-
abilities account for 45.02%. On the other hand, ReVeal is an imbalanced data-
set. It originates from two open-source projects: Debian and Chromium. This
dataset contains around 2k vulnerable entries and 20k non-vulnerable entries,
vulnerabilities account for 9.16%. Big-Vul collected C/C++ functions from 348
open-source GitHub projects spanning from 2002 to 2019. This dataset contains
approximately 10k vulnerable entries and 177k non-vulnerable entries (i.e., vul-
nerabilities account for 5.88% of all the entries). Table 1 summarizes dataset
characteristics.

@ Springer

38 Page 14 of 32 Automated Software Engineering (2024) 31:38

Table 1 Statistics of the datasets Dataset Samples #Vul #Non-vul Vul Ration (%)

FFMPeg+Qemu 22,361 10,067 12,294 45.02
Reveal 18,169 1664 16,505 9.16
Big-Vul 179,299 10,547 168,752 5.88

4.3 Performance metrics

We used the following four widely used performance metrics for evaluation:

TP: True Positive (TP) refers to the number of instances where the model correctly
predicts positive class samples. In vulnerability detection, TP indicates cases where the
model accurately identifies code with vulnerabilities.

TN: True Negative (TN) refers to the number of instances where the model correctly
predicts negative class samples. In vulnerability detection, TN indicates cases where
the model accurately determines that the code does not have vulnerabilities.

FN: False Negative (FN) occurs when the model incorrectly predicts samples that
are positive as negative. In vulnerability detection, FN indicates situations where the
model fails to recognize actual vulnerabilities.

FP: False Positive (FP) happens when the model incorrectly predicts samples that
are negative as positive. In vulnerability detection, FP indicates cases where the model
mistakenly claims that code without vulnerabilities has vulnerabilities.

Accuracy: Accuracy is the proportion of correctly predicted vulnerabilities to all
vulnerabilities. TN represents the number of true negatives, and TP+TN+FN+FP rep-
resents the total number of vulnerabilities.

TP + TN
TP + TN + FN + FP

Accuracy = 7
Precision: Precision is the proportion of relevant vulnerabilities among the retrieved
vulnerabilities. TP represents the number of true positives, and FP represents the
number of false positives.
.. TP
Precision = ——— (8)
TP + FP

Recall: Recall is the proportion of relevant vulnerabilities retrieved. TP represents
the number of true positives, and FN represents the number of false negatives.

TP

Recall = ———
TP + FN

)
FI score: The F1 score is the geometric mean of precision and recall, representing a
balance between the two.

Precision X Recall

F1 =2X
seore Precision + Recall (10)

@ Springer

Automated Software Engineering (2024) 31:38 Page150f32 38

4.4 Baseline methods

We compared ProRLearn with seven baseline methods: four graph-based and
three token-based methods.

(1) SySeVR (Li et al. 2021a): SySeVR is a vulnerability framework that uti-
lizes a bidirectional recursive neural network. This framework extracts syntax and
semantic features from the code to be examined and applies them to vulnerability
detection.

(2) VulDeePecker (Li et al. 2018): VulDeePecker converts code into an inter-
mediate representation that carries semantic information, such as data and control
dependencies. This intermediate representation is then transformed into vectors,
which serve as inputs to a bidirectional LSTM-based neural network for vulner-
ability detection.

(3) IVDetect (Li et al. 2021b): IVDetect utilizes a Program Dependence Graph
(PDG) to represent the code and extracts information as vector representations. It
then employs the Factorized Aggregated Graph Convolutional Network (FA-GCN
) to classify the vector representations for vulnerability detection.

(4) Devign (Zhou et al. 2019): Devign is a source code vulnerability detection
model based on Graph Neural Networks (GNN). It utilizes GNN to learn rich
semantic information from the source code. The model consists of a Conv mod-
ule, which extracts valuable features for graph-level classification.

(5) Reveal (Chakraborty et al. 2021): Reveal utilizes Code Property Graphs
(CPG) and employs the GGNN (Gated Graph Neural Network) to obtain graph
embeddings from the CPG. Then, it utilizes a Multi-Layer Perceptron (MLP) for
classification and detection.

(6) AMPLE (Wen et al. 2023): AMPLE simplifies and enhances the graph
based on the code structure diagram, and uses GCN to obtain graph embeddings.
Then, it utilizes a Multi-Layer Perceptron (MLP) for classification and detection.

(7) LineVul (Fu and Tantithamthavorn 2022): LineVul uses a transformer to
better capture the long-term dependencies in source code. Additionally, the SAC
of the transformer model is used to calculate the contribution of each input token
to the prediction result, thereby obtaining fine-grained information on vulnerable
code lines.

4.5 Experimental settings

For each dataset, we followed the same settings as other experiments (Wen et al.
2023) and randomly partitioned the dataset into disjoint training, validation, and test
sets with the ratio of 8:1:1, as this is a typical test setup in previous studies (Fu and
Tantithamthavorn 2022; Wen et al. 2023; Hin et al. 2022). Notice we used the same
dataset split for all the experiments mentioned. We followed the hyperparameters
and dataset split outlined in the original Baseline papers to ensure accuracy and fair-
ness in our experiments. In the case of Devign, since the code was not provided, we
replicated the experiments based on the methodology provided by ReVeal.

@ Springer

38 Page 16 of 32 Automated Software Engineering (2024) 31:38

We used CodeBERT as our model with a maximum input sequence length
of 512. We optimized our model using the Adam optimizer with a batch size of
16 and a learning rate of 2e-5. We incorporated hybrid templates during prompt
tuning. We employed the VPG for reinforcement learning with a reward mag-
nitude of 1. We train our model for a maximum of 50 epochs on a server with
NVIDIA GeForce RTX 4090 with 20-epoch patience for early stopping.

