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Abstract
Fault localization aims to efficiently locate faults when debugging programs, 
reducing software development and maintenance costs. Spectrum-based fault 
location (SBFL) is the most commonly used fault location technology, which 
calculates and ranks the suspicious value of each program entity with a specific 
formula by counting the coverage information of all the program entities and 
execution results of test cases. However, previous SBFL techniques suffered from 
low accuracy due to the sole use of execution coverage. This paper proposed an 
approach GNet4FL based on the graph convolutional neural network. GNet4FL first 
collects static features based on code structure and dynamic features based on test 
results. Then, GNet4FL uses GraphSAGE to obtain node representation of source 
codes and performs feature fusion on an entity consisting of multiple nodes, which 
preserves the topological information of the graph. Finally, the representation of 
each entity is input to the multi-layer perceptron for training and ranking entities. 
The results of the study showed that GNet4FL successfully located 160 out of 
262 faults, outperforming the three state-of-the-art methods by 94, 42, and 14% in 
Top-1 accuracy, and having close results to Grace with less cost. Furthermore, we 
investigated the impact of each component (i.e., graph neural network, pruning, and 
dynamic features) of GNet4FL on the results. We found that all of these components 
had a positive impact on the proposed approach.
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1  Introduction

Program faults are inevitable during software development and evolution (Xuan 
et al. 2014). Developers must spend extensive time on testing and debugging to 
improve software quantity. Moreover, testing and debugging of a program can 
account for more than 75% of its project budget (Planning 2002). To improve 
the efficiency of program debugging, researchers proposed different automatic 
fault localization techniques, which generate fault localization reports with 
minimal human intervention to assist developers in debugging (Wong et  al. 
2016). Traditional approaches for locating faults always rely on the execution 
information of programs. Spectrum-based software fault localization (SBFL) 
designs ranking metrics to calculate statements’ suspiciousness by analyzing the 
coverage information and execution results of test cases (Abreu et al. 2009). An 
early influential study (named Tarantula) was proposed by Jones and Harrold 
(2005), which figured out the basic heuristic of SBFL that entities covered by 
the failed test cases are more likely to be faulty than those covered by the passed 
test cases. Later, various automatic fault localization approaches were proposed 
by designing new risk formulas or modifying the existing coefficients, such as 
DStar, SOBER, Falcon (Wong et al. 2013; Liu et al. 2005; Park et al. 2010; Wong 
et  al. 2010). However, SBFL approaches only consider the program coverage 
information and execution result. Therefore it is hard to achieve high accuracy 
without enough coverage information or due to the presence of coincidental 
correctness (Feyzi 2020).

Recently, several techniques for fault localization, called Mutation-based 
fault localization (MBFL), were proposed to improve fault localization accuracy. 
These MBFL techniques can analyze different program behaviors by mutating 
code entities with simple syntactic code changes, such as replacing if (a > 0) with 
if (a < 0) (Pearson et  al. 2017). Although MBFL can obtain enough coverage 
information about the execution of statements in different situations, it is 
less efficient due to the vast computation cost. Zou et  al. (2019) evaluated the 
effectiveness of SBFL, MBFL, and other methods on Defects4J. They claimed 
that SBFL is the most valuable independent fault localization method.

Deep learning techniques have made significant achievements in current 
software engineering studies, such as AI for software engineering and software 
engineering for AI (Yang et al. 2021; Zhang et al. 2020). Various fault localization 
methods based on deep learning technologies have been proposed. These methods 
extract various features of software under testing and evaluate suspiciousness 
scores based on the basic idea of SBFL or MBFL. Then, they are input into the 
deep learning model for training to obtain the ranking list. For example, DeepFL 
(Li et al. 2019) applied multi-layer perceptron (MLP) to analyze suspiciousness 
scores based on SBFL and MBFL, code complexity, and text similarity, 
respectively. FLUCCS (Sohn and Yoo 2017) learned to rank program entities 
based on suspiciousness scores of existing SBFLs, code complexity, and code 
history.
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Moreover, static fault localization techniques identify fault by analyzing 
the code structures and inferring the program semantics. Abstract syntax tree 
(AST), which can represent the syntactic structure of source code, is widely 
used in static fault localization techniques (Qian et al. 2021). Furthermore, AST-
based neural models can better represent the source code (Zhang et  al. 2019a). 
Graph embedding learns to represent each node as a vector by aggregating 
and structuring information. Compared with word embedding, it improves the 
performance of computing and provides a new way to consider semantics and 
structural relationships (Gu et al. 2021).

Graph neural networks can better consider the program’s context and perform 
better (Wu et al. 2020). This study proposes an AST-based fault localization method 
via a graph neural network called GraphSAGE, which uses sampling techniques 
to overcome the memory limitations of traditional graph neural network training 
(Hamilton et  al. 2017). This paper differs from our previous work (Qian et  al. 
2021) by adding coverage information, reducing the size of the graph structure, and 
outputting the values for each program entity via MLP. It first learns the features 
of each node based on the AST structure and coverage information, then utilizing 
MLP to calculate the statements’ suspiciousness. To evaluate the effectiveness of the 
proposed method, we also conducted an empirical study on five projects from the 
widely used Defects4J benchmark. Our empirical study indicates that GNet4FL can 
successfully locate 160 faults out of 262 in the Top-1, which is significantly better 
than the state-of-the-art baselines [Ochiai Abreu et al. (2006), FLUCCS Sohn and 
Yoo (2017), DeepFL Li et al. (2019)]. Furthermore, we investigate the impact on the 
performance of each component of GNet4FL.

In summary, our paper makes the following contributions:

•	 GNet4FL: A fault localization method based on graph convolutional neural 
networks to predict potential faulty entities via a combination of static and 
dynamic features of source code. GNet4FL combined coverage information and 
source code representation as features. In particular, the GraphSAGE aggregates 
neighboring node embedding from the entire graph structure. MLP is applied to 
rank the program entities.

