
Assessing the Effectiveness of Vulnerability
Detection via Prompt Tuning: An Empirical Study

Guilong Lu†, Xiaolin Ju†∗, Xiang Chen†∗, Shaoyu Yang†, Liang Chen†, Hao Shen†
†School of Information Science and Technology, Nantong University, China

guil.lu@outlook.com, {ju.xl, xchencs, chenliang82}@ntu.edu.cn, {shaoyuyoung, shenhyc}@gmail.com

Abstract—In vulnerability detection approaches based on deep
learning, fine-tuning with Pre-trained Language Models (PLMs)
is a prevalent technique. Unfortunately, a natural gap exists
between model pre-training tasks and vulnerability detection
tasks due to different input formats, and the performance of
fine-tuning relies on downstream dataset scales. Recently, prompt
tuning has been used to alleviate these issues. However, it has not
received enough attention in vulnerability detection. To assess
the effectiveness of prompt tuning, we consider three classical
vulnerability detection tasks: within-domain vulnerability detec-
tion, cross-domain vulnerability detection, and vulnerability type
detection. Our empirical study considers three popular PLMs:
CodeBERT, CodeT5, and CodeGPT. Then we use Devign, BigVul,
and Reveal datasets as our experimental subjects. Our empirical
results indicate that (1) compared to fine-tuning, prompt tuning
can increase the accuracy of three tasks by an average of 42%,
38%, and 41%, respectively; (2) different prompt templates can
have up to an 8% impact on accuracy; (3) in data scarcity
scenarios, the superiority of prompt tuning over fine-tuning is
more obvious. Our research demonstrates that using prompt
tuning can help to achieve better performance in vulnerability
detection tasks and is a promising research direction in the future.

Index Terms—Prompt tuning, Vulnerability detection, Vulner-
ability type detection, Cross-domain vulnerability detection

I. INTRODUCTION

Software vulnerabilities can be exploited by malicious

attackers, thereby jeopardizing the system’s confidentiality,

integrity, and availability. For example, in 2021, a group

exploited the ProxyLogon vulnerability [1] to steal internal

data from Acer and publicly demanded a ransom of 50 million

US dollars. Consequently, vulnerability detection has become

increasingly important as it is critical to ensuring software

security.

In previous studies, researchers proposed program analysis

(PA)-based approaches to detect vulnerabilities [2]. For in-

stance, RATS1 can identify vulnerabilities, including buffer

overflows and TOCTOU race conditions [3]. Cppcheck2 used

unique code analysis and focused on detecting undefined

behavior and dangerous code structures [3]. Unfortunately,

PA-based approaches rely on predefined patterns to identify

vulnerabilities [4], and the predefined patterns need to be

manually created by security experts, which can be time-

consuming.

∗Corresponding author
1https://github.com/andrew-d/rough-auditing-tool-for-security
2http://cppcheck.net/

Deep learning (DL)-based techniques can effectively miti-

gate this problem, especially with the fine-tuning approaches

based on PLMs, which have become the mainstream ap-

proaches for vulnerability detection [5]. These PLMs, such as

CodeBERT [6] and CodeT5 [7], learn from large-scale corpus

to better understand underlying knowledge. Subsequently, fine-

tuning the PLMs enables them to better adapt to vulnerability

detection. For example, Hanif et al. [8] pre-trained a custom

tokenization pipeline on real-world C/C++ code to train a

Roberta model [9]. Then, this model was fine-tuned for vul-

nerability detection tasks. Similarly, Fu et al. [10] constructed

a model with a BERT architecture [11] and pre-trained it,

and then fine-tuned it for vulnerability detection at the line

level. However, the inconsistent inputs and objectives of pre-

training and fine-tuning make it difficult to fully explore the

knowledge of PLMs [12], [13], leading to sub-optimal results

for downstream tasks. Moreover, the effectiveness of using

fine-tuning largely depends on the scale of the downstream

data [14], [15].

Recently, prompt tuning has emerged as an advanced tech-

nology that has demonstrated promising performance in many

language modeling tasks [16], [17]. Unlike fine-tuning, prompt

tuning is a recent approach in natural language processing

(NLP) that involves training a PLM on a small amount of

task-specific data and a set of prompts, which are structured

prompts that guide the model to generate task-specific outputs.

