Automated Software Engineering (2024) 31:30
https://doi.org/10.1007/510515-024-00431-2

®

Check for
updates

Bash comment generation via data augmentation
and semantic-aware CodeBERT

Yiheng Shen' - Xiaolin Ju' - Xiang Chen' - Guang Yang?

Received: 25 October 2023 / Accepted: 3 March 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Understanding Bash code is challenging for developers due to its syntax flexibility
and unique features. Bash lacks sufficient training data compared to comment gen-
eration tasks in popular programming languages. Furthermore, collecting more real
Bash code and corresponding comments is time-consuming and labor-intensive. In
this study, we propose a two-module method named Bash2Com for Bash code com-
ments generation. The first module, NP-GD, is a gradient-based automatic data aug-
mentation component that enhances normalization stability when generating adver-
sarial examples. The second module, MASA, leverages CodeBERT to learn the rich
semantics of Bash code. Specifically, MASA considers the representations learned
at each layer of CodeBERT as a set of semantic information that captures recursive
relationships within the code. To generate comments for different Bash snippets,
MASA employs LSTM and attention mechanisms to dynamically concentrate on
relevant representational information. Then, we utilize the Transformer decoder and
beam search algorithm to generate code comments. To evaluate the effectiveness
of Bash2Com, we consider a corpus of 10,592 Bash code and corresponding com-
ments. Compared with the state-of-the-art baselines, our experimental results show
that Bash2Com can outperform all baselines by at least 10.19%, 11.81%, 2.61%, and
6.13% in terms of the performance measures BLEU-3/4, METEOR, and ROUGR-L.
Moreover, the rationality of NP-GD and MASA in Bash2Com are verified by abla-
tion studies. Finally, we conduct a human evaluation to illustrate the effectiveness of
Bash2Com from practitioners’ perspectives.

Keywords Bash code - Code comment generation - Adversarial training - Data
augmentation

Extended author information available on the last page of the article

Published online: 26 March 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00431-2&domain=pdf

30 Page 2 of 34 Automated Software Engineering (2024) 31:30

1 Introduction

Bash, the default programming language of Linux shell, is a crucial tool for devel-
oping and maintaining the Linux operating system (Newham 2005). However, its
syntax flexibility and lack of explicit structure can pose challenges for developers
seeking to understand Bash scripts in the context of developing and maintaining
software systems (Lin et al. 2018). According to our statistics, more than 151,640
posts on Stack Overflow are searching for the keyword “Bash" until February 22,
2023. For instance, Fig. 1 shows a post! which indicates that the user cannot under-
stand a Bash snippet. The expression -z string is true if the length of the string is
zero. This is difficult for people who are just engaged in software development and
are not experienced developers in this field. Automatically generating comments for
Bash code is necessary due to the difficulty in understanding the semantics of Bash
code, especially for developers unfamiliar with Bash code.

Program understanding is crucial for software development, maintenance, and
reuse. In practice, developers usually spend an average of 59% of their time on
understanding programs (Xia et al. 2017). Naturally, high-quality comments can
improve program understanding efficiency significantly (He 2019). Existing auto-
matic code comment generation work focuses on popular programming languages

What does -z mean in Bash? [duplicate]

Asked 9 years, 8 months ago Modified 5 months ago Viewed 383k times

This question already has answers here:

508 Is there a list of 'if' switches anywhere? (5 answers)

Closed 6 years ago.

I'm looking at the following code:

if [-z $2]; then
echo "usage: ...

(The 3 dots are irrelevant usage details.)
Maybe I'm googling it wrong, but | couldn't find an explanation for the -z option.

bash

Fig. 1 A Stack Overflow post on understanding of a Bash snippet

! https://stackoverflow.com/questions/18096670/what-does-z-mean-in-bash

@ Springer

https://stackoverflow.com/questions/18096670/what-does-z-mean-in-bash

Automated Software Engineering (2024) 31:30 Page3of34 30

(such as Java and Python, and so on) (Liu et al. 2018; Hu et al. 2018; Yang et al.
2021, 2022). However, few works of comment generation focus on domain-specific
languages (such as Bash Yu et al. 2022), which should be solved urgently.

Compared to other programming languages, generating code comments for Bash
is challenging due to insufficient training data. The current corpus available for
studying Bash comment generation is limited to 10,592 data pairs, as reported in
a recent study by Yu et al. (2022). To overcome this limitation, more realistic Bash
code and corresponding comments must be collected, which can be time-consuming
and labor-intensive. To address this issue, we propose Normalized Projected Gra-
dient Descent(NP-GD), a gradient-based adversarial training that uses generated
adversarial examples to augment the training data and improve model performance.
Previous studies have not investigated whether adversarial training in the Bash com-
ment generation task can enhance model performance (Lin et al. 2018, 2017; Yu
et al. 2022).

Moreover, previous studies have failed to fully leverage Bash code’s semantic
representation information. Specifically, BASHEXPLAINER (Yu et al. 2022) used
the vector output of the last layer of the 12-layer CodeBERT (Feng et al. 2020) as
the coding vector of this sentence. However, Kondratyuk and Straka (2019) found
that relying solely on the output vector of the final layer may result in the loss of
valuable information that other layers, such as the lower and middle layers of BERT
can capture. According to Jawahar et al. (2019), the level of semantic information
decreases as the encoder layer becomes shallower in CodeBERT. In contrast, the
level of semantic information increases as the encoder layer becomes deeper. Su
and Cheng (2020) further investigated this phenomenon and found that each layer
of BERT offers a rich source of linguistic information through its output representa-
tion. Lower layers capture surface features, middle layers capture syntactic features,
and higher layers capture semantic features. To address the issue of insufficient utili-
zation of semantic information in Bash code, we propose a solution called Memory
Attention Semantic-Aware (MASA). This method fully captures the learned infor-
mation and enhances CodeBERT’s semantic awareness.

In this study, we propose a novel method Bash2Com for generating Bash code
comments. Specifically, Bash2Com includes two mentioned components: the data
augmentation component NP-GD and the semantic-aware component MASA. In
particular, the adversarial examples generated by NP-GD are added to the training
data, which allows the model to learn more knowledge from the adversarial exam-
ples to improve generalization. MASA learns a rich semantic representation fed into
the Transformer decoder. Afterward, MASA utilizes the beam search algorithm
(Wiseman and Rush 2016) to generate comments for Bash code.

To evaluate the effectiveness of Bash2Com, we conducted experiments on the
corpus shared by Yu et al. (2022). Our evaluation includes a recent Bash comment
generation baseline proposed by Yu et al. (2022), as well as state-of-the-art base-
lines from the source code summarization research domain including information
retrieval methods (Haiduc et al. 2010a, b; Zhang et al. 2020; Liu et al. 2018), deep
learning methods (Ahmad et al. 2020; Iyer et al. 2016; Feng et al. 2020; Guo et al.
2022; Phan et al. 2021; Ahmad et al. 2021; Wang et al. 2021) and hybrid methods
(Hu et al. 2020; Zhang et al. 2020; Yu et al. 2022). The results of both the evaluation

@ Springer

30 Page 4 of 34 Automated Software Engineering (2024) 31:30

and the case study demonstrate that Bash2Com outperforms all the baseline meth-
ods. In the next step, we perform ablation research to verify the rationality of the
component settings in our proposed method. Specifically, we consider four methods
(i.e., FGSM Goodfellow et al. 2015, FGM Miyato et al. 2017, PGD Madry et al.
2018, and NP-GD) in the data augmentation component and consider three differ-
ent RNNs (i.e., GRU Cho et al. 2014, Bi-LSTM Graves and Schmidhuber 2005, and
LSTM Hochreiter and Schmidhuber 1996) in the semantic-aware component. The
results of our ablation experiments indicate that the best performance is achieved by
selecting NP-GD and LSTM. Finally, we conducted a human evaluation to demon-
strate that Bash2Com outperforms baseline methods from practitioners’ perspectives
regarding informativeness, naturalness, and similarity.
In summary, the main contributions of our work can be summarized as follows:

e We propose a novel Bash comment generation method Bash2Com, which
includes two components NP-GD and MASA. Specifically, NP-GD enhances the
data representation, and MASA improves the semantic information representa-
tion learned by each layer in CodeBERT.

e We conduct experiments on a high-quality corpus shared by Yu et al. (2022), and
the empirical results show our method’s effectiveness and the rationality of the
component settings.

e We share empirical corpus and scripts on our project homepage® to promote
the replication of our research and encourage more follow-up research on this
research topic.

The rest of this paper is organized as follows: Sect. 2 offers some background on
data augmentation technology and CodeBERT. Section 3 describes the framework
and details of our proposed method. Section 4 shows our empirical settings. Sec-
tion 5 presents our result analysis for research questions. Section 6 analyzes poten-
tial threats to our empirical results. Section 7 summarizes related studies to our work
and emphasizes the novelty of our study. Finally, Sect. 8 summarizes our work and
shows potential future directions.

2 Research background
2.1 Data augmentation in NLP

In natural language processing (NLP), typical data augmentation methods can be cat-
egorized as rule-based (Wei and Zou 2019; Xie et al. 2020) and gradient-based (Good-
fellow et al. 2015; Miyato et al. 2017). The method of data augmentation based on rules
is easy to use, but it has certain limitations. For instance, it requires manual rule setting,
which results in less coverage and poor diversity. While these methods are effective for
natural languages, there are significant syntactic differences between Bash code and

2 https://github.com/syhstudy/Bash2Com

@ Springer

https://github.com/syhstudy/Bash2Com

Automated Software Engineering (2024) 31:30 Page50f34 30

natural language. Therefore, a simple rule-based approach may not apply to Bash code.
The method of data augmentation based on gradients is known as adversarial training.
This involves training a model with initial examples and generating adversarial exam-
ples that can resist attacks and improve the model’s robustness. Gradient-based data
augmentation methods have been successfully applied to many tasks (such as object
detection Li et al. 2017, segmentation Xie et al. 2017, image classification Shrivastava
et al. 2017, Text classification Zhu et al. 2020). The fundamental concept of adversarial
training can be expressed through the following Max-Min formula (Madry et al. 2018).

min By ~ D| max (L{fy(x +6).y)))

where x represents the input to the model. 6 represents the perturbation superim-
posed on the input. f,() is the neural network function. y is the label of the example.
max(L) is the optimization objective to find the perturbation that maximizes the loss
function. D is the training set. E is the maximum likelihood estimation.

