2023 30th Asia-Pacific Software Engineering Conference (APSEC) | 979-8-3503-4417-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/APSEC60848.2023.00052

2023 30th Asia-Pacific Software Engineering Conference (APSEC)

Assessing the Effectiveness of Vulnerability
Detection via Prompt Tuning: An Empirical Study

Guilong Lu', Xiaolin Ju'*, Xiang Chen'*, Shaoyu YangT, Liang Chen', Hao Shen'
tSchool of Information Science and Technology, Nantong University, China
guil.lu@outlook.com, {ju.xl, xchencs, chenliang82}@ntu.edu.cn, {shaoyuyoung, shenhyc}@gmail.com

Abstract—In vulnerability detection approaches based on deep
learning, fine-tuning with Pre-trained Language Models (PLMs)
is a prevalent technique. Unfortunately, a natural gap exists
between model pre-training tasks and vulnerability detection
tasks due to different input formats, and the performance of
fine-tuning relies on downstream dataset scales. Recently, prompt
tuning has been used to alleviate these issues. However, it has not
received enough attention in vulnerability detection. To assess
the effectiveness of prompt tuning, we consider three classical
vulnerability detection tasks: within-domain vulnerability detec-
tion, cross-domain vulnerability detection, and vulnerability type
detection. Our empirical study considers three popular PLMs:
CodeBERT, CodeT5, and CodeGPT. Then we use Devign, BigVul,
and Reveal datasets as our experimental subjects. Our empirical
results indicate that (1) compared to fine-tuning, prompt tuning
can increase the accuracy of three tasks by an average of 42%,
38%, and 41%, respectively; (2) different prompt templates can
have up to an 8% impact on accuracy; (3) in data scarcity
scenarios, the superiority of prompt tuning over fine-tuning is
more obvious. Our research demonstrates that using prompt
tuning can help to achieve better performance in vulnerability
detection tasks and is a promising research direction in the future.

Index Terms—Prompt tuning, Vulnerability detection, Vulner-
ability type detection, Cross-domain vulnerability detection

I. INTRODUCTION

Software vulnerabilities can be exploited by malicious
attackers, thereby jeopardizing the system’s confidentiality,
integrity, and availability. For example, in 2021, a group
exploited the ProxyLogon vulnerability [1] to steal internal
data from Acer and publicly demanded a ransom of 50 million
US dollars. Consequently, vulnerability detection has become
increasingly important as it is critical to ensuring software
security.

In previous studies, researchers proposed program analysis
(PA)-based approaches to detect vulnerabilities [2]. For in-
stance, RATS' can identify vulnerabilities, including buffer
overflows and TOCTOU race conditions [3]. Cppcheck2 used
unique code analysis and focused on detecting undefined
behavior and dangerous code structures [3]. Unfortunately,
PA-based approaches rely on predefined patterns to identify
vulnerabilities [4], and the predefined patterns need to be
manually created by security experts, which can be time-
consuming.

*Corresponding author
Uhttps://github.com/andrew- d/rough-auditing-tool-for-security
2http://cppcheck.net/

Deep learning (DL)-based techniques can effectively miti-
gate this problem, especially with the fine-tuning approaches
based on PLMs, which have become the mainstream ap-
proaches for vulnerability detection [5]. These PLMs, such as
CodeBERT [6] and CodeT5 [7], learn from large-scale corpus
to better understand underlying knowledge. Subsequently, fine-
tuning the PLMs enables them to better adapt to vulnerability
detection. For example, Hanif et al. [8] pre-trained a custom
tokenization pipeline on real-world C/C++ code to train a
Roberta model [9]. Then, this model was fine-tuned for vul-
nerability detection tasks. Similarly, Fu et al. [10] constructed
a model with a BERT architecture [11] and pre-trained it,
and then fine-tuned it for vulnerability detection at the line
level. However, the inconsistent inputs and objectives of pre-
training and fine-tuning make it difficult to fully explore the
knowledge of PLMs [12], [13], leading to sub-optimal results
for downstream tasks. Moreover, the effectiveness of using
fine-tuning largely depends on the scale of the downstream
data [14], [15].

Recently, prompt tuning has emerged as an advanced tech-
nology that has demonstrated promising performance in many
language modeling tasks [16], [17]. Unlike fine-tuning, prompt
tuning is a recent approach in natural language processing
(NLP) that involves training a PLM on a small amount of
task-specific data and a set of prompts, which are structured
prompts that guide the model to generate task-specific outputs.
Prompt tuning has been proven superior to fine-tuning in
many NLP tasks, such as text classification [15] and emotion
detection [18]. To our best knowledge, its effectiveness in
vulnerability detection tasks has not been thoroughly explored.

Inspired by the success of prompt tuning in the field of
NLP [15], [18], we explore whether prompt tuning is effective
in vulnerability detection tasks. In our empirical study, we aim
to answer the following research questions (RQs):

o« RQI: How effective is prompt tuning in vulnerability
detection tasks?

o RQ2: How effective is prompt tuning in vulnerability type
detection tasks?

« RQ3: How do different prompt templates affect the per-
formance of prompt tuning?

o« RQ4: How effective is prompt tuning in data scarcity
scenarios?

o RQ5: How effective is prompt tuning for cross-domain
vulnerability detection tasks?

2640-0715/23/$31.00 ©2023 |IEEE 415
DOI 10.1109/APSEC60848.2023.00052
Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

To answer these RQs, we conduct experiments using fine-
tuning and prompt tuning on three PLMs (i.e., CodeBERT,
CodeT5, and CodeGPT) which achieve state-of-the-art per-
formance in many code-related downstream tasks [19]-[21]
and evaluate their performance on three datasets (i.e., Devign,
BigVul, and Reveal) which are popular benchmark dataset.
The results indicate that prompt tuning outperforms fine-tuning
on these tasks. Moreover, the design of different prompt tem-
plates and verbalizers can also have an impact on performance.

The main contributions of our study are summarized as
follows:

o We conduct the first analysis of the effectiveness of
prompt tuning in the field of vulnerability detection tasks.

o We evaluate the effectiveness of prompt tuning using
three PLMs (i.e., CodeBERT, CodeT5, and CodeGPT)
and evaluate its performance on three datasets (i.e., De-
vign, BigVul, and Reveal).