•	 Empirical Study: We empirically evaluated GNet4FL on five projects from 
Defects4J. The results demonstrate the effectiveness of GNet4FL in locating 
real-world faults. The source code of GNet4FL has been made available at the 
following website.1

The rest of this paper is organized as follows. Section 2 describes the background of 
this research topic. Section 3 presents the proposed model with detailed description. 
Section  4 describes the design of research questions and experimental methods, 
evaluation metrics. Section  5 evaluates the performance of GNet4FL, including 
result comparison and analysis. Section 6 discussed the threats to the validity of our 
work. Finally, we summarized the paper in the last section.

1  https://​github.​com/​humor​rr/​GNet4​FL.

https://github.com/humorrr/GNet4FL
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2 � Background and related works

In this section, we first summarized the state of the art in fault localization and 
emphasized the novelty of our work. Then we introduce the principles of graph 
convolutional neural networks. The goal of our work aims to learn source code 
context information via graph convolutional neural networks to obtain AST node 
representations.

2.1 � Related works

There are various fault localization techniques proposed in the past decades, such 
as spectrum-based fault localization, mutation-base fault localization, Information 
Retrieval (IR) based fault localization, Deep learning-based fault localization, etc. 
This section will summarize these above techniques as follow.

Spectrum-based fault localization (SBFL) is one of the most used and classic 
technique. It is mainly based on the results of the test cases and whether the 
statements are covered or not to design the suspiciousness formula. Several ranking 
formulas exist, including Tarantula (Jones and Harrold 2005), DStar (Wong et  al. 
2013), Naish (Naish et al. 2011), Ochiai (Abreu et al. 2006), and others. Xie et al. 
(2013a) conducted a theoretical study on the validity of each formula and proved 
two groups of optimal formulas. Furthermore, SBFL is often combined with other 
techniques (such as program slice, function call graph, etc.) to improve accuracy (Ju 
et al. 2014; Vancsics et al. 2022; Mao et al. 2014; Xie et al. 2013b; Soremekun et al. 
2021). Zhang et al. (2019b) first analyzed the importance of different test cases and 
applied PageRank to compute the spectral information.

Mutation-Based Fault Localization (MBFL) means executing a test case on 
a modified program and then calculating the suspiciousness value of the program 
entity based on the results (Dutta and Godboley 2021). The rules that modify the 
program are called mutation operators, and the program is called after the execution 
of the mutation operators. Papadakis and Le Traon (2015) use the execution 
information before and after the mutation to calculate the suspiciousness value. 
When the results differ, the mutant is said to be killed; conversely, it is not killed. 
The formula in SBFL [e.g., Ochiai Abreu et al. (2006)] is then consulted to calculate 
the suspiciousness of the program entity. However, it is inefficient due to the long 
time required to generate mutants, which is a drawback of MBFL. Liu et al. (2017) 
selected mutants proportionally and statements covered by failed test cases multiple 
times to reduce the number of mutants generated. Their approach reduces the 
execution cost of MBFL.

IR-Based Fault Localization (IRBL) selects the program entity related to the 
fault report according to the similarity between the report and the program. IRBL 
is designed to get suspicious program modules simply by typing fault reports. Zhou 
et  al. (2012) proposed the fault locator method based on code similarity and the 
revised Vector Space Model (rVSM) to locate faulty files.

Based on the above approach, researchers considered combining multiple 
information. Peng et al. (2020) combined source code features and 14 types of SBFL 
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scores to rank program statements by encoder learning features and SVMRank. 
Xiao et al. (2021) used code semantics, 11 types of SBFL, and three types of MBFL 
method scores as features, followed by an attention mechanism and LambdaRank to 
obtain a list of FL reports. Li et al. (2019) used SBFL, MBFL, and IRBL information 
as features and implemented fault localization via MLP.

Deep learning methods became popular for fault localization recently. Wong 
and Qi (2009) proposed using program spectrum information to train a BP neural 
network and then calculate the suspiciousness of each utterance. Lam et al. (2017) 
proposed DNNLOC by combining deep learning and information retrieval. It uses 
the rVSM to generate fault reports with source code similarity features and then uses 
Deep Neural Networks (DNN) to associate the fault reports with the source code. 
Zhang et al. (2021) investigated the effectiveness of three deep learning algorithms 
(CNN, RNN, and MLP) for localizing faults in eight real-world programs.

Recently, researchers have applied traditional deep learning to graph structures 
(Qian et al. 2021). This aims to learn via the structural information and attributes 
of graphs. Due to their high ability to process graph data, graph neural networks 
have been widely used in areas of social networks, recommendation systems, link 
prediction, and other fields. Xu et  al. (2020) built graph neural network models 
to predict software defects, which use community detection methods to prune 
ASTs. The graph neural network is then used to capture source code contextual 
information. In fault localization, Lou et  al. (2021) first applied graph neural 
networks to learn graph representations and obtained a ranked list using the 
learning-to-rank algorithm. This method uses test cases as nodes in the graph and 
constructs edges between test cases and code nodes, which can effectively provide 
dynamic information to the code nodes, but this results in a more massive graph. 
Therefore, this paper uses the results of the test cases directly as node features and 
fuses the multi-node to to reduce the graph size as much as possible while retaining 
good performance. Moreover, a graph-level representation is used to compute 
probabilities via MLP.