2.2 CodeBERT

CodeBERT is a pre-trained model based on the transformer architecture (Feng et al.
2020), which operates in dual mode using both natural language (NL) and program-
ming language (PL) encoders. Previous studies have demonstrated that CodeBERT
exhibits high performance in software engineering tasks, such as code summariza-
tion (Gu et al. 2022; Chen et al. 2022; Yang et al. 2023), API recommendation (Irsan
et al. 2023), code search (Shi et al. 2023), and software testing (Fatima et al. 2022).
CodeBERT has been pre-trained on a large-scale corpus (Husain et al. 2019) with
two self-supervised tasks: Masked Language Model (MLM) (Kenton and Toutanova
2019) and Replaced Token Detection (RTD) (Clark et al. 2019). The MLM task uti-
lizes bi-modal data, feeding the code with corresponding comments and randomly
masking positions to replace the token with a special token [MASK]. The objective
of the MLM task is to predict the original token, with the loss function defined as
follows.

LMZM(Q) = Z —IOg pD] (xi | wmasked’cmasked) @

i€em”Um¢

where p”! is the predicted token by model. m" and m¢ are the random set of posi-
tions for NL and PL to mask as the token [MASK], which means wmasked gpd cmasked
x is the input, expressed as x = w + c.

The RTD task utilizes uni-modal code and comment to train the data generator to
restore the randomly masked token. The loss function of the RTD task is defined as
follows.

@ Springer

30 Page 6 of 34 Automated Software Engineering (2024) 31:30

:a. Data Augmentation ; b. Model Architecture 1
1 | ____)E‘]_g__[ﬁ !
iqinal-i ' P s 1
: ongmal input : N ﬁdd&) .
" ' H orm H 1
: (Eiils Lol o ! Semantic-aware 1
! : Feed ' !
1 o 1 . :
1 ' H '
(4 NP-GD Co : !
: Training Data . : iy Add& : 1
1 @ """ — E Horm Transformer !
1 ol A : aneror 1
' : : Multi-head | ! SECHEY '
! Positional : : Attention :
: Encoding i ~...4f. :
:
lmmmmmmmmmmmm e e — e mmm e mm e mmmmm e mm e, m eSS T — -
: c. Model Application
1 n
1 —
. el
1
1 Bash Code Trained Model Comment K
Fig.2 Overall framework of our method Bash2Com
[wl+lel
_ - D, ¢ .corrupt »
Lep® = Y [é(l)log PPt)4
i=1 (3)

(1= 81 — log pPo™,)|

.¢ _corrupt __
5(1’):{ (1),1in =X @
, otherwise.

where 0 is the discriminator parameter, 6(i) is an indicator function, and pP2 is the
discriminator that predicts the probability of the i-th word being original. The RTD
randomly replaces a token in the input sequence. A discriminator, trained as a binary
classifier, determines whether the replaced token is original or not. This process
allows the RTD to learn the importance of each token in the sequence.

3 Our approach

Our proposed method, called Bash2Com, consists of two main parts:
Data Augmentation and Model Architecture, as illustrated in Fig. 2. The data aug-
mentation part is designed to enhance the representation of Bash code for a small
corpus, while the model architecture part aims to better represent semantic informa-
tion by combining the knowledge learned from each layer in CodeBERT.

3.1 Data augmentation

We introduce a novel gradient-based method called NP-GD to automatically gener-
ate dependable training samples for data augmentation. By leveraging the strengths
of L, and L, normalizations (Schmidt et al. 2007), NP-GD enhances the stability
of the normalization process within the Projected Gradient Descent (PGD) method
(Madry et al. 2018).

@ Springer

Automated Software Engineering (2024) 31:30 Page70f34 30

Word Embedding In the standard encoder-decoder architecture, the word embed-
ding layer captures the relationships between tokens by mapping the text to a vector
representation. For the given Bash code X, the input to the model is tokenized by the
BPE algorithm (Provilkov et al. 2020) to obtain the sequence x = (x|, ---, xy), where
N is the length of this sequence. To unify the length of the input sequence, we uti-
lize padding or truncation operations. Thus, the output of the word embedding layer
can be guaranteed to be uniform x = (x4, -+, x,). At the same time, we add abso-
lute position encoding (APE) (Vaswani et al. 2017) in the embedding layer to better

extract the code representation information. Thus the final output is x = x + APE(x),
x e Rbalchxnxd

model |

Most adversarial training methods in natural language (Goodfellow et al. 2015;
Miyato et al. 2017; Madry et al. 2018; Zhu et al. 2020; Jiang et al. 2020) add per-
turbations to the embedding layer. Compared to adding perturbations directly to the
original samples, the subtle perturbations added to the embedding layer have mini-
mal impact on semantics, effectively increasing the number of correct examples in
the training data (Morris et al. 2020; Dong et al. 2021), thereby enhancing model
performance. Therefore, we adopt the same approach as previous natural language
processing methods and generate examples by perturbing the embedding layer.

NP-GD For a given input embedding sequence x, NP-GD aims to add pertur-
bation 6 and generate K adversarial examples {xadv"}f:l. Each x,, is semanti-
cally similar to x but different from the source input. The original input x together
with the adversarial examples {xadv"}f_1 is utilized as the training data to fine-tune
CodeBERT. -

Our method, NP-GD, is inspired by the concept of PGD (Madry et al. 2018) and
employs a multi-iteration attack to compute gradients and perturbations. Like PGD,
NP-GD solves the internal maximization problem iteratively, with each iteration
projecting the perturbation to a specified range. Specifically, in each iteration of the
attack, NP-GD first calculates the gradient g, of the input x, at that time, where,

_ ILly(x)

81 90 5
Then NP-GD computes the perturbation 4, ; as follows,
01 = (g, - ”g[”/ l g D 6)

where a denotes the step size. The normalization method used in PGD is L, normal-
ization. However, the solutions obtained by L normalization are usually not sparse
and do not guarantee to reduce the complexity of the model. To alleviate this issue,
our proposed NP-GD takes the L; normalization method into account inspired by
the study of Simon-Gabriel et al. (2019), as shown in Eq. 6. Specifically, it performs
L, normalization on the vectors and then applies L, normalization to the generated
vectors. NP-GD has the advantage of using L, normalization to reduce the effect
of large values on the vectors and then applying L, normalization to ensure that
the resulting vectors have a consistent length and sum to 1. Therefore, NP-GD can
improve the stability of the normalization process while retaining the advantages of
L, and L, normalization.

@ Springer

30 Page 8 of 34 Automated Software Engineering (2024) 31:30

Finally, NP-GD can obtain the batch data x,,; by adding a perturbation 6,,, as
follows.

X =11 +S(xt + 5z+1) @)

where S denotes the constraint range of the perturbation 6 and its value is limited
between -1 and 1. In our study, we utilize S to measure the magnitude of § by the
L, and L, normalization (Madry et al. 2018). This can ensure the semantic invari-
ance of examples as much as possible. Moreover, because noise is also a data aug-
mentation method (Moreno-Barea et al. 2018), Bash2Com can accept examples with
semantic changes and consider them reasonable errors. NP-GD continues to com-
pute the gradient g, ; on the new batch data input x,, ; and repeat the previous steps.
After the above steps are iterated K times, NP-GD gets the accumulated gradients by
K attacks and then executes gradient descent to update Bash2Com parameters.

3.2 Model architecture

The proposed model adopts a standard encoder-decoder framework. Specifically,
Bash2Com first maps <Bash code, code comments> to a high-dimensional seman-
tic space through embedding and utilizes CodeBERT to encode high-dimensional
semantic encoding. Then, to extract more semantic information from the various
layers of representational data output by CodeBERT, we introduce a new seman-
tic-aware method called MASA, which aids in producing Bash comments. In more
detail, MASA utilizes the LSTM to capture different information from CodeBERT’s
12 layers sequentially, and subsequently employs an attention mechanism to fuse all
the outputs of LSTM. Finally, we utilize the Transformer decoder to generate Bash
code comments from the vector representations fused by MASA. The detailed archi-
tecture of MASA is illustrated in Fig. 3.

CodeBERT Layer In this layer, we construct an encoder model by using Code-
BERT, which generates better semantic representation information for Bash code
by fine-tuning CodeBERT. Specifically, for a given input embedding sequence x,
CodeBERT feeds it into the model to obtain a set of semantic vectors {xm }l " from
all layers, where each X,,,, € Rb4/nmXd o,

Semantic-aware layer In this layer, we aim to extract sufficient semantic repre-
sentations of the target input and combine each layer’s semantics according to its
weights. Generally speaking, researchers extract the vector of the first token from
the encoder in the last layer of CodeBERT as an aggregate sequence representa-
tion in previous studies (Jawahar et al. 2019; Kondratyuk and Straka 2019; Yu et al.
2022; Liu et al. 2022). To compute the attention score, we extract the vector of the
first token of each layer in CodeBERT as the semantic representation and connect
them to a new semantic representation vector Xg,,, to better use the rich representa-
tion information learned by the layers in the pre-trained model. CodeBERT utilizes
a 12-layer encoder for pre-training, which is expressed as Xg,,, € RP¥M<12Xd0ur,
Jawahar et al. (2019) found that the shallower the encoder layer of the BERT model,
the lower the semantic information represented, while the deeper the encoder layer

@ Springer

Automated Software Engineering

(2024) 31:30

Page90of34 30

Add&

yClsq

VC'SQ

=z
o
=]
3

yClsqo

000 ©90) -

- @09]

X6
h Add&

Norm g — = Norm <
D I T [hy hy }""“"*' h1a : A
' ' ' \ ' Multi-head

Add&
Norm

j oo i | Attention
Forward . : v v v f_
: i cee : B3

Adda | b L)
Norm : : ’ Masked
Multi-head
Multi-head Attention
Attention ~
y1.¥2, |
CodeBERT Layer Semantic-aware Layer Decoder

Fig.3 The model architecture of MASA

of the BERT model, the higher the information represented. Therefore, Xj,,, can
represent the semantic relationship from shallow to deep in CodeBERT.

Given the aforementioned characteristics, attempting to learn all semantic infor-
mation through LSTM is natural. As shown in Fig. 2, we utilize an LSTM, which
contains 12 cells for learning for a given input Xg,,, = (X;, -, X;, -+, X;,). Each
semantic information in Xg,,, is represented by the implicit vector learned by LSTM
as follows.

h = LSTM(X,), i € [1,12] ®)

Not all representative information contributes equally to a given target input. Cer-
tain source code-related tasks may emphasize low-level representation information
(Kondratyuk and Straka 2019), while others may prioritize high-level representation
information (Lan et al. 2019). To extract more significant representation informa-
tion, we employ an attention mechanism. Specifically, we first convert k; to u; via
the full connection layer u; = tanh(Wh; + b). Then, the similarity with the context
vector can be calculated and converted into probability distribution by Softmax as
follows.

exp(ilu,)

“i= Yexp(ulu,) ©)

where a; can be treated as the importance of the output vector for each layer. There-
fore, using «; as a global weighted summation over {hi},:] can generate the input

vector X, for decoder layer as the fusion of Fig. 3 shows.