« We investigate the effectiveness of prompt tuning using
different prompt templates and discuss its performance in
data scarcity scenarios.

o We summarize three implications of our study that can
guide future research.

Our source code and experimental data are available at:
https://github.com/P-E-Vul/prompt-empircial-vulnerability.

II. BACKGROUND AND RESEARCH MOTIVATION
A. Vulnerability detection based on PLMs

The PLM-based vulnerability detection approaches utilize
DL-based approaches to identify and detect security vulner-
abilities in software [22]. These PLMs have been trained on
vast corpus [6], [7]. During pre-training, they learn transferable
and generic feature representations. Subsequently, PLMs can
adapt and customize their knowledge representations for new
tasks by fine-tuning using the data and labels of those tasks.
Typically, these approaches involve five steps [23]: (1) Data
collection and preprocessing: collect a large number of source
code samples, including both vulnerable and non-vulnerable
code, and preprocess them by removing comments, blank
lines, etc.; (2) Feature extraction and representation: convert
the source code into a format suitable for processing by deep
learning models; (3) Model selection and training: choose an
appropriate PLM, such as CodeGPT [24] or CodeBERT [6], as
the base model, and fine-tune it for the vulnerability detection
task using collected samples of vulnerable and non-vulnerable
code; (4) Model evaluation: after training, evaluate the model
using a test dataset; (5) Vulnerability detection: deploy the
trained model in real-world scenarios to identify vulnerabilities
in the target source code.

B. Prompt Tuning

Prompt tuning aims to convert the downstream task ob-
jectives of fine-tuning into pre-training tasks [9], [11]. As
shown in Fig. 1(a), traditional fine-tuning involves inputting
the [CLS] representation into a classifier for binary classifi-
cation, predicting the presence or absence of vulnerabilities

416

in a function, and requiring a significant amount of data for
training. Prompt tuning generates a template with a special
token [MASK] related to a given sentence, using methods
such as manual definition [25], automatic search [26], and text
generation [15]. This template, such as "The code is [MASK]"
shown in Fig. 1(b), is concatenated with the original text to
create the input for prompt tuning. This input is fed into
a PLM to predict the distribution over label words on the
[MASK] token position, such as "Good", "Vulnerable", "Bad"
and so on. Then, the verbalizer outputs the final prediction
using a mapping relationship that maps each label word to
a class [15]. As illustrated in Fig. 1(b), label words such
as "Vulnerable" and "Bad" correspond to code snippets with
vulnerabilities, while "Good" corresponds to code snippets
without vulnerabilities. The classes include "+" and "-", where
"-" denotes the presence of vulnerabilities and "+" denotes the
absence of vulnerabilities in this example.

Currently, prompt-tuning techniques are usually classified
into two main categories within the academic community:
hard prompts (discrete prompts) and soft prompts (continuous
prompts). In the rest of this subsection, we provide details for
each prompt type.

1) Hard Prompt: Hard prompt refers to the technique of
modifying inputs of the models by adding natural language
texts. The current construction methods of hard prompts
mainly include manual construction, heuristic search, and
generation methods [12]. In hard prompts, each added token
is interpretable [14]. For example, the hard prompt template
of the vulnerability detection task can be formulated as:

=" The code [X] is [Z]" (1)

where [X] denotes the input code, and [Z] denotes the label
word that the model is required to predict, such as "vulnerable"
or "non-vulnerable".

2) Soft Prompt: Hard prompts require designing a specific
template for each task, as these templates consist of discrete,
readable tokens, making it challenging to find the optimal
template [15]. Moreover, even for the same task, different
sentences may have their optimal templates [17]. Sometimes,
even human-understandable, similar templates can produce
significantly different model predictions [12]. Therefore, soft
prompts have been proposed [15], [17], [27]. Unlike hard
prompts, tokens in soft prompts are not fixed and discrete
words in natural language, but virtual tokens, such as:

Forompt () = "[SOFT][SOFT][X][SOFT][Z)"

f prompt (l)

2
where, [SOFT) denotes a virtual token.

C. Research Motivation

In previous research, vulnerability detection based on PLMs
was performed using fine-tuning and faced two main chal-
lenges.

e When fine-tuning the PLM for vulnerability detection

tasks, the input is limited to source code, and the training
objective is transformed into a classification problem. The

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

return value; “
1

[CLS] ;
i int getValueFromArray(int *array, int len, int index) { \ 4 :
! int value; CLS !
po il <len) { Head '
: value = array[1; :
Pl ;
H else { 1
E printf("Value is: %d\n", array[D; :
: value = -1; :
o -, |

(a) Fine-tuning paradigm

Fig. 1: Explanation of the process of fine-tuning paradigm

and

)

Vulnerable

Bad

int getValueFromArray(int *array, int len, int index) { :
int value; :
if (<len) { :
value = array[1; Verbalizer :

} i
else { A :
printf("Value is: %d\n", array[D; H :
value = -1; f E

) =
return value; :

} 1
MLM | eeeens !

THE (()[)]: IS [MASK]) Head E

(b) Prompt-tuning paradigm

prompt-tuning paradigm. The function in the figure is an

example of CWE-119. [CLS] and [SEP] are special tokens in PLMs.

discrepancies between the inputs and objectives of pre-
training and fine-tuning make it difficult to fully explore
the knowledge of PLMs, leading to sub-optimal results
for downstream tasks [12], [13];

o The effectiveness of using fine-tuning largely depends on
the scale of the downstream data [14], [15].

Recent studies have shown that prompt tuning can mitigate
the disadvantages of traditional fine-tuning, making models
more adaptable to different downstream tasks [15], [18].

Regarding the first challenge, prompt tuning uses task-
specific prompts to guide the model-tuning of PLMs, which
can bridge the gap between fine-tuning and pre-training.

Regarding the second challenge, compared to traditional
fine-tuning, prompt tuning does not require fine-tuning all the
parameters of PLMs but only needs to train a small number
of parameters related to the task. This can reduce the number
of required training parameters, thus reducing the risk of
overfitting and improving the model’s generalization ability.