2.2 � Graph convolution neural network

The primary idea of a Graph convolution neural network (GCN) is to learn 
representation for nodes by smoothing features over the graph (Kipf and Welling 
2017; Wu et  al. 2019). GCN can be divided into two categories: Spectral and 
Spatial. Bruna et  al. (2013) proposed the first spectral graph convolution neural 
network in 2013. They defined the graph convolution in spectral space based on 
graph and convolution theorem. Traditional deep learning methods mainly use batch 
size to solve large-scale training data problems. GCN utilizes graph convolution to 
obtain the embeddings of all adjacent nodes of each node. During back-propagation, 
all the embeddings in the graph are stored in memory, which requires a large amount 
of memory for the experimental device to process the whole graph data. Meanwhile, 
GCN is a Transductive learning method. i.e., Transductive learning uses training 
and test data to train the model and then uses test data again to test the accuracy.
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GraphSAGE samples neighbor nodes randomly so that each node’s adjacent 
nodes are less than a given number of samples (Hamilton et  al. 2017). Taking a 
node as the target node, GraphSAGE firstly randomly sampled its first-order and 
second-order neighbors and only considered the sampled node as the relevant node. 
Then, the model applied the aggregation function to the relevant node’s features and 
updated the node’s feature representation with the aggregation results. GraphSAGE 
proposes three aggregation functions: Pooling Aggregator, Mean Aggregator, and 
LSTM. Pooling and Mean Aggregator refer to relevant nodes’ maximum and means 
values as aggregation results; LSTM refers to the input of related nodes into the 
model and the output as an aggregation result. Considering the running time, we use 
Mean Aggregator (computed as Eq. 1) as the aggregation function.

where W is the weight matrix of each layer to be learned by training, k represents 
the kth layer, hk

v
 denotes the node embedding of node v after the kth aggregations, 

hk−1u ,∀u ∈  (v) denotes the ( k − 1)th layer vector of neighboring embedding, and 
� denotes the nonlinear transformation. The ( k − 1)th layer vector of node v 
vertices and neighboring vertices are concatenated and averaged, and the result is 
transformed non-linearly to produce the kth layer embedding of node v.

GraphSAGE and GCN apply feature aggregation on adjacent nodes. The main 
difference is that GraphSAGE’s aggregation is more flexible than that of GCN. 
GraphSAGE is inductive learning, which uses a trained model to predict test 
data and reduce the number of node features for training. When new nodes are 
added to the graph, the aggregation method can make GraphSAGE get the latest 
representation without iterate training. This operation prevents the over-fitting of 
model training effectively and enhances generalization ability. GraphSAGE uses a 
particular sampling method to solve the memory problem, suitable for large-scale 
graphs.

3 � Our approach

The framework of our approach can be found in Fig. 1. Our approach features the 
use of GraphSAGE and MLP to evaluate the risk of each statement. As shown in 
Fig. 1, GNet4FL is divided into two stages including Data Preprocessing and 
Model Construction. The first stage computes the AST and extracts features 
of examined source code. The second stage constructs the prediction model after 
GraphSAGE and applies MLP to sort statements. Next, we will introduce the imple-
mentation of these two stages in sequence.

3.1 � Data preprocessing

Abstract syntax code (AST), the tree sketch of a source code, represents the syn-
tactic structure of source code semantics and information. Compared to the source 
code, an AST does not contain inessential delimiters and punctuation (such as 
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Fig. 1   Framework of our approach
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braces, semicolons, parentheses, etc.). Furthermore, an AST usually contains extra 
details about the program due to the consecutive stages of analysis by the compiler. 
Many researchers applied AST to examine source code attributes for successive 
software maintenance activities. For example, Zhang et  al. (2019a) proposed the 
ASTNN method based on AST for code representation. Alon et al. (2019) proposed 
the model of Code2Vec, which parses code into AST and extracts different paths to 
implement code representation.

Firstly, we tokenized the source programs into ASTs with Javalang. In 
constructing the AST, Javalang divides the nodes into multiple types. However, 
this will increase the size of the graph structure of ASTs. Therefore, we pruned 
the original ASTs to remove the unnecessary nodes. Generally speaking, refining 
the statements to the token level will have more redundant nodes and thus affect 
the classification results. Besides, Zhang et  al. (2019a) claimed that the token-
based method caught little information. When redundant information is applied to 
the sample, it will significantly increase the proportion of correct and wrong nodes 
and be detrimental to the model’s prediction. If we use statement-level ASTs, some 
critical information will be lost (such as while and switch statements). Compared 
to the token-level graph, it has half or even fewer nodes and edges. Therefore, it is 
necessary to combine these two levels of ASTs.

Considering that the granularity of the statement is not a reasonable 
representation of the structure information for control-flow constructs (for example, 
Fig. 2a), we mainly aim to process control-flow nodes (e.g., if and for statement). 
For other types of nodes (e.g., function and variable declaration), we use the name 
of the node corresponding in Javalang as the node name, i.e., the parent node of each 
statement. This paper presents a pruning algorithm that combines two granularities, 
token and statement. To do this, the Javalang tool is used to first obtain a token-
level AST. Next, the MethodDeclaration node is identified in each AST, dividing it 
into smaller parts. Finally, the non-loop statement nodes are removed and the parent 
nodes representing the statement are kept, thereby completing the pruning process.

Taking the example of code in Mockito 33, we start with each line of statements 
using the parent node type as the node name, as illustrated in Fig. 2a. Second, refine 
the for loop to the token level. In the ForStatement node, there are two types of 
child nodes: the ForControl node and the BlockStatement node. Considering that 
there is a high probability of conditional faults in loop statements, we continue 
parsing for conditional statements, as illustrated in Fig. 2b.