5 Experimental results
5.1 RQ1: effectiveness of ProRLearn

To demonstrate the effectiveness of ProRLearn, we evaluated its performance.
We compared ProRLearn with seven baseline methods on three datasets. The
experimental results are presented in Table 2. Based on the results in the table,
we draw the following conclusions.

From Table 2, we observe that our proposed method outperforms all the base-
lines. ProRLearn achieves higher F1 score, recall, and accuracy on three datasets
than baselines. Specifically, ProRLearn improves the F1 score by 3.58%, 4.07%,
and 3.27%, respectively, compared to the current best baseline method. The cor-
responding relative improvements are 5.57%, 8.77%, and 3.77% for the F1 score.
Additionally, ProRLearn increases the recall score by 3.06% on FFMPeg+Qemu
(Zhou et al. 2019), a relative increase of 4.76%, and the recall score on Big-Vul
(Fan et al. 2020) increased by 8.43%, a relative increase of 10.12%. Moreover,
ProRLearn raises the accuracy score by 1.13%, 2.02%, and 2.96%, respectively,
with relative improvements of 1.79%, 2.23%, and 3.09%.

In other words, our results indicate that the ProRLearn framework surpasses
existing works that utilize graph properties and semantic information. In many
previous studies, it has been believed that graph-based feature extraction is
more effective in detecting code vulnerabilities than semantic and syntactic
feature extraction. However, Table 2 shows that graph-based methods (IVDe-
tect, Devign, Reveal, AMPLE) perform better than two token-based methods
(SySeVR, VulDeePecker) in three metrics. However, LineVul and our method
performed better on three datasets.

There could be several reasons for this discrepancy. In past research on
semantic and syntactic features, most studies were based on RNN architec-
tures, which (1) did not address the long-term dependency problem effectively
and (2) were trained on specific vulnerability datasets. Our method successfully
addressed the aforementioned issues, and our research results demonstrate that
ProRLearn is more accurate than state-of-the-art methods.

Answer to RQI: ProRLearn outperforms all baseline methods in terms of
accuracy, precision, and F1 score. ProRLearn in F1 scores on three datasets were
3.58%, 4.07%, and 3.27% higher than the best baseline method, respectively.

@ Springer

38

Page 17 of 32

(2024) 31:38

Automated Software Engineering

pIoq ur payySIySTY 918 JLNOW YoBa I0J SINSAI JS9q A, J9seIep juaLnd ay) 03 A[dde jou seop poyjew ay) Jey) sajedrpur

«

1106 vLT6 ¥'e6 8,8 6b0S 90°8% 8T'€S PLT6 T6LY LT98 66'SS 487" uIBTYoId
7898 1€°€8 89°06 866 6LV SE1Y 98'8% €76 S¥9S 1$°0S 86'€9 SLT9 [MAQUIT
1ree 851 86'6C rIee oy 8T'eY 90°0S TL06 €€ 178 9T 10°€9 ATdNY
- - - - - - - - 9LS 7665 81°GS TT98 10910 AT
86'9S LOOL 108+ SrES 6LOF 96'%9 €L'6T STS8 6£19 IL ¥6'€S €LC9 [eoAdy
vT6S 6L0L 7805 §T9S 09°1¢ eLvE 86'8C 8€'98 11°8S 11°8$ 1+'CS 61°LS usieQg
Sr6l SLTl P8¢ 61'18 60°LI 6Sv1 £€9°0C 1$°8L 1€°6¢ veee 68'LY [ANVSIIRC> X CETa |V
re6l 8041 16°0¢ 0106 L6€E v8°LT 95°¢y 1T€L LLTS 2009 80°LY 65°8% AA3SES
14 eoy uoIs1a1g KovInooy 4 ey uoIsIaIg KoeInooy 14 [1eooy uoIsIald Koenooy auraseq
MA-S1g [eoAdy R +3d N (%) SOt

jeseIR(

spoyjowr uonodajep a3exes 1oddod 10y sjeseIEp 90IY) Puk UIBS YOI Udomlaq uosuredwo) g ajqel

pringer

As

38 Page 18 of 32 Automated Software Engineering (2024) 31:38

5.2 RQ2: effectiveness of prompt tuning

To answer this research question, we initially delved into the contribution of
prompt tuning to the performance of ProRLearn and the effectiveness of various
prompt learning methods.

Our relevant methods for assessing prompt tuning are hard prompt, soft
prompt, and hybrid prompt. We conducted ablation experiments on three data-
sets to evaluate the effectiveness of prompt tuning. We conducted four experi-
ments on ProRLearn: (1) ProRLearn without prompt tuning; (2) ProRLearn with
the hard prompt; (3) ProRLearn with the soft prompt; and (4) ProRLearn with the
hybrid prompt. The difference between these four models lies in input. The model
without prompt directly inputs the code and returns the detection results, while
the models with hard prompt, soft prompt, or hybrid prompt construct different
prompts based on the code and use the verbalizer to return the detection results.
The results are presented in Table 3.

Compared to ProRLearn without prompt tuning, the hybrid prompt achieved
improvements in F1 scores of 5.28%, 8.59%, and 6.08% on the three datasets.
Additionally, the precision score increased by 1.88% on the ReVeal (Chakraborty
et al. 2021) and 10.64% on the Big-Vul (Fan et al. 2020). The recall score also
demonstrated substantial improvements of 11.94%, 15.22%, and 6.45%. Hard and
soft prompts outperformed ProRLearn without prompt learning in terms of F1
and recall scores on the three datasets, indicating that the prompt tuning mod-
ule enhances ProRLearn’s performance. Furthermore, the hybrid prompt showed
slightly superior performance to hard and soft prompts, with F1 scores increas-
ing by 1.14%, 4.68%, and 1.77% on the three datasets, respectively. These results
underscore the effectiveness of prompt tuning in improving ProRLearn’s perfor-
mance in vulnerability detection tasks.