However, most current research is mainly limited to NLP
tasks [12]. In the vulnerability detection task, the advantages of
prompt tuning have not been proven effective yet. Therefore, in
this paper, we aim to evaluate whether prompt tuning outper-
forms fine-tuning in vulnerability detection comprehensively.

III. RESEARCH QUESTIONS

This section outlines the motivations behind five research
questions. Our goal is to provide answers to these RQs by
conducting an extensive experimental evaluation:

RQ1: How effective is prompt tuning in vulnerability
detection tasks?

Motivation: Vulnerability detection tasks aim to identify
whether a function contains vulnerabilities. Correctly iden-
tifying such vulnerabilities is crucial for improving system
security [28]. By studying the effectiveness of prompt tuning
and fine-tuning in vulnerability detection tasks, we can better

417

understand the applicability of two techniques and provide
better solutions for vulnerability detection.

RQ2: How effective is prompt tuning in vulnerability
type detection tasks?

Motivation: Vulnerability type detection tasks aim to clas-
sify and identify vulnerabilities in software programs. High-
quality detection of vulnerability types is crucial for locating
and fixing vulnerabilities [29]. We aim to study the effective-
ness of prompt tuning in vulnerability type detection, which
can also provide valuable insights for other multi-classification
tasks.

RQ3: How do different prompt templates affect the
performance of prompt tuning?

Motivation: During the prompt tuning, prompt templates
can serve as guidance to help the model better learn the task
features and data features. However, if the selected prompt
templates are inappropriate or poorly designed, the generated
prompts may contain bias or inaccuracies, which can nega-
tively impact the performance of the model [12]. Currently,
there is insufficient understanding of the effectiveness of
different prompt templates in vulnerability detection tasks, and
further research is needed to help researchers better apply and
optimize prompt tuning techniques.

RQ4: How effective is prompt tuning in data scarcity
scenarios?

Motivation: Recent research has shown that fine-tuning
performance is highly dependent on the size of the downstream
task dataset [30], [31]. However, dataset scarcity is a common
issue in the context of vulnerability detection tasks. We design
this RQ to investigate the effectiveness of prompt tuning in
data scarcity.

RQS5: How effective is prompt tuning for cross-domain
vulnerability detection tasks?

Motivation: Cross-domain vulnerability detection refers to
detecting vulnerabilities within a domain or application by
utilizing data, approaches, or models from different domains

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

or applications. Cross-domain vulnerability detection is a
critical problem since models need to generalize to different
domains and scenarios. We design this RQ to investigate the
performance of prompt tuning for cross-domain vulnerability
detection.

IV. CASE STUDY DESIGN
A. Evaluation Subjects

1) Vulnerability detection tasks: To empirically evaluate the
performance of prompt tuning in vulnerability detection tasks,
we select three popular benchmark datasets (i,e., Devign [32],
BigVul [33], and Reveal [34]).

o Devign [32]. The Devign dataset was manually labeled
and sourced from two open-source C projects: FFmpeg
and Qemu. It includes 10,067 vulnerable functions and
12,294 non-vulnerable functions.

o BigVul [33]. The BigVul dataset was sourced from over
300 open-source C/C++ projects on GitHub, covering 91
distinct vulnerability types listed in the Common Vul-
nerabilities and Exposures (CVE) database from 2002 to
2019. The dataset comprises 10,547 vulnerable functions
and 179,299 non-vulnerable functions.

o Reveal [34]. The Reveal dataset was sourced from
two open-source projects: Linux Debian Kernel and
Chromium. It comprises 16,505 vulnerable functions and
1,664 non-vulnerable functions.

We use Table I to present the statistical information for these
datasets, including the total number of samples, the number of
samples with vulnerabilities, the number of samples without
vulnerabilities, and the ratio of samples with vulnerabilities to
the total number of samples.

TABLE I: Statistics of the dataset used in vulnerability
detection tasks

Dataset Samples Vul Non-vul Vul Ratio(%)
Devign [32] 22361 10067 12294 45.02
BigVul [33] 179299 10547 168752 5.88
Reveal [34] 18169 1664 16505 9.16

We select these three datasets for the following reasons:
(1) all three datasets contain real-world projects and vulner-
abilities; (2) most models in related literature evaluate their
performance on these three datasets, such as [VDetect [35] and
AMPLE [36]; and (3) the BigVul dataset includes annotations
on vulnerability types, which are essential for addressing our
RQ2.

2) Vulnerability type detection tasks: Our study is focused
on exploring the application of prompt tuning in vulnerability
type detection tasks rather than prioritizing the evaluation
of numerous vulnerability types. As a result, we select five
vulnerability types that rank among the top five on the CWE
official website®, as they are commonly found in practical
software development and are widely recognized as posing

3https:/cwe.mitre.org/

418

potential threats to network security. For this task, we utilize
the dataset that has been extracted from BigVul [33].

In Table II, we present the statistical information of the
dataset, including details on the types of vulnerabilities, their
corresponding names, the respective quantities of each vulner-
ability type, and their proportion relative to the overall dataset
size.

TABLE II: Description of vulnerability types used in vulner-
ability type detection tasks

Rank CWE-ID Name Numbers Type Ratio(%)
1 CWE-79 Cross-site Scripting 9 1.07
2 CWE-787 Out-of-bounds Write 44 5.28
3 CWE-20 Improper Input Validation 228 27.34
4 CWE-125 Out-of-bounds Read 107 12.83
5 CWE-119 Improper Restriction 446 53.48

B. Performance Measures

1) Vulnerability detection tasks: For vulnerability detection
tasks, similar to AMPLE [36], we use the following four
widely-used performance measures in our evaluation:

Accuracy. Accuracy is a common metric used in binary
classification tasks to measure the ability of the model to
identify vulnerable code. It is defined as the ratio of correctly
classified samples to the total number of samples in the dataset.
The formula is defined as follows:

TP+TN
TP+TN+FP+ FN

where T'P refers to the number of samples that the model
correctly predicts as having vulnerabilities among those that
actually have vulnerabilities, T'N refers to the number of
samples that the model correctly predicts as not having vul-
nerabilities among those that do not have vulnerabilities, F'P
refers to the number of samples that the model incorrectly
predicts as having vulnerabilities among those that do not have
vulnerabilities, F'/N refers to the number of samples that the
model incorrectly predicts as not having vulnerabilities among
those that actually have vulnerabilities.