Prompt tuning has been proven superior to fine-tuning in

many NLP tasks, such as text classification [15] and emotion

detection [18]. To our best knowledge, its effectiveness in

vulnerability detection tasks has not been thoroughly explored.

Inspired by the success of prompt tuning in the field of

NLP [15], [18], we explore whether prompt tuning is effective

in vulnerability detection tasks. In our empirical study, we aim

to answer the following research questions (RQs):

• RQ1: How effective is prompt tuning in vulnerability

detection tasks?

• RQ2: How effective is prompt tuning in vulnerability type

detection tasks?

• RQ3: How do different prompt templates affect the per-

formance of prompt tuning?

• RQ4: How effective is prompt tuning in data scarcity

scenarios?

• RQ5: How effective is prompt tuning for cross-domain

vulnerability detection tasks?

415

2023 30th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/23/$31.00 ©2023 IEEE
DOI 10.1109/APSEC60848.2023.00052

20
23

 3
0t

h
As

ia
-P

ac
ifi

c
So

ft
w

ar
e

En
gi

ne
er

in
g

Co
nf

er
en

ce
 (A

PS
EC

) |
 9

79
-8

-3
50

3-
44

17
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AP
SE

C6
08

48
.2

02
3.

00
05

2

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

To answer these RQs, we conduct experiments using fine-

tuning and prompt tuning on three PLMs (i.e., CodeBERT,

CodeT5, and CodeGPT) which achieve state-of-the-art per-

formance in many code-related downstream tasks [19]–[21]

and evaluate their performance on three datasets (i.e., Devign,

BigVul, and Reveal) which are popular benchmark dataset.

The results indicate that prompt tuning outperforms fine-tuning

on these tasks. Moreover, the design of different prompt tem-

plates and verbalizers can also have an impact on performance.

The main contributions of our study are summarized as

follows:

• We conduct the first analysis of the effectiveness of

prompt tuning in the field of vulnerability detection tasks.

• We evaluate the effectiveness of prompt tuning using

three PLMs (i.e., CodeBERT, CodeT5, and CodeGPT)

and evaluate its performance on three datasets (i.e., De-

vign, BigVul, and Reveal).

• We investigate the effectiveness of prompt tuning using

different prompt templates and discuss its performance in

data scarcity scenarios.

• We summarize three implications of our study that can

guide future research.

Our source code and experimental data are available at:

https://github.com/P-E-Vul/prompt-empircial-vulnerability.

II. BACKGROUND AND RESEARCH MOTIVATION

A. Vulnerability detection based on PLMs

The PLM-based vulnerability detection approaches utilize

DL-based approaches to identify and detect security vulner-

abilities in software [22]. These PLMs have been trained on

vast corpus [6], [7]. During pre-training, they learn transferable

and generic feature representations. Subsequently, PLMs can

adapt and customize their knowledge representations for new

tasks by fine-tuning using the data and labels of those tasks.

Typically, these approaches involve five steps [23]: (1) Data

collection and preprocessing: collect a large number of source

code samples, including both vulnerable and non-vulnerable

code, and preprocess them by removing comments, blank

lines, etc.; (2) Feature extraction and representation: convert

the source code into a format suitable for processing by deep

learning models; (3) Model selection and training: choose an

appropriate PLM, such as CodeGPT [24] or CodeBERT [6], as

the base model, and fine-tune it for the vulnerability detection

task using collected samples of vulnerable and non-vulnerable

code; (4) Model evaluation: after training, evaluate the model

using a test dataset; (5) Vulnerability detection: deploy the

trained model in real-world scenarios to identify vulnerabilities

in the target source code.

B. Prompt Tuning

Prompt tuning aims to convert the downstream task ob-

jectives of fine-tuning into pre-training tasks [9], [11]. As

shown in Fig. 1(a), traditional fine-tuning involves inputting

the [CLS] representation into a classifier for binary classifi-

cation, predicting the presence or absence of vulnerabilities

in a function, and requiring a significant amount of data for

training. Prompt tuning generates a template with a special

token [MASK] related to a given sentence, using methods

such as manual definition [25], automatic search [26], and text

generation [15]. This template, such as "The code is [MASK]"

shown in Fig. 1(b), is concatenated with the original text to

create the input for prompt tuning. This input is fed into

a PLM to predict the distribution over label words on the

[MASK] token position, such as "Good", "Vulnerable", "Bad"

and so on. Then, the verbalizer outputs the final prediction

using a mapping relationship that maps each label word to

a class [15]. As illustrated in Fig. 1(b), label words such

as "Vulnerable" and "Bad" correspond to code snippets with

vulnerabilities, while "Good" corresponds to code snippets

without vulnerabilities. The classes include "+" and "-", where

"-" denotes the presence of vulnerabilities and "+" denotes the

absence of vulnerabilities in this example.