In the first step, we tokenized and transformed the source code into multiple 
ASTs to obtain syntactic structure information. Then, the ASTs are pruned to 
map statements in the source code to one or more nodes, and the undirected graph 
G=(V, E) , which consists of a set of node V and edges E , are constructed. Finally, 
the adjacency matrix A ∈ {0, 1}|V|×|V| that can represent the graph information 
is obtained by traversing the graph, where A[i][j] = 1 indicates that node i is 
connected with j. Additionally, attributes for each node represent the node name, 
e.g., ClassDeclaration, WhileStatement. To convert words into numeric form, we 
apply Word2vec to word embedding. Word embedding maps words to generate a 
low-dimensional vector representation in a new space, ranging from dozens to 
thousands of dimensions. In word embedding, we set the word vector dimension 
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to 256. However, higher-dimensional vectors do not necessarily work well in 
GNN. Meanwhile, it will also have higher requirements on the memory of the 
running device in the next stage. If we directly set the word vector’s dimension 
to a small size using Word2vec, the words will be clustered together. Raunak 
(2017) used a dimensionality reduction method based on PCA to construct low-
dimensional word embedding. They discuss that the dimensionally reduced vector 
can maintain similar or better results than the original feature. Anowar et al. (2021) 
compared several feature extraction algorithms and analyzed their effectiveness 
in classification problems. In the binary classification problem, the 2-dimensional 
T-distributed neighbor embedding (T-SNE) features were only 0.0484 lower than 
the 200-dimensional features of the best KPCA in the F1-score metric. Secondly, the 
non-linear methods outperformed the linear ones in most cases. And other methods 
will require the selection of a suitable dimension for dimensionality reduction, 
which adds a parameter to the model and thus increases the randomness of the final 
result.

Inspired by the work of Anowar et  al. (2021), we apply T-SNE to reduce the 
dimension for the original embeddings. Van der Maaten and Hinton (2008) propose 
a machine learning algorithm for dimensionality reduction called T-SNE. The main 
idea is to convert the euclidean distance into conditional probability to represent the 
similarity between points. Then, the gradient descent algorithm is applied to fit the 
high-dimensional distribution after the obtained word vector is used as the feature of 
the node X∈ℝ

|V|×d , where d represents the dimension of the feature vector.
Fault localization techniques can be divided into two categories (static and 

dynamic) depending on whether test cases need to be executed. The method based 
on AST belongs to static categories by determining the location of faults with both 
the code structure and syntax information of source files. The dynamic method 
analyzes the behavior of programs under the test by executing a set of test cases. 
Considering that the statements covered by failed test cases are more likely to have 
larger suspicious scores (Wong et al. 2013), we introduce coverage information of 
AST nodes together with the execution results as the features of the programs under 
test. Specifically, we count the number of failed test cases that cover each AST node. 
If failed test cases do not cover the node, the number of times is set to 0. Otherwise, 
the number is assigned to n (n is the times of the AST node covered by the failed 
test cases). Then, the AST node coverage times obtained are combined with node 
feature X to form a new feature X̃ ∈ ℝ

|V|×d+1 . Bug reports are used to identify the 
locations of faulty lines and mark nodes to differentiate between correct and faulty 
nodes. This step is intended to obtain the locations of faults in the training data for 
the supervised learning period of our model.

3.2 � Model construction

Data Preprocessing, extracting the statement information of the source code under 
test, is to transform the source program into a graph (AST) and node features as the 
input of our model. As shown in step 2 of Fig. 1, GraphSAGE transforms the feature 
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representation of nodes by sampling and aggregating and uses the Relu activation 
function to realize non-linear transformation.

After step 2 (GraphSAGE), we obtain the node representation for each AST node. 
Due to our operations on the AST, a single statement is represented by one or more 
nodes. Wang et  al. (2019) proposed the Heterogeneous graph attention network 
(HAN), which combines different semantic information. Illuminated by the work 
of Wang et al. (2019), we refer to the treatment of multi-type features of nodes in 
heterogeneous graphs when there are multiple representations of AST nodes.

Specifically, we compare the node representation to semantic information in 
HAN. Suppose that the node Q has k nodes representing zi . Then the node Q is 
aggregated in the form of a sum of weights (Eq. 2).

where F represents the final node representation of node Q, zi is the feature of each 
node, W is the weight matrix of the one-layer neural network, and b is the bias.

The k nodes of the statement are linearly transformed by tanh-function method, 
and the mean value is taken as its feature. Next, we input the resulting data directly 
into the MLP. Since we regard fault localization as a classification problem, the 
softmax function is used to output the probability of each statement as shown in Eq. 
(3),

where y′
i
 is the output of node i and n is the number of all nodes. The softmax 

function can convert the output values to probabilities in the range [0, 1]. Finally, the 
output is treated as the suspiciousness score of the statement and sorted to generate 
an fault localization (FL) report.

4 � Empirical study

4.1 � Research questions

In our empirical study, we want to evaluate the performance of our framework 
(GNet4FL) by answering the following four research questions (RQs)

RQ1: Compared with state-of-the-art fault localization techniques, how does 
GNet4FL perform in locating real-world faults?

Motivation. In this RQ, we wanted to compare the performance of GNet4FL with 
four baselines. We have chosen a classical SBFL method (Ochiai Abreu et al. 2006) 
and three state-of-the-art deep learning methods (FLUCCS Sohn and Yoo 2017, 
DeepFL Li et al. 2019 and GRACE Lou et al. 2021) as the compared baselines.

(2)F =
1

k

∑

i∈k

⋅ tanh
(

W ⋅ zi + b
)

(3)Softmax
�
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i

�
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RQ2: Do graph neural networks improve the performance over traditional deep 
learning-based fault localization methods?

Motivation. In this RQ, we wanted to investigate the impact of performance by 
applying graph neural networks on GNet4FL. To answer this research question, we 
compare it with three machine learning methods.

RQ3: How influential are the main components of effectiveness in locating faults, 
such as pruning and dynamic features, serve of GNet4FL?

Motivation. In this RQ, we wanted to explore the effectiveness of combining 
various methods and the impact of each component on the results. To answer this 
question, we compared the effects of each component before and after its application.

RQ4: How does GNet4FL perform in cross-project fault localization?
Motivation. In RQ1, RQ2, and RQ3, we mainly evaluated the performance of 

GNet4FL on the same project. Then In RQ4, we aim to investigate the generalization 
of our proposed method. That is to say, we trained our model with some subjects 
then test the performance with another subject. This is because the training history 
data is usually not the same as the data from the examined program.