Precision. Precision measures the proportion of actual
positive samples (i.e., containing vulnerabilities) among sam-
ples predicted by the model as positive. The formula is defined
as follows:

(3)

Accuracy =

TP
TP+ FP

Recall. Recall measures the ability of a model to detect all
actual samples containing vulnerabilities, i.e., the proportion
of actual samples containing vulnerabilities that are correctly
predicted as positive by the model. The formula is defined as
follows:

)

Precision =

TP

Recall = m

(%)

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

F1 score. F'1 score represents a balance between precision
and recall and is calculated as the harmonic mean of the two.
The formula is defined as follows:

Precisi °Ca
F1 score — 2 x recision X Recall

(6)

Precision + Recall

2) Vulnerability type detection tasks: The categories for
multi-class classification in the dataset are imbalanced, with
the proportions shown in Table II, it does not imply that
less represented vulnerability types are less important. For
example, CWE-79, which has only nine instances in the
dataset, is ranked first on the CWE official website. Therefore,
for multi-class classification, we use accuracy, weighted F1
Score, and macro F1 Score as the evaluation metric.

Weighted F1 Score. Weighted F'1 Score (w-F1) is calcu-
lated by taking a weighted average of the F1 Score for each
class, where the weights are based on the relative frequency
of each class in the dataset. The formula is defined as follows:

m
Weighted F'1 score = Z w; * (F1 score);
i=0

@)

where m is the number of classes, w; is the weight for class
i (calculated as the ratio of the number of samples in class ¢
to the total number of samples).

Macro F1 Score. Macro F1 Score (m-F1) is a metric
for evaluating the performance of multi-class classification
models. It calculates the F1 score for each class and takes the
average of all F1 scores. The formula is defined as follows:

n—1
1
Macro F1 score = o g(Fl score);

®)

where n is the number of categories. In the vulnerability type
detection dataset used in our study, there are five types of
vulnerabilities, so n is set to 5.

C. Pre-trained Language Models

We choose three widely used PLMs: CodeBERT [6],
CodeTS5 [7], and CodeGPT [24] which represent three different
Transformer-based architecture (i.e., Encoder-only, Encoder-
Decoder, and Decoder-only) since they have been trained on
large-scale code corpus and shown promising performance in
code-related downstream tasks [19]-[21]. We introduce them
as follows:

CodeBERT [6] is a PLM based on the BERT (Bidirectional
Encoder Representation from Transformers) [11] which is
an encoder-only Transformer architecture. CodeBERT is pre-
trained on CodeSearchNet corpus consisting of NL-PL (natural
language and programming language) information which has
125 million parameters.

CodeT5 [7] is a PLM based on the T5 (Text-to-Text
Transfer Transformer) [37] which is an encoder-decoder Trans-
former architecture, designed specifically for handling conver-
sion tasks between NL and PL. CodeT5-small has 60 million
parameters, and CodeT5-base has 220 million parameters.

CodeGPT [24] is an autoregressive PLM based on the
GPT-2 (Generative Pre-Trained Transformer) [38] which is a

419

decoder-only Transformer architecture. During the pre-training
process of the CodeGPT model, a large amount of code
corpus is used, enabling the model to adapt code-related tasks.
CodeGPT has 124 million parameters.

D. Implementation Details

To ensure the fairness of the experiments, we use the same
data split for all approaches. We randomly divide the dataset
into non-overlapping training, validation, and testing sets at a
ratio of 8:1:1. In the prompt tuning experiments, we utilize
OpenPrompt [39] to construct various prompt templates and
verbalizers. During the training process, we use a consistent
number of 20 epochs for both prompt tuning and fine-tuning.

In our empirical study, we utilize PLMs and their cor-
responding tokenizers which are loaded from HuggingFace*
repository. We set identical hyperparameters for fine-tuning
and prompt tuning, e.g., the optimizer is AdamW [40], the
learning rate is Se-5, the Ir scheduler type is linear, etc.

All of our investigations are conducted on a server equipped
with an NVIDIA GeForce RTX 4090.

V. RESULT ANALYSIS

A. RQI: Effectiveness of prompt tuning in vulnerability detec-
tion tasks.

Method. To answer RQ1, we use the prompt tuning for
vulnerability detection on CodeBERT, CodeT5, and CodeGPT.
Our primary baseline is fine-tuning paradigm. For the CodeT5
model, we utilize the CodeT5-base and CodeT5-small to
explore the impact of PLM size on prompt tuning performance.
We conduct experiments on three commonly used vulnerability
datasets (i,e., Devign [32], BigVul [33], and Reveal [34]).

Result. Table III compares prompt tuning and fine-tuning
in different models. The results show that prompt tuning
consistently performs better than traditional fine-tuning. Tak-
ing CodeT5-base with the best performance on the Devign
dataset as an example, compared to fine-tuning, prompt tuning
improves the accuracy, precision, recall, and F1 score by
0.64%, 8.42%, 2.18%, and 5.12%, respectively. These results
indicate that PLMs can learn richer knowledge and have a
more vital ability to extract contextual semantic information
with input texts under prompt tuning.

Finding 1: In vulnerability detection tasks, prompt tuning
can outperform fine-tuning in most cases. Taking CodeT5-
small as an example, on average, compared to fine-tuning,
prompt tuning has achieved a 3.03% improvement in accuracy,
a 27.75% improvement in precision, a 5.63% improvement in
recall, and a 15.21% improvement in F1 score.

B. RQ?2: Effectiveness of prompt tuning in vulnerability type
detection tasks.

Method. To answer RQ2, we conduct experiments on
prompt tuning and fine-tuning for vulnerability type detection
on three models. We select the top five most common vul-
nerability types in the CWE ranking (details can be found in
Table II).