Currently, prompt-tuning techniques are usually classified

into two main categories within the academic community:

hard prompts (discrete prompts) and soft prompts (continuous

prompts). In the rest of this subsection, we provide details for

each prompt type.

1) Hard Prompt: Hard prompt refers to the technique of

modifying inputs of the models by adding natural language

texts. The current construction methods of hard prompts

mainly include manual construction, heuristic search, and

generation methods [12]. In hard prompts, each added token

is interpretable [14]. For example, the hard prompt template

of the vulnerability detection task can be formulated as:

fprompt (x) = " The code [X] is [Z]" (1)

where [X] denotes the input code, and [Z] denotes the label

word that the model is required to predict, such as "vulnerable"

or "non-vulnerable".

2) Soft Prompt: Hard prompts require designing a specific

template for each task, as these templates consist of discrete,

readable tokens, making it challenging to find the optimal

template [15]. Moreover, even for the same task, different

sentences may have their optimal templates [17]. Sometimes,

even human-understandable, similar templates can produce

significantly different model predictions [12]. Therefore, soft

prompts have been proposed [15], [17], [27]. Unlike hard

prompts, tokens in soft prompts are not fixed and discrete

words in natural language, but virtual tokens, such as:

fprompt (x) = "[SOFT][SOFT][X][SOFT][Z]" (2)

where, [SOFT] denotes a virtual token.

C. Research Motivation

In previous research, vulnerability detection based on PLMs

was performed using fine-tuning and faced two main chal-

lenges.

• When fine-tuning the PLM for vulnerability detection

tasks, the input is limited to source code, and the training

objective is transformed into a classification problem. The

416

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

[CLS]

[SEP]

MLM
Head[MASK]

Good

Vulnerable

Bad

……

(a) Fine-tuning paradigm (b) Prompt-tuning paradigm

Verbalizer

+ -

int getValueFromArray(int *array, int len, int index) {

 int value;

 if (index < len) {

 value = array[index];

 }

 else {

 printf("Value is: %d\n", array[index]);

 value = -1;

 }

 return value;

}

THE CODE IS

[CLS]

[SEP]

CLS
Head

int getValueFromArray(int *array, int len, int index) {

 int value;

 if (index < len) {

 value = array[index];

 }

 else {

 printf("Value is: %d\n", array[index]);

 value = -1;

 }

 return value;

}

Fig. 1: Explanation of the process of fine-tuning paradigm and prompt-tuning paradigm. The function in the figure is an

example of CWE-119. [CLS] and [SEP] are special tokens in PLMs.

discrepancies between the inputs and objectives of pre-

training and fine-tuning make it difficult to fully explore

the knowledge of PLMs, leading to sub-optimal results

for downstream tasks [12], [13];

• The effectiveness of using fine-tuning largely depends on

the scale of the downstream data [14], [15].

Recent studies have shown that prompt tuning can mitigate

the disadvantages of traditional fine-tuning, making models

more adaptable to different downstream tasks [15], [18].

Regarding the first challenge, prompt tuning uses task-

specific prompts to guide the model-tuning of PLMs, which

can bridge the gap between fine-tuning and pre-training.

Regarding the second challenge, compared to traditional

fine-tuning, prompt tuning does not require fine-tuning all the

parameters of PLMs but only needs to train a small number

of parameters related to the task. This can reduce the number

of required training parameters, thus reducing the risk of

overfitting and improving the model’s generalization ability.

However, most current research is mainly limited to NLP

tasks [12]. In the vulnerability detection task, the advantages of

prompt tuning have not been proven effective yet. Therefore, in

this paper, we aim to evaluate whether prompt tuning outper-

forms fine-tuning in vulnerability detection comprehensively.

III. RESEARCH QUESTIONS

This section outlines the motivations behind five research

questions. Our goal is to provide answers to these RQs by

conducting an extensive experimental evaluation:

RQ1: How effective is prompt tuning in vulnerability
detection tasks?