4.2 � Experimental setup

We applied GNet4FL on the benchmark (Defects4J V1.2.02) which has been widely 
used on most fault localization researches (Küçük et  al. 2021; Gong et  al. 2015; 
Lou et  al. 2021; Qian et  al. 2021) to evaluate the performances of our approach. 
Defects4J includes six real-world projects with 395 faults. Table  1 illustrated the 
characteristics of these five subjects examined in our empirical study.

Furthermore, we adopted an objective solution under the following situations to 
better evaluate the performance of fault localization on real-world faults: 

1.	 suspiciousness score: We can calculate the fault localization ranking lists with 
the prediction model, i.e., each statement corresponds to a suspiciousness score. 
When multiple statements score the same as the faulty element, we average the 
best and worst cases for these elements (Keller et al. 2017). The best case is 
when the faulty statement is the first to be checked among all statements with the 

Table 1   Characteristics of 
subjects

Subject Project name LOC(k) #Fault

Chart jfreechart 96 26
Time joda-time 28 27
Mockito mockito 23 38
Lang commons-lang 22 65
Math commons-math 85 106
Total 254 262

2  https://​github.​com/​rjust/​defec​ts4j.

https://github.com/rjust/defects4j
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same suspiciousness. The worst case is when the faulty statement is last checked 
(Wong et al. 2016). For example, if two statements have the same score as the 
faulty statement and are ranked i in the list, these statements are all considered to 
be ranked i+1.

2.	 faults of omission: In some programs, failures are not caused by incorrect 
assignment statements or predicates but by missing code. According to our 
statistics, Lang and Math in Defects4J have more than one omission fault, 
accounting for 40% and 30%, respectively. Inspired by previous work (Pearson 
et al. 2017; Küçük et al. 2021), we manually examined a set of candidate positions, 
typically mostly the start and end positions of a code block. The predicted line is 
considered successful when it is between a code block’s start and end positions.

3.	 multiple faults: Extensive programs in the real world mostly contain numerous 
faults. In this paper, we consider that software only contains a single fault. 
Furthermore, one type of fault is a single fault that spans various statements. We 
assume success when checking any one of these multiple statements.

We apply Word2vec3 with the Skip-Gram algorithm (Chung et al. 2002)  to obtain 
word vectors and with the Javalang tool4 to generate AST. In the embedding layer, 
the dimension of Word2Vec for the initial node representation is 256. In the graph 
hidden layer, we set the dimension of hidden states as 20. The hyper-parameters of 
our model are tuned with the Microsoft NNI tool,5 and then determine the optimal 
parameters of our model. The k-fold cross-validation is applied to our research due 
to its high accuracy (Fushiki 2011). After performing both ten-fold and five-fold 
cross-validation on Mockito to evaluate their effectiveness and efficiency, it was 
found that five-fold cross-validation was equally effective with less time-consuming. 
As a result, we adopted five-fold cross-validation in our empirical studies. We 
build our model relying on PyTorch V1.60.6 In the first three research questions, 
we used full-batch for our experiments. In RQ4, we use PyTorch-Geometric’s mini-
batch and set the batch size to 512 to minimize the cost of model training. Due to 
equipment limitations, we used Grace’s results directly but kept them as close to its 
experimental settings as possible for a fair comparison.

4.3 � Evaluation metrics

This paper evaluates the performance of GNet4FL by Top-k and MAR, which are 
also widely used in existing studies (Li and Zhang 2017; Li et al. 2021).

3  https://​code.​google.​com/p/​word2​vec.
4  https://​github.​com/​c2nes/​javal​ang.
5  https://​github.​com/​micro​soft/​nni.
6  https://​pytor​ch.​org.

https://code.google.com/p/word2vec
https://github.com/c2nes/javalang
https://github.com/microsoft/nni
https://pytorch.org
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4.3.1 � Recall at Top‑k

Recall at Top-k means the number of program faults in Top-k entities in the rank 
list, which indicates the performance of the rank list generated by a fault localization 
method. Following the recommendations of Li et  al. (2019, 2021) and Lou et  al. 
(2021) we set k = 1, 3, 5.

4.3.2 � Mean average rank

The mean average rank (MAR) for a set of faults is the mean of the average rank 
scores for each fault.

where B is faults count, AveR(b) is the average rank of fault b. MAR aims to evaluate 
the average ranking of the faults within each project.

5 � Result analysis

This section presents the answer to four research questions (RQs) raised in Sect. 4. 
We first establish the analysis procedures to answer these RQs. Next, we introduce 
and summarize the experimental results.

5.1 � Result analysis for RQ1

To effectively evaluate the performance of GNet4FL for fault localization, the 
following four approaches have been selected as baselines for comparison: 

1.	 Ochiai (Abreu et al. 2006): It is a classic spectrum-based fault localization 
method, often used as one of the baselines for comparison.

(4)MAR =

∑B

b=1
AveR(b)

B

Table 2   Graph structure 
information and extracting time 
costs of each subject

Subject #vertex #edges Time (s)

Chart 29,698 29,672 3.28
Time 29,014 28,988 2.84
Mockito 7070 7032 0.65
Lang 85,574 85,510 8.83
Math 74,740 74,634 10.2
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2.	 FLUCCS (Sohn and Yoo 2017): It assembles ranking matrices of multiple meth-
ods as features, then applies genetic algorithms to rank suspiciousness of program 
entities based on support vector machines (SVM).

3.	 DeepFL (Li et al. 2019): It applies MLP to consider various feature dimensions 
(including suspiciousness scores based on SBFL and MBFL, code complexity, 
and text similarity).

4.	 GRACE (Lou et al. 2021): It is based on coverage and graph representation 
learning. To the best of our knowledge, GRACE is the first to apply graph neural 
networks in fault localization.

Table  2 describes the graph structure of five projects, including the number of 
nodes, edges, and the time of constructing the graph representation for each 
project. As Table  2 shows, the time cost for constructing the graph for each 
project is less than 11 s. Furthermore, considering the LOC column in Table 1, 
we observe that in project Time, the number of nodes is inversely proportional to 
the lines of code compared with other projects, such as Chart, Lang, and Math. 
This is due to the presence of looping structures that result in finer granularity 
and higher number of nodes in the ASTs. Additionally, the data preprocessing 
(including word embedding and dimensionality reduction) took 210–261 s.