“https://huggingface.co/models

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison results of prompt tuning and fine-tuning on three datasets. Notice the bold font indicates better

performance.
‘ Devign ‘ BigVul ‘ Reveal

Model Methods ‘ Accuracy Precision Recall F1 score ‘ Accuracy Precision Recall F1 score ‘ Accuracy Precision Recall F1 score
Fine-tuning 61.71 56.70 50.29 53.30 94.24 47.90 31.99 38.36 88.21 40.63 33.75 36.87

CodeBERT prompt tuning 62.99 61.08 5227 56.33 97.98 91.55 70.50 79.66 89.05 43.13 34.31 3821
Fine-tuning 62.13 57.45 54.54 55.95 95.13 55.13 68.98 61.29 85.22 40.91 34.16 37.23

CodeT5-small prompt tuning 63.35 62.41 55.30 58.64 98.13 93.13 74.77 82.94 89.46 4320 36.08 39.32
Fine-tuning 63.56 58.55 54.97 56.70 96.01 50.94 84.65 63.60 85.92 41.13 36.19 38.50

CodeT5-base prompt tuning 63.97 63.48 56.17 59.60 98.20 93.39 76.45 84.07 87.11 43.75 36.46 39.77
Fine-tuning 62.49 57.16 51.36 54.10 95.13 49.62 60.10 54.36 84.29 39.16 34.01 36.40

CodeGPT Prompt tuning 63.03 59.01 62.88 60.88 97.42 82.51 69.04 7517 87.42 40.64 35.57 37.93

Result. Table IV presents the comparison results of two
paradigms on the vulnerability type detection test set using
three PLMs. We can find that prompt tuning performs better
than fine-tuning. Taking CodeT5, which has the best prompt
tuning performance, as an example, its w-F1 is 14.96% higher
than that of fine-tuning. This result demonstrates that prompt
tuning can extract knowledge from PLM more comprehen-
sively and effectively by converting the classification task into
the same cloze form as the pre-training stage.

TABLE IV: In vulnerability type detection tasks, performance
comparison results between prompt tuning and fine-tuning.

Model Methods | Accuracy m-F1 w-F1
Fine-tuning 53.12 44.19 56.13

CodeBERT Prompt tuning 63.40 5577 65.26
Fine-tuning 60.29 4654 65.18

CodeT5 Prompt tuning 73.80 5222 7493
Fine-tuning 54.36 4320 5011

CodeGPT Prompt tuning 61.90 48.61 5813

Finding 2: In vulnerability type detection tasks, compared
to fine-tuning, prompt tuning achieves 18.54%, 17.03%, and
15.74% improvement on average in accuracy, m-F1, and w-F1,
respectively.

C. RQ3: Impact of Different Prompts.

1) Hard Prompt vs. Soft Prompt: Method. To answer this
question, we establish seven distinct prompt template rules
based on the location of the prompt template, as shown in
Table V. The content within prompt can be replaced with a
corresponding, human-readable natural language description.
Table VI shows the seven distinct templates designed by us.

TABLE V: Prompt templates and their design rules

No. Prompt template design rules
1 [X] prompt [Z]
2 [X] [Z] prompt
3 prompt [X] [Z]
4 prompt [X] prompt [Z]
5 [X] prompt [Z] prompt
6 prompt [X] [Z] prompt
7 prompt [X] prompt [Z] prompt

420

Result. By comparing the performance of seven differ-
ent prompt templates in Table VI, we find that the design
of prompt templates does have a significant impact on the
performance of vulnerability detection models. For instance,
when using the first prompt template "[X] the code is [Z]",
the accuracy, precision, recall, and F1 score reached 62.59%,
60.13%, 62.24%, and 61.36%, respectively. However, when
using the second prompt template, these metrics increased to
64.86%, 61.31%, 62.88%, and 62.08%, respectively. More-
over, by comparing the first and fourth prompt templates,
which only differ in the order of tokens, we find that the fourth
template achieved an accuracy of 64.47%. There is a 1.88%
discrepancy between the two different prompt templates.

In addition, when using the same token order but different
types of prompts, such as hard prompts and soft prompts,
the results of vulnerability detection are also influenced. For
example, when using the first token order, the accuracy of
hard prompts and soft prompts reaches 62.59% and 62.22%,
respectively.

2) Different Verbalizers: Method. To answer this question,
we select labels associated with the vulnerability detection task
as verbalizers, as displayed in Table VII. We investigate the
impact of different verbalizers on the performance of prompt
tuning. To comprehensively study the impact of verbalizers,
we further varied the number of verbalizers. Specifically, we
studied the cases where the number of verbalizers was set to
1 and 2, respectively.

Result. The results are presented in Table VII, which show
that when setting the verbalizer to "vulnerable" and "non-
vulnerable”, the model achieved accuracy, precision, recall,
and F1 score of 64.47%, 63.29%, 58.32%, and 60.69%,
respectively. However, when setting the verbalizer to "good"
and "bad", these metrics are 63.85%, 61.43%, 51.87%, and
56.24%, respectively. This indicates that different verbalizers
can have some impact on the performance of prompt tuning.
Moreover, we find that when the "+" and "-" signs of ver-
balizers are different, the effectiveness of prompt tuning is
also affected. For instance, when "+" and "-" are mapped to
"secure" and "insecure", respectively, the model achieved an
accuracy of 63.37%. However, when the signs are swapped,
but the verbalizers are the same, the accuracy increased to
65.47%. In addition, the results demonstrate that the number

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Comparison of the impact of different prompt templates on the performance of prompt tuning. The model is
fixed to CodeT5-base, the verbalizer is fixed to "vulnerable, non-vulnerable", and the dataset is fixed to Devign. The bold font

indicates better performance.