From Table 3, we observe that any prompt template enhances ProRLearn’s
performance. This is because prompt tuning transforms the original classification
task into a cloze-style format (Nie et al. 2022), similar to the pre-training phase
of the PLM. Prompt tuning enables a more comprehensive and effective utiliza-
tion of the pre-trained knowledge (Sun et al. 2019) within the PLM. As a result,
prompt tuning methods exhibit improved performance in vulnerability detection,
underscoring the effectiveness of prompt tuning.

Answer to RQ2: Prompt tuning contributes to improving the performance of
ProRLearn, with an F1 score improvement of 5.28%, 8.59%, and 6.08% on the
three datasets, respectively.

5.3 RQ3: effectiveness of reinforcement learning
To answer this research question, we aim to explore reinforcement learning ideas’

contribution to ProRLearn performance and evaluate the effectiveness of different
reinforcement learning methods.

@ Springer

38

Page 19 of 32

(2024) 31:38

Automated Software Engineering

UWN[Od JUSLIND 9Y) JO WNWIXLW Y} ST IN[A Y} Jey) 9JedIpul san[ea pjog

1106 vL'16 vree 8L'86 6¥'0s 90°8% 8I'es LY'16 16'L9 LT98 66'SS (482 1dwoxd-puqAH
1768 ¥1'C6 §9°06 €86 LL'6Y 96'LY LIS 16 10°L9 §T98 6LYS 6£'¢9 jdwoid-jjog
7¢°88 8668 8C'16 6986 18'Sy 61°S¢ 09°S9 6L°68 LL'99 £€9'68 61°¢S 17°¢9 1dwoxd-prey
€0¥8 6768 08°C8 11°96 06'1Y ¥8'CE 98°LS 86'06 €979 €EVL 1vs S0'8¢S 1dwoid-uoN
1 TGREN UOISIOAI] Kornooy 1 TGAEN UOISIOAI] Kornooy 11 TEAEN UoISI0dIq Koenooy aurpaseq
mA-S1g [eoAdY nwad)+SodINA j1eseIR (]

(%) SOty

uIedTyoId Jo 2ouewioyrad oy uo spoyyeur ydwoid juareyip jo joedwr ay], € a|qel

pringer

As

38 Page 20 of 32 Automated Software Engineering (2024) 31:38

Table 4 Performance
differences between different

reinforcement learning strategies ppvpegyQemu Non-RL 61.54 5244 7401 62.57
QRL 5977 5402 7333 6222

PG-RL 6414 5599 8627 6791

Reveal Non-RL 88.86 42.92 4248 42.70

QRL 8932 47.17 4008 4334

PG-RL 9147 5318 4806 50.49

Big-Vul Non-RL 9790 8343 8374 83.59

Q-RL 9823 8538 8328 8538

PG-RL 9878 9344 9174 90.11

Dataset Method Accuracy Precision Recall F1 score

Bold values indicate that the value is the maximum of the current
column

It should be noted that in reinforcement learning, the two most common train-
ing methods are policy-based reinforcement learning and value function-based
reinforcement learning. To evaluate the effectiveness of reinforcement learning,
we performed ablation experiments on three different versions of ProRLearn for
three datasets: ProRLearn without reinforcement learning (denoted as non-RL),
ProRLearn with a value function (denoted as Q-RL), ProRLearn (denoted as
PG-RL) using the policy function. The results are shown in Table 4. The best
results are highlighted in bold.

Performance is similar between contrasting value functions and not using rein-
forcement learning (only using prompt tuning). Reinforcement learning using policy
functions improves performance. All evaluation indicators of the policy function on
both data sets are better than other methods. Among them, compared with the ProR-
Learn method using non-RL, the f1 score increased by 5.34%, 7.79%, and 6.52%,
while the accuracy increased by 2.6%, 2.59%, and 0.89%, respectively. Analysis of
this situation shows that RL of value functions is unsuitable for this task because
value functions are suitable for evaluating whether a state is good or bad, while pol-
icy functions are suitable for determining the actions that should be taken in each
state, similar to classification Tasks. Therefore, the RL of policy functions is more
suitable for improving vulnerability detection performance.

Answer to RQ3: Reinforcement learning contributes to improving the perfor-
mance of ProRLearn, with an F1 score improvement of 5.34%, 7.79%, and 6.52% on
the three datasets, respectively.

5.4 RQ4: effectiveness of prolearn in different models

To answer the research questions, we explore the performance of our method on dif-
ferent pre-trained models.

We use the pre-trained model CodeBERT in ProRLearn. However, we extended
our experiments to verify whether this idea is specific to CodeBERT. Specifically,
we only replace the PLM in ProRLearn and keep other ideas unchanged to evalu-
ate our method. When evaluating other models, the RoOBERTa model occupied

@ Springer

Automated Software Engineering (2024) 31:38 Page210f32 38

Table 5 Performance differences between different pre-trained models

Dataset Method Accuracy Flscore Method Accuracy F1 score
FFMPeg+Qemu BERT 54.96 55.84 BERT+RL+PT 60.39 59.59
RoBERTa 48.68 58.73 RoBERTa+RL+PT 46.52 63.44
CodeT5 46.59 56.83 CodeT5+RL+PT 50.76 63.69
CodeBERT 59.77 61.59 CodeBERT+RL+PT 61.71 66.10
Reveal BERT 84.19 3351 BERT+RL+PT 88.74 36.40
RoBERTa 87.58 39.52 RoBERTa+RL+PT 88.61 46.10
CodeT5 82.14 35.77 CodeT5+RLA+PT 86.31 37.86
CodeBERT 89.96 41.98 CodeBERT+RL+PT 89.74 46.15
Big-Vul BERT 53.58 15.41 BERT+RL+PT 94.63 46.51
RoBERTa 56.13 50.71 RoBERTa+RL+PT 97.57 76.01
CodeT5 62.14 35.77 CodeT5+RL+PT 97.05 71.66
CodeBERT 64.25 55.64 CodeBERT+RL+PT 97.81 83.96

The original max_len of all pre-trained models has been changed to 256

too much memory. To make a fair comparison, parameter adjustments have been
made for all models. Adjust the original max_len parameter to 256, leaving other
parameters unchanged. When evaluating the model, we still use four metrics to
measure its performance comprehensively. Reducing the input of data informa-
tion may lead to a decrease in model performance. However, this helps us better
understand the applicability and validity of our ideas to different models.