@ Springer

30 Page 10 of 34 Automated Software Engineering (2024) 31:30

12
Xout = z aihi (10)

Decoder layer We utilize the Transformer decoder as the decoder module in our
framework. Transformer (Vaswani et al. 2017) leverages an auto-regressive mecha-
nism to predict the next possible word in the generation process based on previous
content. Therefore, inferring the subsequent output from the encoder part’s output
is necessary. Each decoder layer utilizes an attention mechanism for the X,,, output
by MASA. Other operations are consistent with those of the CodeBERT encoder.
Finally, the decoder output is passed to a fully connected neural network. The net-
work predicts the probability of the next token through the Softmax layer, which can
be defined as follows.

Py | y15 05y = softmax(W - X, + b) (11

where y denotes the predicted token. We train our model parameters 6 by the loss
function L for a given input text x based on cross-entropy, defined as follows.

[yl
L=) logPy(y; |y <i,x) (12)

=1

3.3 Model application

Our trained model can generate relevant comments by analyzing the application
developer’s Bash code. As the output of Bash2Com is a comment, which can be
treated as a token sequence, we employ beam search (Sutskever et al. 2014) to
enhance performance.

Beam search returns a list of the most probable output sequences, providing
developers with a selection of the most likely comments. This method involves itera-
tively examining the comment tokens of every step to select the lowest cost k tokens,
where k represents the beam width. After pruning any residual branches, the process
identifies potential tokens for subsequent steps until reaching the end-of-sequence
marker. Ultimately, our model generates and returns k candidate comments for each
Bash code. These candidates are then ranked based on their average probabilities
throughout the beam search process. Finally, we select the highest-scoring sequence
from the final beam as the generated comment. This would be the most likely rel-
evant comment based on the trained model and beam search.

4 Experimental setup
Our empirical study aims to answer the following three research questions.

e RQI: How successful is our proposed method, Bash2Com, in generating Bash
comments?

@ Springer

Automated Software Engineering (2024) 31:30 Page110f34 30

Table 1 Statistics for length of

; Code length statistics
samples in the corpus

Average Mode Median <16 <32 <48
8.528 4 7 90.8% 99.7% 99.9%
Code comment length statistics

Average Mode Median <16 <32 <48
11.874 10 11 80.3% 99.5% 99.9%

e RQ2: How much does our proposed component, NP-GD, contribute to the effec-
tiveness of our proposed method, Bash2Com, in achieving its objectives?

¢ RQ3: How much does our proposed component, MASA, contribute to the effec-
tiveness of our proposed method, Bash2Com, in achieving its objectives?

4.1 Experimental subject

Our study considers the corpus shared by Yu et al. (2022) as our experimental
subject. First, Yu et al. considered NL2Bash (Lin et al. 2018), which initiated the
research of mapping natural language (NL) to Bash command. The corpus consists
of 9,305 NL-command pairs. Each pair includes a Bash command scraped from the
web and an expert-generated natural language description, covering over 100 com-
monly used Bash utilities. Previous studies (Kan et al. 2020; Trizna 2021) utilized
this corpus as a fundamental dataset, and their findings consistently show its consist-
ency and stability, further strengthening its importance. Then, to comprehensively
evaluate their methods, Yu et al. integrated the corpus of NLC2CMD competition *
to enhance diversity. NLC2CMD consists of nearly 1,700 examples collected from
user interactions with the Tellina system (Lin et al. 2017), as well as over 120 exam-
ples submitted by 21 participants from both industry and academia through the com-
petition website. Later, we check and delete over 500 duplicate samples. Finally, we
create an extended corpus with 10,592 samples, each containing <Bash code, code
comments>. The statistical information for this corpus is presented in Table 1. The
data reveals that most of the Bash code and its corresponding comments in the cor-
pus consist of approximately 8 or 11 words. Furthermore, it was found that 99.9%
Bash code and its corresponding comments in the corpus are no longer than 48
words.

In our empirical study, we used a random sampling method to divide the corpus
into three sets: a training set, a validation set, and a test set. The split ratio was 80%
for training, 10% for validation, and 10% for testing. This ratio is consistent with the
settings used in a previous study (Yu et al. 2022) to ensure a fair comparison.

3 https://eval.ai/web/challenges/challenge-page/674/leaderboard/1831

@ Springer

https://eval.ai/web/challenges/challenge-page/674/leaderboard/1831

30 Page 12 of 34 Automated Software Engineering (2024) 31:30

4.2 Performance measures

To quantitatively compare the performance between our proposed method and
baselines, we consider three performance measures (i.e., BLEU Papineni et al.
2002, METEOR Banerjee and Lavie 2005, and ROUGE-L ROUGE 2004).
These performance measures have been extensively utilized in previous stud-
ies on neural machine translation and automatic code comment generation (Lin
et al. 2023; Wei et al. 2020; Li et al. 2021; Yang et al. 2023; Cao et al. 2021,
Zhang et al. 2020; Yang et al. 2021; Liu et al. 2022; Li et al. 2022). The higher
the performance measure of these metrics, the better the performance of the cor-
responding method.

BLEU. BLEU (Bilingual Evaluation Understudy) (Papineni et al. 2002), pro-
posed by IBM in 2002, serves as an evaluation metric for machine translation
tasks. It is an accuracy-based similarity measure that assesses the level of simul-
taneous occurrence of n-grams between candidate texts and reference texts.
Commonly used variants of BLEU include BLEU-1, BLEU-2, BLEU-3, and
BLEU-4, where “n-gram" represents a sequence of n consecutive words. The
calculation formula is:

N
BLUE = BP - exp(Z wnlogpn> (13)

n=1

where BP (brevity penalty) is a penalty term for penalizing excessively long transla-
tions. p, is the geometric mean of the ratio of the count of n-gram matches in the
translation to the count of n-grams in the reference translation. Setting N = 4 and
uniform weights w, = 1/N.

METEOR METEOR (Metric for Evaluation of Translation with Explicit
Ordering) (Banerjee and Lavie 2005) addresses some of the shortcomings inher-
ent in the BLEU measure by leveraging knowledge sources, such as WordNet, to
expand the synset. The calculation formula is:

METEOR = (1 — a) X precision + a X recall X FP (14)

where fragmentation penalty (FP) is a penalty term used to penalize fragmented seg-
ments in the candidate translation.

ROUGE-L. ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation)
(ROUGE 2004) is a recall-based metric that calculates the length of the longest
common subsequence (referred to as "L") between the candidate abstract and
the reference abstract. A higher score is achieved with a longer common subse-
quence length. The calculation formula is:

Longest Common Subsequence (LCS)
ROUGE - L=

Reference Summary Length (15)

where the Longest Common Subsequence (LCS) represents the length of the longest
common subsequence between the candidate summary and the reference summary.

@ Springer

Automated Software Engineering (2024) 31:30 Page130f34 30

The LCS measures the similarity in content between the two summaries. Reference
Summary Length refers to the length of the reference summary.

To ensure consistency in the performance measures and avoid any discrep-
ancies due to differences in their implementation, we utilize the implementa-
tion provided by the nlg-eval library* for three performance measures, which can
mitigate threats to internal validity.

4.3 Baselines

We compare our proposed method Bash2Com’s performance with state-of-the-
art baselines. Specifically, our experiment contains the only baseline BASHEX-
PLANER (Yu et al. 2022) in the Bash code comment generation task. In addition,
to evaluate Bash2Com more comprehensively, we consider related work for similar
tasks (such as source code summarization) as baselines. Finally, we classify these
baselines according to their approach characteristics into three categories: informa-
tion retrieval-based, deep learning-based, and hybrid methods.

The first category includes four information retrieval-based methods. This type of
method is an important method in the source code summarization task, which uses
the historical code base to mitigate the huge training cost on large-scale data sets.
It can achieve competitive performance when a similar code exists in the historical
code base.

e LSI (Haiduc et al. 2010a) improves keyword-based search by capturing seman-
tic relationships through dimensionality reduction and latent semantic analy-
sis, enhancing retrieval accuracy and handling issues like polysemy and variant
forms.

e VSM (Haiduc et al. 2010b) represents documents and queries as vectors in a
high-dimensional space. It calculates the similarity between vectors to rank doc-
uments, commonly using cosine similarity.

e BM25 (Zhang et al. 2020) considers factors like term frequency, document
length, and inverse document frequency to score and rank documents based on
relevance to a given query.

e NNGen (Liu et al. 2018) generates commit messages based on nearest neigh-
bors, which ranks code based on cosine similarity and BLEU value.

The second category includes seven deep learning-based methods.

o Transformer (Ahmad et al. 2020) is an encoder-decoder framework. It utilizes
self-attention mechanisms to capture contextual relationships between words in
a sequence, enabling effective language understanding and generation, and has
achieved state-of-the-art performance in various language-related tasks.

e CODE-NN (Iyer et al. 2016) is the first deep learning model that utilizes LSTM
and attention mechanism for comment generation tasks.

4 https://github.com/Maluuba/nlg-eval

@ Springer

https://github.com/Maluuba/nlg-eval

30 Page 14 of 34 Automated Software Engineering (2024) 31:30

e CodeBERT (Feng et al. 2020) is built using a transformer-based neural archi-
tecture and trained with a hybrid objective function. It leverages the power of
pre-training on large-scale data and fine-tuning on specific tasks, enabling it to
understand and generate code with improved accuracy and efficiency.

¢ UniXcoder (Guo et al. 2022) is a unified cross-modal pre-trained model for pro-
gramming languages, which uses a masked attention matrix to control the behav-
ior of the model and enhances the code representation with cross-modal content
such as AST and code comments.

e CoTexT (Phan et al. 2021) is a pre-trained transformer-based encoder-decoder
model that uses self-supervision to learn representative contexts between natural
language (NL) and programming language (PL).

e PLBART (Ahmad et al. 2021) is a sequence-to-sequence model that learns pro-
gram syntax, style, and logical flow crucial to program semantics. It enhances
code-related tasks, benefiting software development and programming language
processing applications.

e CodeT5 (Wang et al. 2021) is a unified pre-trained encoder-decoder model that
supports multi-task learning and can better use the information of code tokens,
allowing CodeT5 to understand and generate code based on the given context
and task requirements.