| Accuracy | Precision | Recall | F1 score

Hard prompt Soft prompt | hard soft | hard soft | hard soft | hard soft
1. [X] The code is [Z] [X] [soft] [soft] [soft] [Z] 62.59 6222 | 60.13 59.85 | 62.24 5296 | 61.36 56.19
2. [X] [Z] is the result [X] [Z] [soft] [soft] [soft] 64.86 63.17 | 61.31 59.87 | 62.88 59.20 | 62.08 59.53
3. Code: [X] [Z] [soft] [soft] [X] [Z] 63.03 62.88 | 60.34 5875 | 6249 63.36 | 6140 60.96
4. The code [X] is [Z] [soft] [soft] [X] [soft] [Z] 64.47 63.10 | 63.28 60.37 | 58.32 56.32 | 60.69 58.27
5. [X] It is a [Z] code [X] [soft] [soft] [soft] [Z] [soft] 64.12 64.05 | 6421 60.50 | 48.80 61.76 | 55.45 61.12
6. Code: [X] [Z] is the result [soft] [soft] [X] [Z] [soft] [soft] [soft] | 62.90 62.37 | 63.01 59.75 | 54.60 54.40 | 58.50 56.95
7. The [X] is a [Z] code [soft] [X] [soft] [soft] [Z] [soft] 64.34 63.32 | 63.72 59.62 | 61.90 6144 | 62.79 60.52

TABLE VII: The impact of different verbalizers on the performance of prompt tuning. The prompt template is fixed to
"The code [X] is [Z]". The model is fixed to CodeT5-base, and the dataset is fixed to Devign. The bold font indicates better

performance.
Verbalizer
Numbers ¥ _ Accuracy Precision Recall F1 score
vulnerable non-vulnerable 64.47 63.29 58.32 60.69
secure insecure 63.37 61.57 53.53 57.26
good bad 63.85 6143 51.87 56.24
1 bad good 65.06 63.39 52.59 57.49
insecure secure 65.47 63.28 56.30 59.59
non-vulnerable vulnerable 63.59 61.52 60.01 60.75
vulnerable/insecure non-vulnerable/secure 65.39 64.19 55.51 59.95
2 good/secure bad/insecure 65.10 65.13 55.26 59.79

of verbalizers also affects the performance of prompt tuning.

Finding 3: In different prompt types, we obtain 28 groups
of results. Among them, 26 groups show that hard prompts
outperformed soft prompts. Moreover, performance can be
improved by using verbalizers that are more relevant to down-
stream tasks (e.g., "vulnerable"), and using two verbalizers
instead of one can increase the accuracy and F1 score by
1.47% and 2.30%, respectively.

D. RQA4: Effectiveness of prompt tuning in data scarcity sce-
narios.

Method. To answer RQ4, we simulate zero-shot and few-
shot scenarios by controlling the size of the training set to
explore the ability of prompt tuning in these scenarios. To be
specific, we establish five different scenarios for training shots,
including O shot, 16 shots, 32 shots, 64 shots, and 128 shots.
In the case of 0 shot, no tuning data was involved. The fine-
tuning model directly generated target labels using the test
data, while the prompt-tuning model predicted label words.
To eliminate any randomness in the data selection process,
we generate each subset ten times using different seeds and
conduct four runs on each subset. The reported results are the
average of these runs.

Result. In Table VIII, we present the accuracy and F1
score for five different prompt tuning and fine-tuning settings.
Comparing these results with those in Table III, we observe
a significant drop in performance. This is reasonable since
PLMs require specific task data to perform well. In fact, for

421

the CodeT5 and CodeGPT models, even failed to converge in
the zero-shot scenario due to the lack of training data.

However, the experimental results demonstrate that prompt
tuning still outperforms fine-tuning in data scarcity scenarios.
For example, in the CodeBERT model, when the training set
sizes are zero-shot, 16 shots, 32 shots, 64 shots, and 128
shots, the F1 score of prompt tuning was improved by 18.27%,
20.35%, 4.77%, 0.45%, and 0.96%, respectively, compared to
fine-tuning. These findings suggest that prompt tuning can help
the model better learn domain knowledge, even in data scarcity
scenarios.

Finding 4: In data scarcity scenarios, prompt tuning out-
performs fine-tuning at most 8.40% in accuracy and 34.10%
in F1 score. Moreover, the extent of improvement provided
by prompt tuning increases as the size of the training set
decreases.

E. RQS5: Effectiveness of prompt tuning in cross-domain vul-
nerability detection tasks.

Method. To answer RQS5, we conduct cross-domain ex-
periments on three different datasets, resulting in six sets of
experiments comparing the performance of prompt tuning and
fine-tuning. The three datasets comprise different projects,
which can demonstrate the generalization ability of prompt
tuning. We introduce the item composition of the datasets
when describing them.

Result. Table IX shows that except for the case where the
source domain is BigVul and the target domain is Reveal,
prompt tuning outperforms fine-tuning in terms of both accu-

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Comparison results of the performance between prompt tuning and fine-tuning under low-resource settings.

non

indicates that the model fails to converge due to extremely limited training data. The prompt template is fixed to "The code
[X] is [Z]". The verbalizer is fixed to "vulnerable, non-vulnerable"”, and the dataset is fixed to Devign. The bold font indicates

better performance.

| Zero shot | 16 shots | 32 shots | 64 shots | 128 shots
Model Methods | Accuracy F1 score | Accuracy F1score | Accuracy F1 score | Accuracy F1 score | Accuracy F1 score

Fine-tuning 47.63 30.10 4991 34.83 51.13 47.92 52.59 50.83 52.96 51.26

CodeBERT Prompt tuning 50.64 35.62 51.81 41.92 52.01 50.20 53.09 51.06 53.54 51.75
Fine-tuning - - 47.26 43.81 48.16 48.95 50.01 53.19 52.78 53.49

CodeT5-small Prompt tuning - - 49.30 46.99 50.76 51.26 51.34 53.78 53.43 54.77
Fine-tuning - - 50.90 47.56 51.40 51.70 51.62 53.20 53.93 54.18

CodeT5-base Prompt tuning - - 52.86 49.09 52.17 52.63 52.56 54.01 54.18 55.60
Fine-tuning - - 43.26 30.29 45.11 33.03 47.33 36.57 50.11 38.23

CodeGPT Prompt tuning - - 46.91 40.61 47.86 41.77 49.16 43.26 51.02 44.61

racy and F1 score. Notably, when the source domain is Devign
and the target domain is Reveal, prompt tuning achieves a
289.04% improvement in accuracy compared to fine-tuning.

TABLE IX: Comparison of the performance between prompt
tuning and fine-tuning in cross-domain settings. The bold font
indicates better performance.