It is obvious from Table 5 that our method can improve the model’s perfor-
mance no matter which model architecture is used. PT in the table represents a
prompt tuning. Specifically, when we apply the idea in the BERT architecture,
the F1 score increases by 3.75%, 2.89%, and 31.1%. When we apply the idea in
the CodeBERT architecture, the F1 score increases by 4.51%, 4.17%, and 24.32%.
When applying the idea in the CodeT5 architecture, the F1 score increased by
6.86%, 2.09%, and 35.89%. When applying the idea in the RoBERTa architecture,
the F1 score increased by 4.71%, 6.58%, and 25.3%. This finding demonstrates
the broad applicability of our ideas to larger code bases, as well as to the vulner-
ability detection domain. We conducted tests on three different datasets, and the
results showed that the CodeBERT architecture we adopted outperformed other
architectures in performance. Furthermore, CodeBERT outperforms other models
regardless of whether our idea is used. This further proves the effectiveness and
superiority of CodeBERT in vulnerability detection tasks.

It is worth noting that CodeBERT (Feng et al. 2020), RoBERTa (Liu et al.
2020), CodeT5, and BERT belong to the same model architecture but use differ-
ent datasets in the pre-training stage. CodeBERT uses code-related data sets for
training in the pre-training stage, which may be one of the reasons why Code-
BERT performs better in vulnerability detection tasks. Although CodeT5 also
uses code-related datasets in the training phase, CodeT5 adopts a text-to-text
architecture and is more suitable for code annotation or translation tasks.

@ Springer

38 Page 22 of 32 Automated Software Engineering (2024) 31:38

100

90.11
00 87.00 87.98 896 88.12
—_—
—6— Reveal
80 FFMPeg+Qemu
—#— Big-Vul
67.91 .
701 65.65 66.32 6738 65.58
—_ %
60
50.49
49.21
50 4778 48.15 46.81
40 r T . . .
1 2 3 4 5

Fig.7 Comparison of verbalizers based on vulnerability detection

Answer to RQ4: Different choices of pre-trained models can influence the perfor-
mance of ProRLearn in vulnerability detection. We have experimentally found that
using CodeBERT can achieve the best results.

6 Discussion

In this section, we perform additional analysis to discuss the results of our ProR-
Learn approach further and provide some recommendations for future researchers.

6.1 How does the size of the reward and verbalizer impact the performance
of ProRLearn?

The impact of the verbalizer is reflected in Fig. 7. We tried five different numbers of
verbalizers, the numbers being 1, 2, 3, 4, and 5 respectively. We form a one-to-many
action verbalizer by adding task-related tag words with similar meanings to the tar-
get tag to improve the performance of prompt tuning. However, it is important to
emphasize that adding more verbalizers is not necessarily better.

According to the data in Fig. 7, we observe that the number of verbalizers is 3,
and the model performance reaches the best state. When the number of verbalizers
increases to 4 or 5, the F1 score decreases slightly. This means that as the number
of prompt words continues to increase, performance may not continue to improve.
Selecting an appropriate number of verbalizers for combination can further improve
the performance of prompt tuning while reducing the cost of searching for the best
performance template.

The impact of reward size: The size of rewards can affect the learning speed of
intelligent agents. Greater rewards make it easier for agents to understand good
behavior and may converge to the optimal strategy faster. The reward is small, and
the agent will need more training samples and learning time. However, if the reward
is too large, it may lead to unstable training, and the agent may be unable to find the
optimal strategy. Therefore, we need to find the right reward size to ensure that the
model performs well in the task.

@ Springer

Automated Software Engineering (2024) 31:38 Page230f32 38

100

90.11 89.81 88.61 88.46 87.79
90 A — .
—6— Reveal
80 FFMPeg+Qemu
—#— Big-Vul
67.91
70 A 65.39 64.27
60.88 59.75
60 1
50.49
49.31
504 47.38 46.8
43.68
40 . ; y y Y
1 10 20 30 40

Fig. 8 Performance comparison with different reward sizes

As shown in Fig. 8, we tried 5 different reward values, namely 1, 10, 20, 30,
and 40. It is worth noting that the model performs best when the reward value
is 1, and as the reward value gradually increases, the model’s performance grad-
ually decreases. Specifically, it can be observed from the table that when the
reward value increases from 1 to 40, the F1 score decreases by 8.16%. This indi-
cates that the reward value set is inappropriate and will have a negative impact
on the detection performance of the model. Therefore, careful consideration is
needed when choosing reward values to ensure the model performs well.

6.2 How do the different prompt templates impact the performance
of ProRLearn?

From the perspective of prompt templates, we analyze the impact of different
types of templates on model performance. For all prompt template types, we
build three types. They are hard prompts (H1, H2, H3), soft prompts (S1, S2,
S3) and mixed prompts (D1, D2, D3). The three templates set are: (1) Prefix
prompt template: the prompt word comes first, and the source code comes after;
(2) Suffix prompt template: the source code comes first, and the prompt word
comes after; (3) Double-fix prompt template: the prompt word comes after Both
sides, source code in the middle.

According to the results in Table 6, we observe that the double-fix prompt
template has the best effect, which may be because it combines the advantages
of the prefix prompt template and the suffix prompt template. The best-perform-
ing prompt template (D3) has an improvement of 6.49% relative to the worst-
performing prompt template (H2). In addition, prefix prompt templates (H1, S1,
D1) generally perform better than suffix prompt templates (H2, S2, D2), mean-
ing placing the prompt words in front of the input text can achieve better results.
This may be because the prompt words in the prefix position can better guide the
pre-trained model to focus on learning the target task.