The third category includes three hybrid methods of considering multiple inputs.

e Hybrid-Deepcom (Hu et al. 2020) considers the semantic and structural infor-
mation of Java code and obtains the syntactic information of the code by travers-
ing AST.

¢ Rencos (Zhang et al. 2020) first retrieves similar code and then fuses the vectors
by the decoder.

e BASHEXPLAINER (Yu et al. 2022) is the only model in Bash comment gener-
ation. It utilizes two-stage training strategies: the fine-tuning stage and the infor-
mation retrieval enhancement stage.

For the pre-trained-based baselines (i.e., UniXcoder,” CoTexT,® PLBART,” and
CodeT5%), we implement them with Hugging Face according to the paper descrip-
tion, and our implementation results are close to the results reported in their studies.
For the remaining baselines, we directly utilize the scripts shared by original stud-
ies. To ensure a fair comparison between Bash2Com and baselines, we consider the
original parameter settings (Table 2).

> https://huggingface.co/microsoft/unixcoder-base
% https://huggingface.co/razent/cotext-1-cc

7 https://huggingface.co/uclanlp/plbart-base

8 https://huggingface.co/Salesforce/codet5-base

@ Springer

https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/razent/cotext-1-cc
https://huggingface.co/uclanlp/plbart-base
https://huggingface.co/Salesforce/codet5-base

30

Page 15 of 34

(2024) 31:30

Automated Software Engineering

08'1S 97°0€ LS'TE 61'LE 6L'EY PLYS wo)gyseq POYRIA InQ

90°St 86T 6£7C 99'8C 11°6¢ LTy S0dUNY

9¢'SY LT9T SL'TT 16°LT S¥se 8L'Ly wo)dea-prigkH

18°8% 81'8C €I'6C eLEE 10 YLIS YANIV IdXAHS VI poujew priqAH

9¢'8Y 66T 0L'8T STee Y0'0v SL'TS SI1opoD

16'Ly 78'8C SS'LT 12°Ce 01°6€ 6L°0S 1avd1d

00'8% 96'8C SL'ST 9€°0¢ 6T'LE LT'6V IX210D

yT8Y €0'6T STLT 08'1¢ 76°8¢ 66'6 I9pooxTuN

9¢'Ly 9I'LT €8'%C ¥8'6C T0°LE S9'8t 14a99p0D

1LY $8°92 LI¥T £5°6C 8I°LE 09°6% NN-2d0D

10v¥ ST L6'61 ST LEEE 6£'9% Touriojsuely, Surures] dea

88'St 69°LT S8'LT 1ree SL'8¢E 79°08 UIDNN

61'8¢ SE'9T ¥T 61 8G€T 17°0¢ 80'CH STINA

8G7¢ ¥0'CT STSI 7981 LY'¥T 91'9¢ NSA

78'8C 0€'8T 0’6 81Tl LO'SI 81°0¢ IS [eAQLI)AI UOTBULIOJU]
(%) T-45Nn0¥ (%) 4od1dN (%) ¥-na1d (%) €-ng14d (%) T-na14d (%) 1-n914 SWEu POy ad&y poyley

samseaw T-gFONOY PUe JOALAN ‘v/€/7/T -NATH JO SULId) UT SAUT[aseq Uk WoDZYskq Uaam)aq synsal uostreduwro) g ajqel

pringer

As

30 Page 16 of 34 Automated Software Engineering (2024) 31:30

Table 3 Hyper-parameters

setting of Bash2Com Category Hyper-parameter Value
NP-GD K 3
a 0.3
CodeBERT Decoder_layers 6
Hidden_size 768
Max_input_length 48
Max_output_length 64
Beam_search_size 10

4.4 Experimental settings

Our proposed method and baselines are implemented using the PyTorch framework.
The code for BASHEXPLANER is implemented by the code provided by Yu et al.
(2022). Specifically, we utilize the Transformers’ and CodeBERT'? to implement
our proposed method. The model is trained using the AdamW optimizer for 50
epochs, with a learning rate of 2e-4. The weight a is 0.3, and the number of times
K is set to 3 in NP-GD. To reduce the time cost of the model, we have implemented
the technique of early stopping with a step size of 5 in this experiment. Table 3 illus-
trated the specific hyper-parameter setting of Bash2Com.

We run all the experiments on a computer with an Intel(R) Xeon(R) Silver 4210
CPU and a GeForce RTX3090 GPU with 24 GB memory. The running OS platform
is Windows OS.

5 Experimental results

5.1 RQ1: How successful is our proposed method, Bash2Com, in generating Bash
comments?

Automatic Evaluation RQ1 aims to compare the Bash2Com with fourteen state-of-
the-art baselines, illustrated in Sect. 4.3. These baselines can be classified into three
types: information retrieval methods, deep learning methods, and hybrid methods.
Table 2 shows the overall results of the different methods concerning three evalu-
ation measures (BLEU, ROUGE-L, and METEOR), and we mark the best one of
each metric in bold. As seen in Table 2, our proposed method Bash2Com outper-
forms all considered baselines.

Firstly, we compare Bash2Com with information retrieval baselines. The state-
of-the-art method is NNGen, which utilizes cosine similarity and BLEU values to
retrieve similar code, so the NNGen method has better BLEU values. However, our
method Bash2Com can perform better than NNGen. Specifically, Bash2Com can

9 https://github.com/huggingface/transformers
10 https://huggingface.co/microsoft/codebert-base

@ Springer

https://github.com/huggingface/transformers
https://huggingface.co/microsoft/codebert-base

Automated Software Engineering (2024) 31:30 Page170f34 30

Table 4 Results of p-values

Measure BLEU-4 METEOR ROUGE-L
and 6

p-values 0.0315 0.0028 0.0164

5 0.682 0.795 0.811

improve performance by at least 8.14%, 13.01%, 15.82%, and 16.95% for BLEU-
1/2/3/4 measures. Our method can also improve performance by 9.28%, and 12.90%
for METEOR and ROUGE-L measures.

Secondly, we compare Bash2Com with deep learning baselines. The results show
that the CodeT5 method performs best among the deep learning methods. However,
for the BLEU-1/2/3/4, METEOR and ROUGE-L measures, Bash2Com can improve
the performance by at least 5.78%, 9.37%, 11.85%, 13.48%, 2.61% and 7.11%. One
possible reason is insufficient training data, which is challenging for deep learning
models that require large amounts of training data. In contrast, Bash2Com using
adversarial training is more suitable for handling small corpus, which can help to
improve the model performance.

Thirdly, we compare Bash2Com with the hybrid baselines. We consider BASH-
EXPLAINER the baseline because it is the best-performing method among the
hybrid methods and the state-of-the-art baseline for Bash code comment genera-
tion. Compared to BASHEXPLAINER, Bash2Com improves the performance by
at least 5.80%, 8.36%, 10.19%, 11.81%, 5.14% and 6.13% in terms of BLEU-1/2/3/4,
METEOR and ROUGE-L measures.

Finally, to further analyze whether there is a significant difference between
the comparison results of Bash2Com and baselines, we consider the Wilcoxon
signed-rank test (Rey and Neuhduser 2011). Since BLEU-4 is the most meaning-
ful in the evaluation measures of BLEU, we only perform a significance test for
BLEU-4. In addition, we only consider the best-performing baseline BASHEX-
PLAINER. The p-values in Table 4 can reject the null hypothesis, which means
significant differences exist between our method and baselines in all the meas-
ures considered. Then, we use Cliff’s delta (6) (Rey and Neuhéduser 2011), a non-
parametric effect size measure, to quantify the magnitude of such differences
between Bash2Com and the best-performing BASHEXPLAINER. According to
the suggestions (Rey and Neuhiduser 2011), we classify difference magnitude into
four levels according to the values of 6: “<0.147": Negligible (N), “0.147~0.33":
Small (S), “0.33~0.474": Medium (M), and “>0.474": Large (L). As shown in
Table 4, all 6 values are larger than 0.474, which shows a large performance
improvement of Bash2Com.

Human Study. Although automatic evaluation measures can calculate the textual
dissimilarity between automatically generated comments and human-written com-
ments, they cannot accurately distinguish the semantic similarity between them Iyer
et al. (2016), Wei et al. (2020), Zhang et al. (2020), Hu et al. (2021). Therefore, we
introduced the following three metrics for our human study:

@ Springer

30 Page 18 of 34 Automated Software Engineering (2024) 31:30

Table 5 Comparison results

of our human study (standard Method Informativeness ~ Naturalness Similarity
deviation in parentheses) NNGen 1.81(1.22) 3.630.99) 1.49(1.03)
CodeBERT 2.18(1.14) 3.21(1.10) 1.71(1.29)
BASHEXPLAINER 2.76(1.34) 3.51(0.89) 2.38(1.45)
Bash2Com 2.83(1.09) 3.57(0.75) 2.51(1.17)

¢ Informativeness: Informativeness focuses only on the amount of information in
the automatically generated comments without fluency.

e Similarity: Similarity is the degree of similarity between automatically generated
and human comments.

e Naturalness: Naturalness considers the grammatical and fluency of automatically
generated and human comments.

The score ranges from O to 4; the higher the score, the better the comment can meet
the requirements. The final score is averaged.

For the human study, we selected NNGen, CodeT5, BASHEXPLAINER, and our
proposed method Bash2Com as they are state-of-the-art methods with the best per-
formance in their respective categories. We recruited ten volunteers: two PhDs and
eight Masters - who have extensive experience in Linux development and mainte-
nance to evaluate the automatically generated comments. Among them, the master-
level volunteers have 1-3 years of experience, and the doctor-level volunteers have
over 3 years of experience, which is beneficial for guaranteeing our human study
quality. We randomly selected 100 code pairs from the corpus, including Bash code
and comments, and provided manual comments for reference. The volunteers rated
the comments generated by the four methods based on similarity, naturalness, and
informativeness. To ensure fairness, we ensured that each volunteer did not know
how the comments they received were generated. Additionally, to ensure the quality
of the labels, we limited the number of Bash codes each volunteer marked to 25 per
day.

Table 5 presents the human study results between Bash2Com and three represent-
ative baselines. The results show that our method Bash2Com improved over three
baselines on Informativeness and Similarity but is slightly lower than NNGen by
0.06 points on the Naturalness metric. One possible reason is that NNGen is based
on an information retrieval method, and the generated Bash code comments are
obtained from the original corpus. Since professional developers write these com-
ments, they are more natural. On the other hand, the comments generated by Bash-
2Com are only 0.06 points below in the Naturalness metric, which indicates that
Bash2Com is also effective in naturalness.