Source->Target | Methods | Accuracy F1 score
. Fine-tuning 2291 19.77
Devign->Reveal | Prompt tuning 89.13 25.38
.) Fine-tuning 21.89 11.74
Devign->BigVul | Prompt tuning 25.72 11.88
) Fine-tuning 55.60 5.49
Reveal->Devign | Prompt tuning 55.89 9.74
) Fine-tuning 90.23 5.23
Reveal->BigVul | Prompt tuning 91.46 6.52
)) Fine-tuning 56.40 4.33
BigVul->Devign | Prompt tuning 56.55 2.15
. Fine-tuning 86.93 18.63
BigVul->Reveal | Prompt tuning 88.20 24.72

Finding 5: In cross-domain vulnerability detection tasks, we
obtained 12 groups of results. Among them, 11 groups show
that prompt tuning outperformed fine-tuning. On average,
compared to fine-tuning, prompt tuning achieves a 57.53%
improvement in accuracy and a 36.14% improvement in F1
score.

VI. DISCUSSION

A. Implications of Our Empirical Study

1) Evaluating the Effectiveness of Prompt Tuning for Dif-
ferent PLMs: Based on our finding 1, 2, and 5, we observe that
the improvement in the effectiveness of prompt tuning varies
when using different PLMs. Currently, despite the availability
of a large number of PLMs [7], [20], [24], [41], there is
a lack of systematic comparison to evaluate the impact of
different PLMs on prompt tuning. Therefore, exploring how to
choose the appropriate PLM for prompt tuning is an important
direction for future research.

422

2) Application of Prompt Tuning to other Tasks related to
Software Vulnerability.: Based on our finding 1, 2, 4, and
5, we observe that prompt tuning outperforms fine-tuning in
all three vulnerability detection tasks, especially when data
resources are scarce. Therefore, comparing prompt tuning and
fine-tuning to other more comprehensive and specific tasks
related to software vulnerability is an important direction
for future research (such as vulnerability assessment and
prioritization [42]).

3) Incorporating Domain-Specific Knowledge to Prompt
Tuning: Based on our finding 3, we observe that incorporat-
ing domain-specific knowledge into prompt template design
can significantly improve model performance. Code structure
information has been demonstrated to be effective in many DL
models for code-related tasks [34], [43]. Therefore, consider-
ing incorporating code structure information into the design
of prompt tuning to improve the performance of vulnerability
detection is an important direction for future research.

B. Threats to Validity

Threats to the construct validity. Our experiments show
that prompt tuning can enhance the performance of PLMs on
vulnerability detection tasks. However, the prompt templates
used in this study may not represent the most effective
approach. To alleviate this threat, we develop a set of template
rules and examine the influence of hard prompts and soft
prompts on model performance.

Threats to the internal validity. During the evaluation of
our models, there may be a certain degree of variability in the
results of each run. For example, different runs of the same
prompt template in RQ3 may yield other metrics. To alleviate
this threat, we run each prompt template five times and average
the results.

Threats to the external validity. The results may only
apply to the specific models used and may not be generalizable
to other models. To alleviate this threat, we employ three
models: CodeBERT, CodeT5, and CodeGPT. These models
have different architectures: encoder-only, encoder-decoder,
and decoder-only, respectively.

Threats to the conclusion validity. The experimental
results in this study are based on a limited number of datasets,

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

and their labels may not be entirely accurate. This could
potentially introduce some bias into our results. To alleviate
this threat, we select several widely used and high-quality
datasets.

VII. RELATED WORK
A. DL-based Vulnerability Detection

Traditional DL-based vulnerability detection approaches re-
quire the manual and time-consuming collection of metrics
as features [44]. To address this issue, various deep learning-
based approaches have been proposed to automatically learn
vulnerability patterns from data [32], [34], [35].

Recurrent Neural Network-based (RNN-based) architectures
are used to learn the syntax and semantics of source code auto-
matically. For instance, Dam et al. [45] proposed a Long Short-
Term Memory-based (LSTM-based) architecture to learn the
syntax and semantics of source code automatically. However,
the RNN-based approaches typically assume that the source
code is a sequence of tokens and do not consider the graph
structure of the source code, which can lead to inaccurate
predictions.

Therefore, to better utilize the structure information of code,
many approaches have abstracted code as graphs and used
Graph Neural Networks (GNNs) to learn graph features [34],
[43]. For example, Reveal [34] used Gated Graph Neural Net-
work (GGNN) to process multiple directed graphs generated
from source code. Similarly, MVD [43] used Program De-
pendence Graph (PDG) to represent code, performed program
slices and used Flow-Sensitive Graph Neural Networks (FS-
GNN) to detect vulnerabilities.

Prompt tuning has recently emerged as a new paradigm
for enhancing downstream task performance by optimizing
prompts to better adapt the model to specific task requirements
and domains [12]. However, by analyzing existing work, we
find whether using prompt tuning can improve the performance
of vulnerability detection tasks has not been thoroughly inves-
tigated and our study wants to fill this gap.

B. Prompt Tuning

Jiang et al. [46] proposed a mining-based approach that
automatically found a template given a set of training inputs
x and outputs y. Yuan et al. [47] proposed a paraphrasing-
based approach that replaced it with phrases in a thesaurus,
returned a set of other candidate prompts, and then selected the
one that achieved the highest training accuracy on the target
task. Wallace er al. [48] applied a gradient-based search to
actual tokens to find short sequences that could trigger a PLM
to generate the desired target prediction.

Previous research has focused on applying prompt tuning
in NLP. Currently, some studies have applied prompt turning
to software engineering. Wang et al. [49] used prompt tuning
to three downstream tasks in the field of software engineer-
ing, demonstrating the effectiveness of prompt tuning in this
domain. Li et al. [50] used the prompt tuning to predict the
severity of vulnerabilities and exploitability features based on
vulnerability descriptions.

423

However, prompt tuning has not been applied to vulnera-
bility detection in existing research. In this study, we want to
perform a comprehensive analysis of prompt tuning for within-
domain vulnerability detection, cross-domain vulnerability de-
tection, and vulnerability type detection.