Table  3 presents the effectiveness measurements by applying the four above 
approaches on the dataset listed in Sect. 4. The first column is the name of projects 
in Defects4J, the second column is the name of the fault localization techniques, and 
the remaining columns are the results for the metrics Top-1, Top-3, Top-5, and MAR. 
The results show that GNet4FL outperforms or comes close to compared techniques, 
successfully locating 160, 204, and 217 faults of the 262 faulty programs by Top-1, 
Top-3, and Top-5. Specifically, GNet4FL can locate faults 94 more than Ochiai in 
Top-1, 42 more than FLUCCS, 14 more than DeepFL, and 12 more than GRACE, as 
well as a maximum improvement of 58.75%. To better evaluate the effectiveness of 
GNet4FL against Grace, this paper also uses Grace’s setting (i.e. using leave-one-out 
cross-validation and worst ranking). The results show that GNet4FL locates 145, 188, 
and 208 faults within Top-1, Top-3, and Top-5, with results close to the performance 
of Grace. Moreover, this paper compares with another deep learning-based approach, 
DeepRL4FL, which proposes an enhanced coverage matrix and uses fully connected 
layers to improve performance (Li et al. 2021). Unfortunately, as their project is not 
open-sourced and challenging to reproduce, the results in this paper are cited directly 
from their paper. DeepRL4FL achieved Top-1, Top-3, and Top-5 scores of 71, 128, 
and 142 on six projects respectively, all of which is lower than those of GNet4FL on 
five projects. Furthermore, GNet4FL had the best MAR in 3 out of five projects. We 
employed the Wilcoxon rank-sum test to calculate the p value for detecting the differ-
ences between GNet4FL and its baselines, then corrected the p values using the Ben-
jamini-Hochberg (BH) method (Yang et al. 2016). Wilcoxon signed-rank test is a kind 
of sign test in nonparametric statistics, which considers not only the positive or nega-
tive difference between the observed value and the center position of the null hypoth-
esis but also the magnitude of that difference (Woolson 2007). We set the significance 
level at 0.05, indicating that if the corrected p values are below this value, there is a 
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statistically significant difference between the two compared methods. The p values 
of GNet4FL with Ochiai and FLUCCS are less than 0.05, at 0.019 and 0.037 respec-
tively. This indicates that GNet4FL is an effective approach for fault localization.

By further analyzing the results obtained by GNet4FL, we consider that satisfac-
tory experimental results are mainly due to the training and testing of the same pro-
ject. During the experiments, the training set and the test set are from the same pro-
ject, which allows the model to better predict the faults in this project. For Example, 
we have a MAR of 9.52, which is 8% higher than Grace in Time. In this project, 
more fault types are logical faults, leading to a lower ranking for individual faults 
caused by omissions. The graph in Grace contains test nodes and source code nodes 
by constructing similarities between them. The node attributes consist of node type 

Table 3   Effectiveness of 
GNet4FL and compared 
techniques

Subject Technique Top-1 Top-3 Top5 MAR Training(s)

Chart Ochiai 6 14 15 9 –
FLUCCS 15 19 20 8.08 12.33
DeepFL 12 20 20 5.52 10.07
GRACE 16 20 22 3.84 –
GNet4FL 19 22 23 3.62 61.28

Time Ochiai 6 11 13 15.96 –
FLUCCS 8 15 18 9 9.52
DeepFL 13 17 17 12.68 6.87
GRACE 11 16 20 8.8 –
GNet4FL 14 18 20 9.52 43.27

Mockito Ochiai 7 14 18 20.22 –
FLUCCS 7 19 22 14.78 12.48
DeepFL 12 19 22 13.42 10.51
GRACE 15 22 26 8.06 –
GNet4FL 18 27 29 8.42 31.75

Lang Ochiai 24 44 50 4.63 –
FLUCCS 40 53 55 3.4 18.2
DeepFL 46 54 59 2.15 3.36
GRACE 46 54 55 2.34 85.2
GNet4FL 42 55 57 2.01 102.86

Math Ochiai 23 52 62 9.73 –
FLUCCS 48 77 83 4.64 17.28
DeepFL 63 85 91 3.76 8.68
GRACE 60 81 91 3.46 352.11
GNet4FL 67 82 88 3.32 238.04

Overall Ochiai 66 135 158 11.91 –
FLUCCS 118 183 198 7.98 13.97
DeepFL 146 195 209 7.51 7.90
GRACE 148 193 214 5.3 –
GNet4FL 160 204 217 5.38 95.44
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and similarity, while GNet4FL uses the test results directly as part of the node attrib-
utes. GNet4FL counts the times covered by the failed test cases. In previous studies 
of the SBFL approach (Jones and Harrold 2005; Ju et al. 2014), they proposed that 
the execution results of test cases are associated with suspiciousness. If a program 
entity executes more passed test cases, the lower suspiciousness is. Conversely, the 
more failed test cases it executes, the higher suspiciousness it should be. If a failed 
test case does not cover a node, its final probability will be close to 0 after training. 
We believe that the above conclusion is also beneficial for AST node classification.

Besides, the results show that GNet4FL performs better on the Mockito project. 
Further analysis of each version in this project showed that 47.3% of the faults 
occurred in the loop or block statements. These statements are exactly the focus 
during the preprocessing of ASTs in our research, and there are 494 corresponding 
statements in the Mockito project. Conversely, these types account for 38.7% of the 
Math project, and most faults occur in declaration or assignment statements. For 
example, the fault report for Math-35 shows a fault in the assignment statement on 
line 51. Thus, we think the preprocessing of critical statements is one of the reasons 
why GNet4FL is better than Grace.