To assess the differences in volunteer scoring results, we consider Fleiss Kappa
(Fleiss 1971) to measure the evaluation consistency of these volunteers. The result
was 0.748, representing the consistency of the scoring results of the volunteers.
Furthermore, we calculate p-values to examine whether the performance differ-
ence is statistically significant between Bash2Com and BASHEXPLAINER (the

@ Springer

Automated Software Engineering (2024) 31:30 Page190f34 30

Table 6 Comments generated by different methods for three Bash codes

ID Example

1 Bash Code: cat $(whoami)
Ground Truth: print current user’s mail file
NNGen: print current user name
CodeTS5: print file name of current user
BASHEXPLAINER: print user name of current user
Bash2Com: print file content of current user
2 Bash Code: sleep $(expr ‘date -d 03/21/2014 12:30 +%s* - ‘date +%s°)
Ground Truth: sleep until a specif date
NNGen: print day between _regex and _regex
CodeTS5: sleep date _timespan ago
BASHEXPLAINER: print _regex day in _timespan
Bash2Com: sleep until _datetime
3 Bash Code: echo $(/usr/sbin/arp $(hostname) awk -F[()] { print $ 2 })
Ground Truth: print ip address of current host
NNGen: print current host name
CodeTS5: print ip address of host name
BASHEXPLAINER: print _regex follow by current hostname

Bash2Com: print ip address of current host

best-performing baseline) by Wilcoxon signed-rank test in terms of readability,
comprehensibility, and naturalness. In our study, the hypothesis is set as follows, HO:
There is no significant difference between Bash2Com and BASHEXPLAINER in
terms of readability (comprehensibility, or naturalness). We set the significance level
at 0.05, and all the p-values of all the considered metrics are lower than 0.05. These
results show a significant difference between Bash2Com and BASHEXPLAINER in
terms of readability, comprehensibility, and naturalness.

Case study To reveal the complementary between Bash2Com and baselines, we
perform a case study by analyzing Bash code comments generated by Bash2Com
and representative baselines in each category of baselines. The results are shown in
Table 6. Although NNGen scored high in the automatic evaluation in these cases,
the generated code comments differed significantly from the ground truth. One pos-
sible reason for this is the Bash code syntax flexibility. As the best-performing base-
line BASHEXPLAINER, the comments generated in the second and third examples
were poorly readable and understandable. A possible reason for this is that it consid-
ers information from the retrieved corpus, and this interference affects the model’s
performance. In addition, the comments generated by CodeT5 are somewhat distant
from the ground truth. These examples show that Bash2Com can make up for the
shortcomings of baselines.

Summary for RQ1: Bash2Com improves the performance by at least 11.81%,
5.14% and 6.13% over the best-performing baseline BASHEXPLAINER in
terms of BLEU-4, METEOR and ROUGE-L. Moreover, human study shows

@ Springer

30 Page 20 of 34 Automated Software Engineering (2024) 31:30

Table 7 Ablation study results

. . Setting BLEU-3 BLEU-4 METEOR ROUGE-L
for adversarial training methods
in Bash2Com wloNP-GD 32.83 28.28 27.95 49.18
with FGSM 28.70 25.22 26.12 47.99
with FGM 33.74 29.14 27.82 49.20
with PGD 34.42 29.91 28.65 49.57
Bash2Com 37.19 32.57 30.26 51.80

that Bash2Com outperforms three baselines in terms of informativeness, natu-
ralness, and similarity.

5.2 RQ2: How much does our proposed component, NP-GD, contribute
to the effectiveness of our proposed method, Bash2Com, in achieving its
objectives?

RQ2 aims to investigate the impact of three different adversarial training methods
on the Bash code comment generation task. In particular, we consider the popular
adversarial training methods (i.e., FGSM Goodfellow et al. 2015, FGM Miyato et al.
2017 and PGD Madry et al. 2018). FGSM aims to make the disturbance direction &
by following the gradient direction and takes the max normalization of the gradient
by the sign function. Unlike FGSM, which takes the same steps in each direction,
FGM scales according to specific gradients to obtain better adversarial examples.
FGM uses L, normalization, which divides the value of each gradient dimension by
the L, parameter of the gradient.

Table 7 shows the comparison results of using different adversarial training meth-
ods. The experimental results show that utilizing NP-GD can significantly improve
the model performance. Specifically, compared to Bash2Com without NP-GD,
Bash2Com can improve the performance by 13.28%, 15.17%, 8.26% and 5.33% for
BLEU-3, BLEU-4, METEOR, and ROUGE-L respectively. This result indicates that
our data augmentation component NP-GD is significantly valuable for the Bash code
comment generation task. At the same time, the experimental results also show that
NP-GD can achieve the best performance among the different adversarial training
methods. NP-GD can improve the performance by 8.05%, 8.89%, 5.62%, and 4.50%
for BLEU-3, BLEU-4, METEOR, and ROUGE-L respectively, compared to the
best-performing baseline method PGD. This result shows that our proposed NP-GD
can fully use the advantages of L, normalization and L, normalization, which even-
tually improves the stability of the normalization process and makes it more suitable
for the Bash code comment generation task.

Summary for RQ2: For the Bash code comment generation task, NP-GD can
contribute more than traditional adversarial training methods.

@ Springer

Automated Software Engineering (2024) 31:30 Page210f34 30

Table 8 Ablation study results

fabe8 Abaionsudy fells Setting BLEU-3 BLEU-4 METEOR ROUGE-L
Bash2Com wlo MASA 33.55 28.98 2831 48.86
with GRU 34.44 29.83 28.75 49.34
with Bi-LSTM 34.83 30.24 28.82 49.81
Bash2Com 37.19 3257 3026 51.80

5.3 RQ3: How much does our proposed component, MASA, contribute
to the effectiveness of our proposed method, Bash2Com, in achieving its
objectives?

RQ3 aims to conduct an ablation study to demonstrate the effectiveness of semantic-
aware component MASA utilized by our proposed method Bash2Com. Specifically,
we set up four control methods:

(1) without MASA: To verify the necessity of a semantic-aware component, we
directly utilize the output of the last layer of CodeBERT as the learned feature
information into the decoder to generate Bash code comments;

(2) with GRU: To verify the ability of different RNN models to aggregate feature
information in this method, we utilize GRU-Attention (Cho et al. 2014) to fuse
the feature information output from each layer of CodeBERT into the decoder
to generate Bash code comments;

(3) with Bi-LSTM: To verify the ability of different RNN models to aggregate
feature information in this method, we utilize Bi-LSTM-Attention (Graves and
Schmidhuber 2005) to fuse the feature information output from each layer of
CodeBERT into the decoder to generate Bash code comments;

(4) with MASA: This is the component applied by Bash2Com, which utilizes LSTM
+ Attention to fuse the feature information output from each layer of CodeBERT
into the decoder to generate Bash code comments.

Table 8 shows the results of the ablation experiments. After comparing these con-
trol methods, Bash2Com with MASA can achieve the best performance. Specifi-
cally, compared to no MASA, Bash2Com with MASA can improve the performance
by 10.85%, 12.39%, 6.89% and 6.02% for BLEU-3, BLEU-4, METEOR, and
ROUGE-L respectively. This result shows that LSTM can effectively fuse repre-
sentative information from CodeBERT output, which helps to improve the quality
of the generated Bash code comments. In addition, compared with other variants
of RNNs, Bash2Com with MASA can improve the performance by at least 6.78%,
7.71%, 5.00%, and 4.00% for BLEU-3, BLEU-4, METEOR, and ROUGE-L respec-
tively. This result indicates that MASA can fuse the representative information from
CodeBERT output more effectively than other variants of RNNs in this ablation
experiment, which can ultimately improve the quality of the generated Bash code
comments.

@ Springer

30 Page 22 of 34

Automated Software Enginee

ring

(2024) 31:30

Fig. 4 Sensitivity Analysis on
the number of decoder layers
(the left axis is used for BLEU
and METEOR, and the right
axis is used for ROUGE-L)

Fig.5 Sensitivity Analysis on
the number of adversarial exam-
ples (the left axis is used for
BLEU and METEOR, and the
right axis is used for ROUGE-L)

38

36

34

32

30

28

38

36

34

32

30

28

—-%-—BLUE-3 BLUE-4 - @' METEOR —#—ROUGE-L

L . e —e—— - —* 4
e
- @ e @, @i e 4
o
2 4 6 10
decoder_layers
—-%-—BLUE-3 BLUE-4 @ METEOR —#— ROUGE-L
*o— —d T TH - —*o
~y
L @ i @ e @ e, ®..... 4
vvvvvvvv °
1 2 3 5
#K

Summary for RQ3: The utilization of MASA by Bash2Com is shown to
enhance model performance, with the LSTM model selected by MASA dem-
onstrating superior performance compared to other RNN variants.

6 Discussion

6.1 Analysis on the hyper-parameters setting

55

53

51

49

47

45

55

53

51

49

47

45

In this subsection, we perform a sensitivity analysis on the parameters of Bash-
2Com. We mainly focus on two parameters (i.e., the number of decoder layers
decoder_layers and the number of adversarial examples K). The results of the sen-
sitivity analysis are shown in Fig. 4 and Fig. 5, where all hyperparameters except
the hyperparameter of the current analysis are set to the optimal setting. Since the
numerical differences in evaluation measures, the left axis is used for BLEU and

@ Springer

Automated Software Engineering (2024) 31:30 Page230f34 30

Fig.6 Analysis on the impact of 60

different code lengths —e— BLEU-4
50 —#— METEOR

—&— ROUGE-L

40 -
30 A
204 |
10

Fig.7 Analysis on the impact of 60

different comments lengths —e— BLEU-4
50 —#— METEOR

—A— ROUGE-L

METEOR, and the right axis is used for ROUGE-L. The optimal settings are set
as follows: decoder_layers is 6, and K is 3.

In Fig. 4, we find that the best performance is achieved for all four evaluation
metrics when the number of layers of the decoder is 6. When the number of layers
of the decoder is increased from 2 to 6, the scores of the four evaluation measures
show a decreasing trend followed by an increasing trend. When the number of
layers of the decoder is larger than 6, the scores of the four evaluation measures
show a flat decreasing trend. When the number of generated adversarial examples
changes from 1 to 5, the four evaluation measures shown in Fig. 5 show an over-
all trend of rising first and then declining, and we set the value of this parameter
to 3 since it can achieve the best performance. In our experiments, to balance the
performance and cost of the model, we set the number of decoder layers to 6 and
the number of generated adversarial examples to 3.