VIII. CONCLUSION AND FUTURE WORK

Fine-tuning the PLMs has become a widely-used technique
for vulnerability detection [8]. However, there is a natural gap
between model pre-training tasks and vulnerability detection
tasks due to differences in input formats, which can impact
downstream task performance [12]. Prompt tuning has been
shown to alleviate this issue and has demonstrated strong
performance in many NLP tasks [15], [18]. Inspired by this,
we conduct empirical evaluations to determine whether prompt
tuning is superior to fine-tuning for vulnerability detection
tasks. We perform large-scale studies on three PLMs (i.e.,
CodeBERT, CodeT5, and CodeGPT) across three vulnerability
datasets (i.e., Devign, BigVul, and ReVeal). Our experiments
indicate that prompt tuning outperforms fine-tuning in within-
domain vulnerability detection, cross-domain vulnerability de-
tection, and vulnerability type detection, particularly in data
scarcity scenarios. Furthermore, our results show that different
prompt types and verbalizers can have an impact on F1 score
at most 7.34%.

Our future plans involve developing more suitable prompt
templates that can enable the model to acquire domain-specific
knowledge in a more effective manner. Additionally, we aim
to expand our investigation of prompt tuning performance to
a wider range of vulnerability datasets and PLMs.

REFERENCES
[1] H. Gabriel, “Analyza a demonstrace zranitelnosti proxylogon,” B.S.
thesis, Ceské vysoké uceni technické v Praze. VypoGetni a informaéni
centrum., 2022.
P. Li and B. Cui, “A comparative study on software vulnerability static
analysis techniques and tools,” in 2010 IEEE international conference
on information theory and information security. 1EEE, 2010, pp. 521—
524.
A. Kaur and R. Nayyar, “A comparative study of static code analysis
tools for vulnerability detection in ¢/c++ and java source code,” Procedia
Computer Science, vol. 171, pp. 2023-2029, 2020.
Z. Shen and S. Chen, “A survey of automatic software vulnerability
detection, program repair, and defect prediction techniques,” Security
and Communication Networks, vol. 2020, pp. 1-16, 2020.
N. Ziems and S. Wu, “Security vulnerability detection using deep
learning natural language processing,” in JEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). 1EEE, 2021, pp. 1-6.
Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536-1547.
Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696-8708.
H. Hanif and S. Maffeis, “Vulberta: Simplified source code pre-training
for vulnerability detection,” in 2022 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2022, pp. 1-8.
Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[2

—

[3]

[4]

[51

[6

=

[7

—

[8

[}

[91

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

(18]

[19]

[20]

[21]

(22

(23]

[25]

[26]

[27]

(28]

M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608—620.

J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171-4186.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1-35, 2023.

Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying pre-
training and downstream tasks for graph neural networks,” in Proceed-
ings of the ACM Web Conference 2023, 2023, pp. 417-428.

Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning
for few-shot learning,” in Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022, pp. 8410-8423.
X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun, “Ptr: Prompt tuning
with rules for text classification,” AI Open, vol. 3, pp. 182-192, 2022.
T. Schick and H. Schiitze, “Exploiting cloze-questions for few-shot
text classification and natural language inference,” in Proceedings of
the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021, pp. 255-269.

X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021, pp. 4582—
4597.

R. Mao, Q. Liu, K. He, W. Li, and E. Cambria, “The biases of pre-trained
language models: An empirical study on prompt-based sentiment analy-
sis and emotion detection,” IEEE Transactions on Affective Computing,
2022.

G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen, “Exploit-
gen: Template-augmented exploit code generation based on codebert,”
Journal of Systems and Software, vol. 197, p. 111577, 2023.

K. Liu, G. Yang, X. Chen, and Y. Zhou, “El-codebert: Better exploiting
codebert to support source code-related classification tasks,” in Proceed-
ings of the 13th Asia-Pacific Symposium on Internetware, 2022, pp. 147—
155.

C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-
tuned codebert,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2022, pp. 82-93.

L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang et al., “Exploring soft-
ware naturalness through neural language models,” arXiv preprint
arXiv:2006.12641, 2020.

H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and
N. B. Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Journal of
Network and Computer Applications, vol. 179, p. 103009, 2021.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models
better few-shot learners,” arXiv preprint arXiv:2012.15723, 2020.

T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, “Auto-
prompt: Eliciting knowledge from language models with automatically
generated prompts,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 4222—
4235.

B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” in Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, 2021,
pp. 3045-3059.

G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software vulner-
ability detection using deep neural networks: a survey,” Proceedings of
the IEEE, vol. 108, no. 10, pp. 1825-1848, 2020.

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “muvuldeepecker: A
deep learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224-2236, 2019.

424

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 49-60.

Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spot-
tune: transfer learning through adaptive fine-tuning,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4805-4814.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508-512.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292-303.

X. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and Q. Liao,
“Vulnerability detection with graph simplification and enhanced graph
representation learning,” arXiv preprint arXiv:2302.04675, 2023.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485-5551, 2020.

P. Budzianowski and 1. Vulic, “Hello, its gpt-2-how can i help you?
towards the use of pretrained language models for task-oriented dialogue
systems,” EMNLP-IJCNLP 2019, p. 15, 2019.

N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H. Zheng, and M. Sun,
“Openprompt: An open-source framework for prompt-learning,” in Pro-
ceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, 2022, pp. 105-113.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained
language models for text generation: A survey,” Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, 2022.
T. H. Le, H. Chen, and M. A. Babar, “A survey on data-driven software
vulnerability assessment and prioritization,” ACM Computing Surveys,
vol. 55, no. 5, pp. 1-39, 2022.

S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “Mvd: memory-
related vulnerability detection based on flow-sensitive graph neural
networks,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1456-1468.

Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement, 2008, pp. 315-317.

H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint
arXiv:1708.02368, 2017.

Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 423—438, 2020.

W. Yuan, G. Neubig, and P. Liu, “Bartscore: Evaluating generated text
as text generation,” Advances in Neural Information Processing Systems,
vol. 34, pp. 27263-27277, 2021.

E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Universal
adversarial triggers for attacking and analyzing nlp,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 382-394.

X. Li, X. Ren, Y. Xue, Z. Xing, and J. Sun, “Prediction of vulnerability
characteristics based on vulnerability description and prompt learning,”
in 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 1EEE, 2023, pp. 604-615.

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