We also collect the execution time of each method and calculate the training time 
(ignoring data preprocessing and testing time) for each version, with DeepFL, Grace, 
and GNet4FL set to 50 epochs, and FLUCCS set to 50 generations. In our empirical 
study, we found that the model of each method reaches optimum performance in the 
epoch range of 30–60. Therefore, we set the number of epochs to 50. The execution 
time of all methods does not needed for the following two reasons: (1) the execution 
time of Ochiai is mostly the time of the test cases, and we only count the training 
time; (2) the graph structure of Grace is large, and in some projects, it can only be run 
with small batch size. And when the batch size is set small, it will affect the conver-
gence of the model. Therefore, during the training process, we only experimented on 
two projects (Math, Lang), where the batch size was set to 20 and 30, respectively.

The last column of Table 3 shows the model training time, where ’-’ indicates that its 
training time is not recorded. For each project, the average training time per faulty ver-
sion is used as the result in this paper. The results show that the training time using graph 
neural networks is much longer than that of MLP and SVM. Moreover, we observed 
that Grace required over 30 G of memory in the full-batch and 10 G of memory in the 
batch size of 10, compared to GNet4FL which required only 16 G of memory. There-
fore, GNet4FL has a lower computational cost, but the result is close to Grace.

To better compare the efficiency of GNet4FL and Grace, this paper compares their 
running times under two GPU memories. The parameters such as batch size, epoch, 
and learning rate are kept consistent during the experiments. Table 4 shows the time 
costs of model training for each subject. Column 2 is the result with 12 G GPU mem-
ory and column 3 is the result with 16 G GPU memory. From the table, GNet4FL is 
lower than Grace method for all projects except one. Specifically, GNet4FL is only 
43.65% of Grace in the Time project. This means that GNet4FL is faster than Grace 
by more than half. We analyze two reasons for this performance difference. Firstly, the 
running efficiency of GNN is usually related to the number of nodes and edges in the 
graph. This paper constructs a smaller-scale graph structure that benefits the model 
computation. It uses the results of failed test cases directly as one of the node features, 
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combining static and dynamic features of the code while reducing the size of the graph 
structure. The Grace method incorporates information of test cases as part of the nodes 
in the graph, calculates the similarity between test case nodes and AST node names, 
and uses it as one of the node features. This increases the number of nodes and edges. 
Secondly, GraphSAGE computation speed is faster than that of Gated Graph Neural 
Networks (GGNN), contributing to the faster execution time of GNet4FL. To verify 
this conjecture, this paper changes the GraphSAGE method to GGNN and computes 
its running time under 12 G GPU memory. The results show that the time of GGNN in 
the Time project is 170.23, which is 39.03% more than GraphSAGE.

Summary for RQ1:   Compared with the baselines, GNet4FL can locate more faults 
than the baselines in terms of Top-k ( k = 1, 3, 5 ) and achieve a lower score in MAR.

5.2 � Result analysis for RQ2

To verify the effect of GNN on our framework, we invested GNet4FL with 
traditional machine learning techniques, i.e., removing GraphSAGE in step 2 
and replacing the method in step 3 with the model to compare. To answer RQ2, 
we selected three baselines, including K-Nearest Neighbor (KNN), multi-layer 
perceptron (MLP), and Random Forest (RF). We implemented these algorithms 
with scikit-learn library and tuned the hyper-parameters with NNI to obtain 
optimal comparison.

Figure  3 illustrated the number of located faults by four approaches (i.e., 
GNet4FL, KNN, MLP, RF) within Top-1, Top-3, and Top-5 entities. As shown in 
Fig. 3, GNet4FL significantly outperformed the other three baselines by 58. 39%, 
72.22% and 9.6% respectively. Figure  4 presents a box plot of MAR obtained 
by four techniques across the five projects. Comparing the four techniques in 
the Figure, GNet4FL has the lowest average cost, followed by RF. Among the 
three machine learning methods, RF performs relatively well. It locates 72 more 
faults compared to KNN. Specifically, RF is only 1 less than GNet4FL in Top-1 
for small projects (e.g. Mockito) and more than 5 less than GNet4FL in Top-1 

Table 4   Efficiency of different 
techniques

Subject Technique 12 G(s) 16 G(s)

Chart Grace 265.5 167.33
GNet4FL 145.65 77.19

Time Grace 280.5 167.97
GNet4FL 122.44 73.88

Mockito Grace 262.12 153.97
GNet4FL 120.14 62.02

Lang Grace 200.14 136.6
GNet4FL 271.63 175.42

Math Grace 384.6 196.58
GNet4FL 262.79 160.32
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Fig. 3   Effectiveness of 4 approaches
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for large projects (e.g. Chart, Math). GNet4FL outperforms RF due to its abil-
ity to consider contextual information of the code, whereas RF is limited to code 
sequence information. Moreover, RF is better suited for smaller datasets. When 
there is too much data, RF takes more time to compute the feature values and 
is less efficient. GraphSAGE can be trained on subgraphs by sampling, which 
requires less memory and is more efficient. It can also better handle complex rela-
tionships between AST nodes.

Furthermore, we calculated the p value to detect the differences between 
GNet4FL and three baselines (i.e., KNN, MLP, RF) by Wilcoxon rank-sum test and 
corrected the obtained p values by using Benjamini_Hochberg (BH) method (Yang 
et al. 2016). We set the significance level at 0.05, which means that if the corrected 
p values are less than 0.05. The result indicates a significant difference between the 
two compared methods.

By examining p values shown in Fig. 4, we can find that two p values are less 
than 0.05. The result indicates significant differences between GNet4FL and two 
compared baselines (i.e., KNN and MLP). That is to say, there are significant 
differences between graph neural network-based and traditional machine learning-
based approaches (i.e., KNN and MLP). But the p value between GNet4FL and RF 
is 0.25, which means there is no significant difference between them. Therefore, 
we can conclude that graph neural networks (GNN) help better fault localization 
because Graph representation learning can effectively extract semantic information 
and features.