6.2 Impact analysis of code lengths and comment lengths

In this subsection, we analyze the performance of Bash2Com in different code
lengths and comment lengths with BLEU-4, METEOR, and ROUGE-L. The
results of the influence results can be found in Fig. 6 and Fig. 7. Based on the
experimental results, we find that the performance of Bash2Com is consistent
with the statistical distribution of the corpus.

@ Springer

30 Page 24 of 34 Automated Software Engineering (2024) 31:30

Eﬂfgpfinrgp];‘;i:}‘l’;‘crs;ﬂ“ of " Method BLEU METEOR ROUGE-L CIDEr
ChatGPT(zero-shot) 10.92 6.91 10.91 10.02
ChatGPT(one-shot) 1851 10.64 17.49 17.75
Bash2Com 4207 3026 51.80 26.14

To generate a short comment in one sentence for
bash code. To alleviate the difficulty of this task, |
will give you one example. Please learn from them. An
To generate a short comment in one sentence for |Input: find Path -name Regex -print example
bash code. Output: find all file and directori name _REGEX in
input entir filesystem
Input: #code#
Output: To generate a short comment in one sentence for
bash code.
A new
Input: #code# } input
Output:
zero-shot one-shot

Fig. 8 Prompts of zero-shot and one-shot

According to the corpus statistics in Table 1, we know that the length of most
Bash code and the corresponding comments are mainly around 8 or 11 words in
the corpus. In addition, 90.8% (80.3%) of Bash code (comments) is less than 16
words in length. Based on these training sets, Bash2Com is stable in length from
1 to 16. Moreover, because there are data with a length of more than 32, the per-
formance of the model declines. This result indicates that our data augmentation
technology is valuable for the Bash code comment generation task. Therefore,
collecting more corpus according to our length analysis in the future can further
strengthen our Bash code comment generation method Bash2Com.

6.3 Performance analysis of ChatGPT

Large language models (LLMs) have been used for many mainstream software
engineering tasks, which refer to a class of artificial intelligence models that use
an enormous amount of parameters and are designed to process and generate
human-like text based on large-scale language datasets (Zhao et al. 2023). In our
study, we also designed related experiments to verify the performance of LLMs
in the Bash code comments generation task. The model used in our experiment is
GPT3.5, a widely used version of ChatGPT.!!

Specifically, we conduct two sets of experiments as shown in Fig. 8. The left half is
based on zero-shot learning, which involves generating Bash comments without any
prompt information. The right half is based on one-shot learning, employing the prompt
learning method (Gu et al. 2022), which provides a group of prompt information. This

' https://chat.openai.com/

@ Springer

https://chat.openai.com/

Automated Software Engineering (2024) 31:30 Page250f34 30

method can be utilized as an expert question-answer form to leverage ChatGPT’s capabil-
ities in related fields more effectively. Prompts cover the basic input—output structure, and
italicized sentences are instructions for ChatGPT, indicating the objectives and related
restrictions of ChatGPT. Then, the prompt ends with a new requirement and is fed into
ChatGPT. We hope ChatGPT to learn from examples and generate a comment for a new
requirement. Additionally, we limit the comment length. This setting can avoid generating
excessively long comments, which may achieve low scores in automatic evaluation.

Table 9 shows the comparison results of Bash2Com and ChatGPT. The BLEU
is the average value of BLEU-1/2/3/4, and we added CIDEr (Vedantam et al. 2015)
to evaluate the model performance further. The results show that our method Bash-
2Com improved over ChatGPT. Specifically, in the automatic index evaluation,
ChatGPT (one-shot) performs better than the native ChatGPT(zero-shot), but both
are behind Bash2Com. This result indicates that ChatGPT needs advanced profes-
sional knowledge to play its performance, but Bash code, as a small language, does
not have too many corpora to train the GPT model. ChatGPT can be optimized
through prompt learning technology, but it may need more data support, and we will
also pay attention to it in future research.

6.4 Limitations of Bash2Com

Our automatic evaluation shows that our proposed method Bash2Com outperformed
the baselines. However, we also notice that Bash2Com may generate comments of
lower quality than the ground truth. Therefore, we utilize BLEU-4 as the filtering
metric to filter out the data by threshold (BLEU-4<0.01). After using this filtering
strategy, we collect 190 pieces of data and these filtered data is available on our
homepage.'? After analyzing all these data manually, we identify three main chal-
lenges for our proposed approach.

The first challenge is that when technicians write comments, synonyms are diver-
sified. For example, “search system for file _file" and “find all files under _file and
sort them" contain some synonyms, but the mixed words cause Bash2Com predic-
tion error. One possible solution is to standardize comment writing and avoid mix-
ing synonymous words.

The second challenge arises when some common fields of Bash code are over-
written. For example, some Bash code snippets find or remove files under a cer-
tain path. The original Bash code is “find ask : ask/wwwlaskapache" or “rm
ask : asklwwwlaskapache", but it became “find Path" or “rm File" after preprocess-
ing. This operation is helpful for Bash2Com to learn more important semantic infor-
mation in Bash code. However, it will also make some code inputs too short, making
Bash2Com difficult to learn semantics.

The third challenge is that the current model’s performance can still be improved.
Therefore, further augmenting the training data and improving the diversity of the
contained Bash code and comments may alleviate this issue.

12 https://github.com/syhstudy/Bash2Com/blob/master/limitation_data.csv

@ Springer

https://github.com/syhstudy/Bash2Com/blob/master/limitation_data.csv

30 Page 26 of 34 Automated Software Engineering (2024) 31:30

Finally, we analyze the complementarity from the limitation to reveal further perils
and pitfalls of Bash2Com and baselines. For example, the Bash code is “find Path -name
Regex" and the ground truth is “find all text file in current folder". The generated com-
ment by Bash2Com is “find all text file of current folder", BASHEXPLAINER is “find
all text file in folder", and NNGen is “find file in current folder". Based on this case, we
observe that the comment generated by Bash2Com demonstrates good informativeness
and similarity. However, there is a decrease in naturalness due to the substitution of “in"
with “of". On the other hand, BASHEXPLAINER and NNGen generate comments with
slightly lower informativeness (missing determiners). However, they exhibit naturalness
and fluency.

6.5 Threats to validity

Internal threats The first internal threat is the potential faults in implementing Bash-
2Com. To mitigate this threat, we utilize mature libraries(such as PyTorch and trans-
formers) to implement the methods. The second internal threat is the randomness
of adversarial training to generate adversarial examples. To mitigate this threat, we
guarantee the replicability of our method by fixing random seeds. The third internal
threat is the baselines considered in RQ1. For these baselines, we use the scripts
shared by Yu et al.!* Then, we reproduce other baseline models according to origi-
nal studies and achieve similar performance.

External threats The main external threat to this study is the corpus. To mitigate
this problem, we performed data augmentation using adversarial training. Also, we
follow the previous study’s settings (Yu et al. 2022) in the division of the corpus to
ensure a fair comparison.

Construct threats Construct threats mainly refer to the selection of automatic assess-
ment measures. To mitigate these threats, we chose three performance measures: BLEU
(Papineni et al. 2002), METEOR (Banerjee and Lavie 2005), and ROUGE-L (ROUGE
2004). These evaluation measures are widely utilized in the field of neural machine trans-
lation and automatic comment generation (Lin et al. 2023; Wei et al. 2020; Li et al. 2021,
Yang et al. 2023; Cao et al. 2021; Zhang et al. 2020; Yang et al. 2021; Liu et al. 2022; Li
et al. 2022). We also conduct a human study and compute the p-value by using the Wil-
coxon signed-rank test to evaluate the readability, comprehensibility, and naturalness of
Bash comments generated by our proposed method and representative baselines.

Conclusion threats We only split the corpus once because of the high compu-
tational cost of deep learning. This setting is consistent with the previous study on
Bash code comment generation (Yu et al. 2022). To mitigate the conclusion threat,
we also randomly split the corpus three times by different random seeds, and we
show detailed comparison results on the project homepage,'* which also confirms
the effectiveness of our proposed method when compared with baselines. The sec-
ond conclusion threat is related to the experience of volunteers. To alleviate this
threat, we recruited ten volunteers. For master-level volunteers, they have 1-3 years
of experience in Linux development and maintenance. For doctor-level volunteers,

13 https://github.com/NTDX YG/BASHEXPLAINER
1 https://github.com/syhstudy/Bash2Com/blob/master/README_add.md

@ Springer

https://github.com/NTDXYG/BASHEXPLAINER
https://github.com/syhstudy/Bash2Com/blob/master/README_add.md

Automated Software Engineering (2024) 31:30 Page270f34 30

they have over 3 years of experience. However, we acknowledge there still may exist
some misjudgments caused by the relatively limited experience of these volunteers
and this is a potential threat to our study’s conclusion validity.

7 Related work
7.1 Code comment generation

Code comment generation (Alon et al. 2018; Yang et al. 2022; Wu et al. 2021) is
a task that generates comments for a piece of the source code. We classify these
methods into the following three categories: Information retrieval-based, Deep
learning-based, and hybrid methods.

Information retrieval-based methods were first investigated, often achieving
better high-reusable code performance. Haiduc et al. (2010b) first proposed VSM
(Vector Space Model) and LSI (Latent Semantic Index) to retrieve relevant terms
from a corpus to generate comments on classes and methods. Then Eddy et al.
(2013) extended it to a thematic model hPAM to build code comments. Recently,
Yang et al. (2022) proposed the method CCGIR based on semantic similarity,
lexical similarity, and syntactic similarity of smart contract code.

Regarding deep learning-based methods, researchers discovered that leverag-
ing code structure information could enhance the quality of model generation.
LeClair et al. (2020) proposed treating the words in the code and the serialized
AST structure as separate data sources. Furthermore, they also introduced a
graph-based neural architecture method (LeClair et al. 2019) that better matches
the default structure of the AST to generate these comments. Meanwhile, Wu
et al. (2021) proposed a structure-guided Transformer, which incorporates multi-
perspective structural cues to guide the encoding process. Then, Wei et al. (2019)
and Ye et al. (2020) used the dual learning framework to explore the relationship
between Code summarization and Code generation to improve the model perfor-
mance. Haque et al. (2020) modeled other subroutines within the same file and
employed attention mechanisms to identify the words and concepts used in the
summary. Recently, Mastropaolo et al. (2022) discovered that pre-trained models
can achieve success in code summarization tasks.