@ Springer

(2024) 31:38

Automated Software Engineering

Page 24 of 32

38

UWN]O) JUSLIND Y} JO WNWIXBW JY) ST IN[BA JY) JBY) JJBIIPUI SAN[RA P[Og

1106 vL16 6b'0S 90’8y 16'L9 LT98 [1omsue] [yseN] Liiqerourna [yselN] [Mseln] [indut] [yseN] [ysen] €a
01°68 1098 LL'6Y 9Ly TrL LTS8 [romsue] [yseN] [sein] [seN] [sen] [ndut] [ysen] [sen] €S
20'88 S6'78 9¢'6% 68°St 8€'69 €978 [1omsue] “Aiqersurna e st [indur] opoo sty ¢H
8€°G8 87'¢€8 wy LE6E 0T°€9 ¥6'L9 [romsue] [ysey] Aniqessurna [ysen] [YseIn] [Nsen] [isen] [ndur] wa
65€8 ¥L'€8 6L'EY 79'8¢ €6'19 €99 [romsue] [selN] [seiN] [seN] [NseN] [seIn] [Nsein] [indur] 4y
¥1°C8 LETS 9I'ey £9'9¢ w9 LEYY [1omsue] “AnjIqeIou[na e st opoo sy, [indur] TH
TLL8 €768 86'LY ey 8569 91°68 [andur] [yse] Aiprqerouna [romsue] [yse] [seAl 1a
€5°L8 SL€8 LT Ly LTLE 0T'$9 €Les [ndur] [yse] [iseN] [1omsue] [seN] [se] I
6598 TIss 1LYy £9'9¢ Se'e9 LEIL [3ndut] “Kiiqerouina [omsue] st a10H IH
14 11eooy 14 ILEREN 14 JILREN
A-S1g [eoAYy nwad)+S9d N Srerdway,

ureaTyoid Jo doueuriojrad ayy uo soyerdway 3dwoid juarayip jo 1oedwr oy, 9 3jqel

pringer

As

Automated Software Engineering (2024) 31:38 Page250f32 38

Table 7 ProRLearn’s
performance (F1-score (%))

in vulnerability detection in FFMPeg+Qemu Fine-tuning ~ 61.14 6127 5476 61.94
scenarios with different sample .

sizes Prompt tuning 63.07 6493 57.20 62.55

ProRLearn 6493 6576 6222 6791

Reveal Fine-tuning 31.62 36.09 40.80 43.78

Prompt tuning 34.74 40.08 43.22 46.47

ProRLearn 3531 4194 4537 50.49

Big-Vul Fine-tuning 76.96 7930 80.60 82.50

Prompt tuning 82.28 83.09 83.56 84.47

ProRLearn 84.84 8741 86.04 90.11

Dataset Method 20% 40% 60% 80%

6.3 How does our model improve performance on dataets with different sample
sizes?

We evaluate the performance improvement of our method across varying sample
sizes. The original dataset was segmented into four scenarios, with 20%, 40%,
60%, and 80% of the data volume as training data, respectively. The test set and
training set remain unchanged, and we exclusively utilize the F1 score to measure
model performance in this evaluation.

As seen from Table 7, ProRLearn can improve performance with a few sam-
ples. As the sample size continues to increase, the improvement effect increases.
The performance improvement is the highest when the sample size is increased
to 80%. ProRLearn achieves performance improvements with both few and many
samples. The reason is that prompt tuning can perform better than fine-tuning
in a few samples, and RL can further improve performance as the sample size
increases.

6.4 Evaluation on AUC and MCC performance metrics

In addition to four metrics, we also consider the Area Under the Curve(AUC) and
Matthews Correlation Coefficient(MCC). These two metrics are used to evalu-
ate the performance of the model trained on the imbalanced datasets (Tanha et al.
2020). AUC metrics the classification performance of the model at different thresh-
olds, indicating the probability that positive ranks higher than negative across all
possible classification thresholds. AUC is the area under the Receiver Operating
Characteristic(ROC) curve and its values range from 0 to 1. A higher AUC indicates
better model performance, where O represents the poorest detection, 0.5 represents
the classifier’s ability to predict vulnerabilities equivalent to random guessing, and
1 represents the model’s perfect detection ability. MCC is a metric used to evaluate
the performance of binary classification models. It considers the counts of all four
categories (TP, TN, FP, FN) in the confusion matrix and evaluates them comprehen-
sively. The MCC values range from —1 to 1, where 1 represents perfect prediction,

@ Springer

38 Page 26 of 32 Automated Software Engineering (2024) 31:38
100 100
93.79
89.53
88.13 85.32
80 1 78.54 80 4
62.42 61.53

60 - 58.31 60 4 58.08
= = 54.55
8 8
g g
2
< 42.78 =

204 w0l ¥ 3024

33.87
20 20
0 T T T T T 0 T T T T T
éQ (‘}‘?} O 42‘,(} 68& Q,Ao\ @’O@ Q%Q (\}—é 4\5\\ 4Q,"} §‘g\g’ 6\0\ é,@
{?4{7 §e’ ° ¢ D N OQ_V q\‘v ¥ & N o §~V
QQ/ Q(o?/ Q(
N S

Fig.9 The comparison results between ProRLearn and six baselines in AUC and MCC

0 represents equivalent to random prediction, and —1 represents opposite prediction.
The specific formula is as follows:

TP x TN — FP x FN
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

(1D

Figure 9 shows the performance comparison of ProRLearn with six baselines on the
Big-Vul dataset between AUC and MCC. The Big Vul dataset comes from the real
world, and the evaluation of this dataset can better reflect the performance of the
model in practical application scenarios. In this figure, we find that our proposed
approach ProRLearn can outperform the baselines by 4.21% to 50.29% in MCC and
5.66% to 59.92% in AUC. Therefore, the effectiveness of ProRLearn can also be
demonstrated in both AUC and MCC performance metrics.