Summary for RQ2:   Graph neural networks can extract graph structure information 
well and improve the fault locating performance of GNet4FL.

5.3 � Result analysis for RQ3

GNet4FL introduces coverage information as a node attribute and prunes the AST 
nodes to reduce redundant information based on static analysis. To verify whether 
these two processes positively affect the model, we analyzed the effects of both 
methods before and after their use.

To simplify our discussion, we give three notations to represent three scenarios, 
namely GNet4FL, GNet4FL-prune, and GNet4FL-SBFL, whose detailed description 
are give as follows:

•	 GNet4FL means using our framework (GNet4FL) with both prune and SBFL.
•	 GNet4FL-prune means using our framework (GNet4FL) without pruning the 

AST.
•	 GNet4FL-SBFL means that using our framework (GNet4FL) without coverage 

information, and only word vectors are used as node attributes.

Similar to the process of answering RQ2, we used Top-k and MAR to evaluate the 
model performance and p value to find significant differences between the compared 
techniques.



1 3

Automated Software Engineering           (2023) 30:16 	 Page 21 of 26     16 

Fig. 5   Effectiveness of 3 approaches
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Figure 5 illustrated the number of faults located by three approaches (i.e., GNet4FL, 
GNet4FL-prune, and GNet4FL-SBFL) within Top-1, Top-3, and Top-5 entities. For 
example, GNet4FL can locate 217 faults on Top-5, outperforming GNet4FL-prune 
and GNet4FL-SBFL by 14.81% and 24.71%. Furthermore, we calculated p value to 
detect the differences between GNet4FL,GNet4FL-prune, and GNet4FL-SBFL) by 
Wilcoxon rank-sum test, and corrected the obtained p values by using Benjamini_
Hochberg (BH) method (Yang et al. 2016). We set the significance level at 0.05, which 
means that if the corrected p values are less than 0.05. The result indicates a significant 
difference between the two compared techniques. Comparing GNet4FL-prune and 
GNet4FL-SBFL with GNet4FL, it can be seen from Fig. 6 that the p values between 
them are 0.032 and 0.016, respectively. At a significance level of 0.05, their p values 
are both below 0.05. This means that the preprocessing of the AST and taking cover-
age information as one of the attributes has significantly improved.

Summary for  RQ3:   Each part of the method plays an important role and can 
improve performance by up to 24%.

5.4 � Result analysis for RQ4

We obtained data from the same project to train and answer the previous three 
research questions. However, the same project often belongs to the same type 
of program. For example, Apache commons-Math is a computational library 
that provides data computation components; JfreeChart provides java drawing 
components. This can lead to problems where it performs well in the same project 
and poorly in other projects. To overcome this problem, we investigated the 
effectiveness of GNet4FL in cross-project. We obtained four project data to train and 
invest in the last research question (RQ4).

The efficiency of GNet4FL on cross-project is shown in Table 5. Compared to 
the results in RQ1, the results for cross-project are significantly worse than within-
project. GNet4FL  is 45.62% of the results for within-project on Top-1. Overall, the 
results in Top-1, Top-3, and Top-5 are 73, 90, and 114, respectively. Specifically, the 
results in Chart, Time, Mockito, Lang, and Math are 12, 13, 19, 30, and 40 in Top-
5, which are 52%, 65%, 66%, 53%, 45% of the results in within-project. Compared 
with it, DeepFL locates 9, 15, and 17 within Top-1, Top-3, and Top-5 in Mockito 

Table 5   Cross-project 
effectiveness on Defects4J

Subject Top-1 Top-3 Top-5

Chart 5 8 12
Time 7 9 13
Mockito 12 14 19
Lang 21 25 30
Math 28 34 40
Overall 73 90 114
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projects. GNet4FL  is 33.3% higher on Top-1. But GNet4FL  is inferior to DeepFL 
in other projects. Especially on Lang, DeepF locates 37, 45, and 49, which is 16 
more than GNet4FL  in Top-1. Combining the code characteristics of each project, 
we found that GNet4FL  works better in projects with fewer lines of code.

Summary for RQ4:   In some cases, GNet4FL can still have encouraging results in 
cross-project predictions, reaching 65% of within-project predictions on Top-5.

6 � Threats to validity

This section will discuss potential threats to our research’s validity, including inter-
nal and external validity.

Threats to internal validity: The internal threat mainly lies in the implementation 
of the proposed approach. Each component of our framework, such as AST pruning, 
GraphSAGE, etc., can obtain incorrect data due to calculation errors. To mitigate 
this threat, We use established and widely used mature frameworks or libraries, such 
as PyTorch, Javalang, and Gensim. Moreover, we apply code open-source as the 
baseline during comparison. Furthermore, we employ NNI, a widely used hyper-
parameters tuning tool in numerous Neural networks research, to obtain our model’s 
optimal hyper-parameters.

Threats to external validity: The most significant external threat to our 
experimental subject lies in the dataset Defects4J. To mitigate this threat, we 
selected and validated several state-of-the-art methods using Top-k and MAR 
as evaluation metrics. Due to the randomness of the graph neural network in the 
division of the data set, which caused inconsistent results, we ran it ten times and 
took the mean value as the final result.

7 � Conclusion

This paper presents GNet4FL, a method based on a graph convolutional neural 
network that learns latent information from graph structures. The performance of 
GNet4FL outperforms all current techniques. In particular, GNet4FL succeeded in 
locating 160 faults in Top-1, while the best method only located 148. We also ana-
lyzed the three components in the technique and found that all had a positive effect.

Our current work is encouraging, yet still limited. In the future, it can be devel-
oped in the following ways: (1) Finding a more suitable pruning method for ASTs, 
such as combining program slicing to reduce the number of program entities prior 
to AST creation. (2) Doing further research into how graph neural networks can be 
paired with fault localization. (3) Examining if there is any correlation between the 
faults in different projects.
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