Some recent studies have proposed a hybrid method that combines multiple
inputs. Wei et al. (2020) proposed the Re?Com method, which retrieves similar
code snippets and then reuses existing comments as examples to guide comment
generation. Zhang et al. (2020) proposed the Rencos method, which considers
syntactic and semantic similarity. Rencos retrieves the two most similar code
fragments from the corpus, generates fusion vectors, and then decodes the fusion
vectors to generate comments.

However, most of the existing comment-generation methods focus on popu-
lar programming languages. In this study, we focus on a specific programming
language Bash, and propose a novel Bash comment generation method Bash-
2Com. Aiming at the challenges faced by Bash code comment generation, such
as insufficient corpus, we propose a data enhancement component named NP-GD.

@ Springer

30 Page 28 of 34 Automated Software Engineering (2024) 31:30

Moreover, we further propose a semantic awareness component, MASA, to learn
the semantic representation of Bash code better. Both automatic evaluation and
human study verify the effectiveness of our study.

7.2 Data augmentation in NLP

In natural language processing, typical data augmentation methods can be cat-
egorized as rule-based and gradient-based. For the former, Wei and Zou (2019)
proposed the EDA method, which includes some easy data augmentation oper-
ations. Xie et al. (2020) proposed the UDA algorithm related to noncore word
replacement technology, that is, to replace a certain proportion of nonimportant
words in the text with unimportant words in the dictionary to generate new text.
Anaby-Tavor et al. (2020) proposed a GPT-based data augmentation technology,
LAMBDA, which first pre-trained and then fine-tunes the model on a small num-
ber of corpus for different tasks.

For the gradient-based data augmentation technology (e.g., adversarial train-
ing), Miyato et al. (2017) introduced adversarial training and virtual adversarial
training (Miyato et al. 2018) into the NLP domain to improve the performance of
classification models. Ebrahimi et al. (2018) proposed using character/word sub-
stitution (white-box method) to generate adversarial examples. Zhu et al. (2020)
utilized a gradient-based method to add adversarial perturbations to the embed-
ding of input sentences, allowing the model to improve performance in the field
of natural language understanding. Recently, Zhang et al. (2020) also found that
model performance can significantly improve in code comment generation by
generating adversarial examples.

To the best of our knowledge, no research has focused on the performance of
adversarial training in bash code comment generation. We consider adversarial
training in our method Bash2Com to fill this gap. Moreover, to better adapt to
our task, we designed a customized adversarial training method NP-GD, which
uses L, normalization to reduce the effect of large values on the vectors and then
applies L, normalization to ensure that the resulting vectors have a consistent
length and sum to 1.

7.3 Bash code comment generation

Lin et al. (2018) were the first to study the field of Bash code and constructed a
corpus of Bash code using natural language descriptions. Yu et al. (2022) further
enriched the corpus based on the study of Lin et al. (2017). They combined the
NL2Bash study with the corpus shared in the NLC2CMD competition to con-
struct a corpus with 10,592 Bash codes and corresponding comments. They also
propose an automatic generation model BASHEXPLAINER for Bash code com-
ments based on a two-stage training strategy.

However, Yu et al. (2022) only used information retrieval methods to enhance
input representation. Motivated by the Bash code comment generation task, we

@ Springer

Automated Software Engineering (2024) 31:30 Page290f34 30

introduce the idea of data augmentation and multi-layer semantic awareness,
making the model fine-tuned on a larger corpus and learning the multi-level
semantic representation.

8 Conclusion

In this study, we propose a novel Bash comment generation method Bash2Com,
which includes two components NP-GD and MASA. Specifically, NP-GD is
designed to enhance the data representation. In NP-GD, the data is augmented
by acting on the adversarial training of the embedding layer. MASA is designed
to represent better information learned by each layer in CodeBERT. In MASA,
the representation information of each layer of CodeBERT is fully utilized using
LSTM, and weights are assigned to each layer using an attention mechanism.
Finally, the Transformer decoder utilizes the output vector to generate the corre-
sponding Bash comment. We evaluate the effectiveness of the Bash2Com through
extensive experiments, which show that our proposed method outperforms state-
of-the-art baselines.

In the future, we want to evaluate the effectiveness of our proposed method by
extending it to more low-resource source code understanding tasks. Moreover, we
also want to further improve our proposed method’s performance by considering
more advanced code representation and adversarial training methods.

References

Ahmad, W., Chakraborty, S., Ray, B., Chang, K.-W.: A transformer-based approach for source code
summarization. In: Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 4998-5007 (2020)

Ahmad, W., Chakraborty, S., Ray, B., Chang, K.-W.: Unified pre-training for program understand-
ing and generation. In: Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2655-2668
(2021)

Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from structured representa-
tions of code. In: International Conference on Learning Representations (2018)

Anaby-Tavor, A., Carmeli, B., Goldbraich, E., Kantor, A., Kour, G., Shlomov, S., Tepper, N.,
Zwerdling, N.: Do not have enough data? deep learning to the rescue! In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 7383-7390 (2020)

Banerjee, S., Lavie, A.: Meteor: An automatic metric for mt evaluation with improved correlation
with human judgments. In: Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation And/or Summarization, pp. 65-72 (2005)

Cao, K., Chen, C., Baltes, S., Treude, C., Chen, X.: Automated query reformulation for efficient
search based on query logs from stack overflow. In: 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering, pp. 1273-1285 (2021)

Chen, F., Fard, F.H., Lo, D., Bryksin, T.: On the transferability of pre-trained language models for
low-resource programming languages. In: Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, pp. 401-412 (2022)

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder—decoder for statistical machine translation.

@ Springer

30 Page 30 of 34 Automated Software Engineering (2024) 31:30

In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
p. 1724 (2014)

Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D.: Electra: Pre-training text encoders as discrimina-
tors rather than generators. In: International Conference on Learning Representations (2019)
Dong, X.L., Zhu, Y., Fu, Z., Xu, D., de Melo, G.: Data augmentation with adversarial training for
cross-lingual nli. In: Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing,

pp. 5158-5167 (2021)

Ebrahimi, J., Rao, A., Lowd, D., Dou, D.: Hotflip: White-box adversarial examples for text classifica-
tion. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics, pp. 31-36 (2018)

Eddy, B.P., Robinson, J.A., Kraft, N.A., Carver, J.C.: Evaluating source code summarization tech-
niques: Replication and expansion. In: 2013 21st International Conference on Program Compre-
hension, pp. 13-22 (2013)

Fatima, S., Ghaleb, T.A., Briand, L.: Flakify: a black-box, language model-based predictor for flaky tests.
IEEE Trans. Softw. Eng. 49(4), 1912-1927 (2022)

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., Zhou,
M.: CodeBERT: a pre-trained model for programming and natural languages. ACL Anthology,
15361547 (2020)

Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 3th Interna-
tional Conference on Learning Representations (2015)

Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neu-
ral network architectures. Neural Netw. 18(5-6), 602-610 (2005)

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J.: Unixcoder: Unified cross-modal pre-training for
code representation. In: Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 7212-7225 (2022)

Gu, J., Salza, P., Gall, H.C.: Assemble foundation models for automatic code summarization. In: 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering, pp. 935-946
(2022)

Gu, Y., Han, X., Liu, Z., Huang, M.: Ppt: Pre-trained prompt tuning for few-shot learning. In: Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 8410-8423
(2022)

Haiduc, S., Aponte, J., Marcus, A.: Supporting program comprehension with source code summarization.
In: 2010 Acm/ieee 32nd International Conference on Software Engineering, vol. 2, pp. 223-226
(2010)

Haiduc, S., Aponte, J., Moreno, L., Marcus, A.: On the use of automated text summarization techniques
for summarizing source code. In: 2010 17th Working Conference on Reverse Engineering, pp.
35-44 (2010)

Haque, S., LeClair, A., Wu, L., McMillan, C.: Improved automatic summarization of subroutines via
attention to file context. In: Proceedings of the 17th International Conference on Mining Software
Repositories, pp. 300-310 (2020)

He, H.: Understanding source code comments at large-scale. In: ESEC/FSE 2019: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 1217-1219. Association for Computing Machinery,
New York, NY, USA (2019)

Hochreiter, S., Schmidhuber, J.: Lstm can solve hard long time lag problems. Advances in neural infor-
mation processing systems 9 (1996)

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearchnet challenge: Evaluating
the state of semantic code search. arXiv preprint arXiv:1909.09436 (2019)

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: 2018 IEEE/ACM 26th Inter-
national Conference on Program Comprehension, pp. 200-20010 (2018)

Hu, X, Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hybrid lexical and syntactical
information. Empir. Softw. Eng. 25(3), 2179-2217 (2020)

Hu, X., Gao, Z., Xia, X., Lo, D., Yang, X.: Automating user notice generation for smart contract func-
tions. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering, pp.
5-17 (2021)

@ Springer

http://arxiv.org/abs/1909.09436

Automated Software Engineering (2024) 31:30 Page310f34 30

Irsan, I.C., Zhang, T., Thung, F., Kim, K., Lo, D.: Picaso: Enhancing api recommendations with relevant
stack overflow posts. arXiv preprint arXiv:2303.12299 (2023)

Iyer, S., Konstas, 1., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention
model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics: Long Papers, pp. 2073-2083 (2016)

Iyer, S., Konstas, 1., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention
model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics, pp. 2073-2083 (2016)

Jawahar, G., Sagot, B., Seddah, D.: What does bert learn about the structure of language? In: 57th Annual
Meeting of the Association for Computational Linguistics (2019)

Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Zhao, T.: Smart: Robust and efficient fine-tuning for pre-
trained natural language models through principled regularized optimization. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 2177-2190 (2020)

Kan, J.-W., Chien, W.-C., Wang, S.-D.: Grid structure attention for natural language interface to bash
commands. In: 2020 International Computer Symposium, pp. 67-72 (2020)

Kenton, J.D.M.-W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of NAACL-HLT, pp. 4171-4186 (2019)

Kondratyuk, D., Straka, M.: 75 languages, 1 model: Parsing universal dependencies universally. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, pp. 2779-2795 (2019)

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: A lite bert for self-super-
vised learning of language representations. In: International Conference on Learning Representa-
tions (2019)

LeClair, A., Jiang, S., McMillan, C.: A neural model for generating natural language summaries of pro-
gram subroutines. In: 2019 IEEE/ACM 41st International Conference on Software Engineering, pp.
795-806 (2019)

LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via a graph neural network.
In: Proceedings of the 28th International Conference on Program Comprehension, pp. 184-195
(2020)

Lin, X.V.,, Wang, C., Pang, D., Vu, K., Ernst, M.D.: Program synthesis from natural language using recur-
rent neural networks. University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01 (2017)

Lin, X.V., Wang, C., Pang, D., Vu, K., Zettlemoyer, L., Ernst, M.D.: Program synthesis from natural
language using recurrent neural networks. In: Technical Report UW-CSE-17-03-01, University of
Washington Department of Computer Science and Engineering (2017)

Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D.: NI2bash: A corpus and semantic parser for natural
language interface to the linux operating system. In: Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation (2018)

Lin, H., Chen, X., Chen, X., Cui, Z., Miao, Y., Zhou, S., Wang, J., Su, Z.: Gen-fl: quality prediction-
based filter for automated issue title generation. J. Syst. Softw. 195, 111513 (2023)

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-machine-translation-based commit
message generation: how far are we? In: Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, pp. 373-384 (2018)

Liu, K., Yang, G., Chen, X., Zhou, Y.: El-codebert: Better exploiting codebert to support source code-
related classification tasks. In: Proceedings of the 13th Asia-Pacific Symposium on Internetware,
pp. 147-155 (2022)

Liu, K., Yang, G., Chen, X., Yu, C.: SOTitle: A Transformer-based Post Title Generation Approach for
Stack Overflow, pp. 577-588 (2022)

Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1222-1230 (2017)

Li, Z., Wu, Y., Peng, B., Chen, X., Sun, Z., Liu, Y., Paul, D.: Setransformer: A transformer-based code
semantic parser for code comment generation. In: IEEE Transactions on Reliability (2022)

Li, Z., Wu, Y., Peng, B., Chen, X., Sun, Z., Liu, Y., Yu, D.: Secnn: a semantic CNN parser for code com-
ment generation. J. Syst. Softw. 181, 111036 (2021)

@ Springer

http://arxiv.org/abs/2303.12299

30 Page 32 of 34 Automated Software Engineering (2024) 31:30

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to
adversarial attacks. In: 6th International Conference on Learning Representations (2018)

Mastropaolo, A., Cooper, N., Palacio, D.N., Scalabrino, S., Poshyvanyk, D., Oliveto, R., Bavota, G.:
Using transfer learning for code-related tasks. IEEE Trans. Softw. Eng. 49(4), 1580-1598 (2022)

Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-supervised text classifica-
tion. In: 5th International Conference on Learning Representations (2017)

Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for
supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979-1993
(2018)

Moreno-Barea, F.J., Strazzera, F., Jerez, J.M., Urda, D., Franco, L.: Forward noise adjustment scheme for
data augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence, pp. 728-734
(2018)

Morris, J., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y.: Textattack: A framework for adversarial
attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 119-126
(2020)

Newham, C.: Learning the bash shell: uniX shell programming. O’Reilly Media Inc (2005)

Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: Bleu: a method for automatic evaluation of machine trans-
lation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguis-
tics, pp. 311-318 (2002)

Phan, L., Tran, H., Le, D., Nguyen, H., Annibal, J., Peltekian, A., Ye, Y.: Cotext: Multi-task learning with
code-text transformer. In: Proceedings of the 1st Workshop on Natural Language Processing for Pro-
gramming, pp. 40-47 (2021)

Provilkov, 1., Emelianenko, D., Voita, E.: Bpe-dropout: Simple and effective subword regularization.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
1882-1892 (2020)

Rey, D., Neuhduser, M.: Wilcoxon-signed-rank test. In: International Encyclopedia of Statistical Science,
pp. 1658-1659 (2011)

ROUGE, L.C.: A package for automatic evaluation of summaries. In: Proceedings of Workshop on Text
Summarization of ACL (2004)

Schmidt, M., Fung, G., Rosales, R.: Fast optimization methods for 11 regularization: A comparative
study and two new approaches. In: Machine Learning: ECML 2007: 18th European Conference on
Machine Learning, Warsaw, Poland, September 17-21, 2007. Proceedings 18, pp. 286-297 (2007)

Shi, E., Wang, Y., Gu, W., Du, L., Zhang, H., Han, S., Zhang, D., Sun, H.: Cocosoda: Effective contras-
tive learning for code search. In: 2023 IEEE/ACM 45th International Conference on Software Engi-
neering, pp. 2198-2210 (2023)

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and
unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2107-2116 (2017)

Simon-Gabriel, C.-J., Ollivier, Y., Bottou, L., Scholkopf, B., Lopez-Paz, D.: First-order adversarial vul-
nerability of neural networks and input dimension. In: International Conference on Machine Learn-
ing, pp. 5809-5817 (2019)

Su, T.-C., Cheng, H.-C.: Sesamebert: Attention for anywhere. In: 2020 IEEE 7th International Confer-
ence on Data Science and Advanced Analytics, pp. 363-369 (2020)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Advances in
neural information processing systems 27 (2014)

Trizna, D.: Shell language processing: Unix command parsing for machine learning. arXiv preprint
arXiv:2107.02438 (2021)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.:
Attention is all you need. Adva. Neural Inf. Process. Syst. 30, 5998-6008 (2017)

Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image description evaluation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566—
4575 (2015)

Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In: Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 8696-8708 (2021)

@ Springer

http://arxiv.org/abs/2107.02438

Automated Software Engineering (2024) 31:30 Page330f34 30

Wei, J., Zou, K.: Eda: Easy data augmentation techniques for boosting performance on text classifica-
tion tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing, pp. 6382-6388
(2019)

Wei, B., Li, G., Xia, X., Fu, Z., Jin, Z.: Code generation as a dual task of code summarization. Advances
in neural information processing systems 32 (2019)

Wei, B, Li, Y, Li, G, Xia, X., Jin, Z.: Retrieve and refine: exemplar-based neural comment genera-
tion. In: 2020 35th IEEE/ACM International Conference on Automated Software Engineering, pp.
349-360 (2020)

Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search optimization. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1296-1306
(2016)

Wu, H., Zhao, H., Zhang, M.: Code summarization with structure-induced transformer. In: Findings of
the Association for Computational Linguistics, pp. 1078-1090 (2021)

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Measuring program comprehension: a large-scale
field study with professionals. IEEE Trans. Softw. Eng. 44(10), 951-976 (2017)

Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training.
Adyv. Neural Inf. Process. Syst. 33, 6256—-6268 (2020)

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmen-
tation and object detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1369-1378 (2017)

Yang, G., Chen, X., Cao, J., Xu, S., Cui, Z., Yu, C., Liu, K.: Comformer: Code comment generation via
transformer and fusion method-based hybrid code representation. In: 2021 8th International Confer-
ence on Dependable Systems and Their Applications, pp. 3041 (2021)

Yang, G., Zhou, Y., Chen, X., Yu, C.: Fine-grained Pseudo-code Generation Method via Code Feature
Extraction and Transformer, pp. 213-222 (2021)

Yang, G., Chen, X., Zhou, Y., Yu, C.: Dualsc: Automatic generation and summarization of shellcode via
transformer and dual learning. In: IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022, pp. 361-372 (2022)

Yang, G., Liu, K., Chen, X., Zhou, Y., Yu, C., Lin, H.: Ccgir: information retrieval-based code comment
generation method for smart contracts. Knowledge-Based Syst. 237, 107858 (2022)

Yang, G., Zhou, Y., Chen, X., Zhang, X., Han, T., Chen, T.: Exploitgen: template-augmented exploit code
generation based on codebert. J. Syst. Softw. 197, 111577 (2023)

Ye, W, Xie, R., Zhang, J., Hu, T., Wang, X., Zhang, S.: Leveraging code generation to improve code
retrieval and summarization via dual learning. In: Proceedings of The Web Conference 2020, pp.
2309-2319 (2020)

Yu, C, Yang, G., Chen, X., Liu, K., Zhou, Y.: Bashexplainer: Retrieval-augmented bash code comment
generation based on fine-tuned codebert. In: 2022 IEEE International Conference on Software
Maintenance and Evolution, pp. 82-93 (2022)

Zhang, J., Wang, X., Zhang, H., Sun, H., Liu, X.: Retrieval-based neural source code summarization. In:
2020 IEEE/ACM 42nd International Conference on Software Engineering, pp. 1385-1397 (2020)

Zhang, X., Zhou, Y., Han, T., Chen, T.: Training deep code comment generation models via data augmen-
tation. In: 12th Asia-Pacific Symposium on Internetware, pp. 185-188 (2020)

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., et al.:
A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)

Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., Liu, J.: Freelb: Enhanced adversarial training for natu-
ral language understanding. In: 8th International Conference on Learning Representations (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

http://arxiv.org/abs/2303.18223

30 Page 34 of 34 Automated Software Engineering (2024) 31:30

Authors and Affiliations
Yiheng Shen' - Xiaolin Ju' - Xiang Chen' - Guang Yang?
P4 Xiaolin Ju

juxl@ntu.edu.cn

P4 Xiang Chen
xchencs @ntu.edu.cn

Yiheng Shen
yiheng.s @outlook.com

Guang Yang
novelyg @outlook.com

School of Information Science and Technology, Nantong University, Nantong 226019, Jiangsu,
China

College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 210016, Jiangsu, China

@ Springer

	Bash comment generation via data augmentation and semantic-aware CodeBERT
	Abstract
	1 Introduction
	2 Research background
	2.1 Data augmentation in NLP
	2.2 CodeBERT

	3 Our approach
	3.1 Data augmentation
	3.2 Model architecture
	3.3 Model application

	4 Experimental setup
	4.1 Experimental subject
	4.2 Performance measures
	4.3 Baselines
	4.4 Experimental settings

	5 Experimental results
	5.1 RQ1: How successful is our proposed method, Bash2Com, in generating Bash comments?
	5.2 RQ2: How much does our proposed component, NP-GD, contribute to the effectiveness of our proposed method, Bash2Com, in achieving its objectives?
	5.3 RQ3: How much does our proposed component, MASA, contribute to the effectiveness of our proposed method, Bash2Com, in achieving its objectives?

	6 Discussion
	6.1 Analysis on the hyper-parameters setting
	6.2 Impact analysis of code lengths and comment lengths
	6.3 Performance analysis of ChatGPT
	6.4 Limitations of Bash2Com
	6.5 Threats to validity

	7 Related work
	7.1 Code comment generation
	7.2 Data augmentation in NLP
	7.3 Bash code comment generation

	8 Conclusion
	References