6.5 Statistical analysis on the performance of ProRLearn

We used the Wilcoxon test and Cliff’s Delta to compare whether there was a signifi-
cant difference in F1 scores between ProRLearn and baseline methods on the Big-Vul
dataset. The Cliff’s Delta is within the range of [—1, 1]. O indicates that there is no dif-
ference between these two sets of data. It is equal to 1 when all values of one group are
higher than the values of the other group and —1 when the reverse is true. When 0.148
<|id|| 0.33, the effect size is small, when 0.33 < ||d|| 0.474, the effect size is medium,
and when ||d|| > 0.474, the effect size is large. As shown in Table 8, we calculated that
the p values of the Wilcoxon test were all less than 0.01, and the effect size of Cliff’s
Delta was all greater than 0.474, indicating a large effect size. The results indicate that
the performance improvement of ProRLearn shows significant improvement compared
to the six baselines. Furthermore, we employ the McNemar test with Odds Ratios
(ORs). An odds ratio of 1 indicates that the detected vulnerability has the same likeli-
hood in both models. An odds ratio greater than 1 indicates that the first model may

@ Springer

Automated Software Engineering (2024) 31:38 Page270f32 38

Table 8 Analyze the

comparison results of
ProRLearn and six baselines in P value Effect size P value Odds ratio
terms of F1 metrics

Method Wilcoxon Cliff’s delta ~ McNemar

SySeVR ok Large HAE 735.89
VulDeePecker — ** Large Ak 348.10
Devign ok Large Ak 103.73
Reveal ok Large ok 92.87
AMPLE o Large ok 1097.12
LineVul ** Large ok 1852.29

*##% means p value < 0.001, ** means p value < 0.01, * means p
value < 0.05

Fig. 10 The complementary
analysis of the vulnerabilities
correctly detected by ProRLearn
via the Venn diagram

714 931 355

ProRLearn Linevul

detect more vulnerabilities. An odds ratio of less than 1 indicates that the first model
may detect fewer vulnerabilities. Under the McNemar test, all P values were less than
0.001, indicating statistical significance, while ORs were very large. We can conclude
that ProPLearn has achieved a significant performance improvement for detecting
vulnerabilities.

In addition, we use Venn diagrams to further analyze the performance of ProR-
Learn. In this experiment, since the Big-Vul dataset was collected from the real world,
we selected 20% of the Big-Vul dataset containing vulnerability samples as the test set
(2109 samples) and the rest as the training set to find the number of samples that suc-
cessfully detected vulnerabilities. Figure 10 shows the detection results, which only
show the detection results of ProRLearn and LineVul. The reason is the detection
accuracy of the remaining baseline methods on the test set is all below 30%, while the
accuracy of these two methods exceeds 60%. Therefore, we only compare the perfor-
mance of the current best-performing method. In this figure, we can see that both meth-
ods can jointly detect 931 vulnerabilities. More importantly, our method can detect an
additional 714 vulnerabilities, while LineVul can only detect 355 vulnerabilities. ProR-
Learn has better performance than baselines.

@ Springer

38 Page 28 of 32 Automated Software Engineering (2024) 31:38

7 Threats to validity

Threats to internal validity mainly relate to minimizing system error. ProRLearn
is controlled by multiple parameters, including learning rate, optimizer, batch
size, etc. Different settings of these parameters will produce different results.
However, exploring optimal parameter settings can be difficult due to the large
number of parameters. Our research aims not to seek optimal parameter settings
but to demonstrate the performance of our method through fair comparison with
baseline models. Therefore, the performance of this paper can be considered
as the lower limit of our method, and the performance can be further improved
through parameter optimization.

Threats to external validity mainly relate to the limited size of the experimen-
tal dataset. ProRLearn was evaluated on three datasets because these three data-
sets have been previously used in vulnerability detection-related research work.
We only conducted experiments on the C/C++ datasets and did not cover datasets
from other programming languages, such as Java and Python. In future work, we
plan to expand the scope of experiments and evaluate more datasets to verify and
evaluate the effectiveness of ProRLearn.

Threats to construct validity lie in the suitability of our selected performance
metrics. We use common four performance metrics to evaluate vulnerability
detection performance since these metrics have been used in previous studies (Fu
and Tantithamthavorn 2022; Wen et al. 2023). However, there is a class imbal-
ance issue in the dataset we evaluated, so we also considered additional metrics
MCC and AUC to improve the comprehensiveness and rigor of our research.

8 Conclusion and future research

This paper proposes ProRLearn, a novel vulnerability detection framework that
combines pre-trained models, prompt tuning, and reinforcement learning. ProR-
Learn can quickly apply pre-trained models to specific tasks with the help of
enhanced prompts. RL also guides the model to optimize specific tasks iteratively.
ProRLearn can improve incrementally by interacting with the environment rather
than relying solely on static supervisory signals. Compared with state-of-the-art
DL-based methods, ProRLearn improves vulnerability detection performance on
both datasets, with an F1 score improvement of 3.58-28.6%. The results demon-
strate the practicality and importance of our ProRLearn in vulnerability detec-
tion, reducing the workload of manual review and vulnerability detection, thereby
saving time and cost. In the future, we plan to conduct large-scale experiments
to explore various prompt settings and combinations while seeking strategies to
optimize model performance. We will take into account factors such as training
time and overall performance in our comprehensive evaluation.

@ Springer

Automated Software Engineering (2024) 31:38 Page290f32 38

References

2020. The exactis breach: 5 things you need to know. https://blog.infoarmor.com/individuals-and-
families/the-exactis-breach-5-things-you-need-to-know

Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a
brief survey. IEEE Signal Process. Mag. 34(6), 26-38 (2017)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst.
33, 1877-1901 (2020)

Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV), Santiago Chile, pp.
2488-2496 (2015)

Cao, S., Sun, X., Bo, L., Wu, R,, Li, B., Tao, C.: Mvd: memory-related vulnerability detection based
on flow-sensitive graph neural networks. In: Proceedings of the 44th International Conference on
Software Engineering, pp. 1456—-1468. Association for Computing Machinery, New York, NY,
USA (2022)

Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability detection: are we
there yet. IEEE Trans. Softw. Eng. 48(9), 3280-3296 (2021)

Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via contrastive learning for
software vulnerability detection. In: Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp. 519-531. Association for Computing Machinery,
New York, NY, USA (2022)

Cherem, S., Princehouse, L., Rugina, R.: Practical memory leak detection using guarded value-flow
analysis. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 480-491. Association for Computing Machinery, New York,
NY, USA (2007)

Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A.: Automatic feature learning for vul-
nerability prediction. arXiv preprint arXiv:1708.02368 (2017)

De Luca, A., Restivo, A.: On some properties of very pure codes. Theor. Comput. Sci. 10(2), 157-170
(1980)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

Fan, G., Wu, R., Shi, Q., Xiao, X., Zhou, J., Zhang, C.: Smoke: scalable path-sensitive memory leak
detection for millions of lines of code. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 72-82. IEEE, Montreal, QC, Canada (2019)

Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A C/C++ code vulnerability dataset with code changes
and CVE summaries. In: 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories (MSR), pp. 508-512. IEEE (2020)

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.:
Codebert: a pre-trained model for programming and natural languages. In: Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, pp. 1536-1547. Association for Computa-
tional Linguistics, Online (2020)

Fu, M., Tantithamthavorn, C.: Linevul: A transformer-based line-level vulnerability prediction. In:
Proceedings of the 19th International Conference on Mining Software Repositories, pp. 608—
620. IEEE (2022)

Gu, Y., Han, X., Liu, Z., Huang, M.: Ppt: pre-trained prompt tuning for few-shot learning. In: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8410-8423. Association for Computational Linguistics, Dublin, Ireland
(2022)

Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L.: Pre-
trained models: past, present and future. AI Open 2, 225-250 (2021)

Han, X., Zhao, W., Ding, N., Liu, Z., Sun, M.: Ptr: prompt tuning with rules for text classification. Al
Open 3, 182-192 (2022)

Heine, D.L., Lam, M.S.: Static detection of leaks in polymorphic containers. In: Proceedings of the
28th International Conference on Software Engineering, pp. 252-261. Association for Comput-
ing Machinery, New York, NY, USA (2006)

@ Springer

https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
https://blog.infoarmor.com/individuals-and-families/the-exactis-breach-5-things-you-need-to-know
http://arxiv.org/abs/1708.02368
http://arxiv.org/abs/1810.04805

38 Page 30 of 32 Automated Software Engineering (2024) 31:38

Hin, D., Kan, A., Chen, H., Babar, M.A.: Linevd: statement-level vulnerability detection using graph
neural networks. In: 2022 IEEE/ACM 19th International Conference on Mining Software Reposito-
ries (MSR), pp. 596-607. IEEE (2022)

Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what language models know? Trans. Assoc.
Comput. Linguist. 8, 423-438 (2020)

Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4,
237-285 (1996)

Kroening, D., Tautschnig, M.: Cbmc-c bounded model checker: (competition contribution). In: Tools and
Algorithms for the Construction and Analysis of Systems: 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings 20, pp. 389-391. Springer, Berlin (2014)

Lagoudakis, M.G., Parr, R.: Reinforcement learning as classification: leveraging modern classifiers. In:
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 424-431.
AAAI Press, Washington, DC USA (2003)

Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
3045-3059. Association for Computational Linguistics, Online and Punta Cana, Dominican Repub-
lic (2021)

Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. In: Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582-4597. Asso-
ciation for Computational Linguistics, Online (2021)

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.: Vuldeepecker: a deep learning-
based system for vulnerability detection. arXiv preprint arXiv:1801.01681 (2018)

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: a framework for using deep learning to detect
software vulnerabilities. IEEE Trans. Dependable Secure Comput. 19(4), 22442258 (2021a)

Li, Y., Wang, S., Nguyen, T.N.: Vulnerability detection with fine-grained interpretations. In: Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 292-303. Association for Computing Machinery,
New York, NY, USA (2021b)

Li, X., Ren, X., Xue, Y., Xing, Z., Sun, J.: Prediction of vulnerability characteristics based on vulnerabil-
ity description and prompt learning. In: 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), Taipa, Macao, pp. 604-615. IEEE (2023)

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov,
V.: RoBERTa: a robustly optimized BERT pretraining approach. In: International Conference on
Learning Representations, Addis Ababa, Ethiopia (2020)

Liu, P, Yuan, W, Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a system-
atic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1-35
(2023)

Lomio, F., Iannone, E., De Lucia, A., Palomba, F., Lenarduzzi, V.: Just-in-time software vulnerability
detection: Are we there yet? J. Syst. Softw. 188, 111283 (2022)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G.: Human-level control through deep reinforcement learning.
Nature 518(7540), 529-533 (2015)

Nie, E., Liang, S., Schmid, H., Schiitze, H.: Cross-lingual retrieval augmented prompt for low-resource
languages. arXiv e-prints, 2212 (2022)

NIST, National Vulnerability Database. https://nvd.nist.gov/

Nord, R.L.: Software vulnerabilities, defects, and design flaws: a technical debt perspective. In: Four-
teenth Annual Acquisition Research Symposium, p. 451. Acquisition Research Program, Boston,
USA (2017)

Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via bootstrapped DQN. In: Advances
in Neural Information Processing Systems, vol. 29 (2016)

Plaat, A., Kosters, W., Preuss, M.: High-accuracy model-based reinforcement learning, a survey. Artif.
Intell. Rev. 56(1), 1-33 (2023)

Qin, G., Eisner, J.: Learning how to ask: querying Ims with mixtures of soft prompts. In: Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT), pp. 5203-5212. Association for Compu-
tational Linguistics, Online (2021)

@ Springer

http://arxiv.org/abs/1801.01681
https://nvd.nist.gov/

Automated Software Engineering (2024) 31:38 Page310f32 38

Qiu, C., Hu, Y., Chen, Y., Zeng, B.: Deep deterministic policy gradient (DDPG)-based energy harvesting
wireless communications. IEEE Internet Things J. 6(5), 8577-8588 (2019)

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for natural language process-
ing: a survey. Sci. China Technol. Sci. 63(10), 1872-1897 (2020)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Explor-
ing the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1),
5485-5551 (2020)

Rosenstein, M.T., Barto, A.G., Si, J., Barto, A., Powell, W., Wunsch, D.: Supervised actor-critic rein-
forcement learning. In: Learning and Approximate Dynamic Programming: Scaling Up to the Real
World, pp. 359-380 (2004)

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P., McConley, M.:
Automated vulnerability detection in source code using deep representation learning. In: 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 757-762.
IEEE, Orlando, FL, USA (2018)

Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autono-
mous driving. Electron. Imaging 29(19), 70-76 (2017)

Schick, T., Schiitze, H.: Exploiting cloze-questions for few-shot text classification and natural language
inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pp. 255-269. Association for Computational Linguistics,
Online (2021)

Shao, K., Tang, Z., Zhu, Y., Li, N., Zhao, D.: A survey of deep reinforcement learning in video games.
arXiv e-prints, 1912 (2019)

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient
algorithms. In: International Conference on Machine Learning, Bejing, China, pp. 387-395. PMLR
(2014)

Silver, D., Huang, A., Maddison, CJ., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.: Mastering the game of go with deep neural net-
works and tree search. Nature 529(7587), 484-489 (2016)

Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification? In: Chinese Compu-
tational Linguistics: 18th China National Conference. CCL 2019, Kunming, China, October 18-20,
2019, Proceedings 18, pp. 194-206. Springer, Cham (2019)

Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. Robotica 17(2), 229-235 (1999)

Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., Asadpour, M.: Boosting methods for multi-class imbal-
anced data classification: an experimental review. J. Big Data 7(1), 1-47 (2020)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.:
Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

Vulnerability and Threat Trends Report 2023. https://www.skyboxsecurity.com/resources/report/vulne
rability-threat-trends-report-2023/

Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., Lyu, M.R.: No more fine-tuning? an experimental
evaluation of prompt tuning in code intelligence. In: Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
382-394. Association for Computing Machinery, New York, NY, USA (2022)

Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279-292 (1992)

Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q.: Vulnerability detection with graph
simplification and enhanced graph representation learning. arXiv preprint arXiv:2302.04675 (2023)

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Fun-
towicz, M., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771 (2019)

Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H.: Vulcnn: an image-inspired scalable vulnerability
detection system. In: Proceedings of the 44th International Conference on Software Engineering,
pp. 2365-2376. Association for Computing Machinery, Pittsburgh, Pennsylvania (2022)

Yu, L., Lu, J.,, Liu, X., Yang, L., Zhang, F., Ma, J.: Pscvfinder: a prompt-tuning based framework for
smart contract vulnerability detection. In: 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE), pp. 556-567. IEEE (2023)

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.: Learning synergies between push-
ing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), pp. 4238-4245. IEEE, Madrid, Spain (2018)

@ Springer

https://www.skyboxsecurity.com/resources/report/vulnerability-threat-trends-report-2023/
https://www.skyboxsecurity.com/resources/report/vulnerability-threat-trends-report-2023/
http://arxiv.org/abs/2302.04675
http://arxiv.org/abs/1910.03771

38 Page 32 of 32 Automated Software Engineering (2024) 31:38

Zhou, Y., Liu, S., Siow, J., Du, X, Liu, Y.: Devign: effective vulnerability identification by learning com-
prehensive program semantics via graph neural networks. In: Advances in Neural Information Pro-
cessing Systems, vol. 32 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Zilong Ren' - Xiaolin Ju' - Xiang Chen' - Hao Shen'

P4 Xiaolin Ju
juxl@ntu.edu.cn

P4 Xiang Chen
xchencs @ntu.edu.cn

Zilong Ren
zilongren23 @gmail.com

Hao Shen
shenhyc @gmail.com

School of Information Science and Technology, Nantong University, Nantong 226019, Jiangsu,
China

@ Springer

	ProRLearn: boosting prompt tuning-based vulnerability detection by reinforcement learning
	Abstract
	1 Introduction
	2 Background
	2.1 Vulnerability detection
	2.2 Prompt tuning
	2.3 Reinforcement learning

	3 Approach
	3.1 Preprocessing phase
	3.2 Prompt tuning implementation
	3.3 Reinforcement learning implementation

	4 Experimental evaluation
	4.1 Research questions
	4.2 Datasets
	4.3 Performance metrics
	4.4 Baseline methods
	4.5 Experimental settings

	5 Experimental results
	5.1 RQ1: effectiveness of ProRLearn
	5.2 RQ2: effectiveness of prompt tuning
	5.3 RQ3: effectiveness of reinforcement learning
	5.4 RQ4: effectiveness of prolearn in different models

	6 Discussion
	6.1 How does the size of the reward and verbalizer impact the performance of ProRLearn?
	6.2 How do the different prompt templates impact the performance of ProRLearn?
	6.3 How does our model improve performance on dataets with different sample sizes?
	6.4 Evaluation on AUC and MCC performance metrics
	6.5 Statistical analysis on the performance of ProRLearn

	7 Threats to validity
	8 Conclusion and future research
	References