Motivation: Vulnerability detection tasks aim to identify

whether a function contains vulnerabilities. Correctly iden-

tifying such vulnerabilities is crucial for improving system

security [28]. By studying the effectiveness of prompt tuning

and fine-tuning in vulnerability detection tasks, we can better

understand the applicability of two techniques and provide

better solutions for vulnerability detection.

RQ2: How effective is prompt tuning in vulnerability
type detection tasks?

Motivation: Vulnerability type detection tasks aim to clas-

sify and identify vulnerabilities in software programs. High-

quality detection of vulnerability types is crucial for locating

and fixing vulnerabilities [29]. We aim to study the effective-

ness of prompt tuning in vulnerability type detection, which

can also provide valuable insights for other multi-classification

tasks.

RQ3: How do different prompt templates affect the
performance of prompt tuning?

Motivation: During the prompt tuning, prompt templates

can serve as guidance to help the model better learn the task

features and data features. However, if the selected prompt

templates are inappropriate or poorly designed, the generated

prompts may contain bias or inaccuracies, which can nega-

tively impact the performance of the model [12]. Currently,

there is insufficient understanding of the effectiveness of

different prompt templates in vulnerability detection tasks, and

further research is needed to help researchers better apply and

optimize prompt tuning techniques.

RQ4: How effective is prompt tuning in data scarcity
scenarios?

Motivation: Recent research has shown that fine-tuning

performance is highly dependent on the size of the downstream

task dataset [30], [31]. However, dataset scarcity is a common

issue in the context of vulnerability detection tasks. We design

this RQ to investigate the effectiveness of prompt tuning in

data scarcity.

RQ5: How effective is prompt tuning for cross-domain
vulnerability detection tasks?

Motivation: Cross-domain vulnerability detection refers to

detecting vulnerabilities within a domain or application by

utilizing data, approaches, or models from different domains

417

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

or applications. Cross-domain vulnerability detection is a

critical problem since models need to generalize to different

domains and scenarios. We design this RQ to investigate the

performance of prompt tuning for cross-domain vulnerability

detection.

IV. CASE STUDY DESIGN

A. Evaluation Subjects

1) Vulnerability detection tasks: To empirically evaluate the

performance of prompt tuning in vulnerability detection tasks,

we select three popular benchmark datasets (i,e., Devign [32],

BigVul [33], and Reveal [34]).

• Devign [32]. The Devign dataset was manually labeled

and sourced from two open-source C projects: FFmpeg

and Qemu. It includes 10,067 vulnerable functions and

12,294 non-vulnerable functions.

• BigVul [33]. The BigVul dataset was sourced from over

300 open-source C/C++ projects on GitHub, covering 91

distinct vulnerability types listed in the Common Vul-

nerabilities and Exposures (CVE) database from 2002 to

2019. The dataset comprises 10,547 vulnerable functions

and 179,299 non-vulnerable functions.

• Reveal [34]. The Reveal dataset was sourced from

two open-source projects: Linux Debian Kernel and

Chromium. It comprises 16,505 vulnerable functions and

1,664 non-vulnerable functions.

We use Table I to present the statistical information for these

datasets, including the total number of samples, the number of

samples with vulnerabilities, the number of samples without

vulnerabilities, and the ratio of samples with vulnerabilities to

the total number of samples.

TABLE I: Statistics of the dataset used in vulnerability

detection tasks

Dataset Samples Vul Non-vul Vul Ratio(%)
Devign [32] 22361 10067 12294 45.02

BigVul [33] 179299 10547 168752 5.88

Reveal [34] 18169 1664 16505 9.16

We select these three datasets for the following reasons:

(1) all three datasets contain real-world projects and vulner-

abilities; (2) most models in related literature evaluate their

performance on these three datasets, such as IVDetect [35] and

AMPLE [36]; and (3) the BigVul dataset includes annotations

on vulnerability types, which are essential for addressing our

RQ2.

2) Vulnerability type detection tasks: Our study is focused

on exploring the application of prompt tuning in vulnerability

type detection tasks rather than prioritizing the evaluation

of numerous vulnerability types. As a result, we select five

vulnerability types that rank among the top five on the CWE

official website3, as they are commonly found in practical

software development and are widely recognized as posing

3https://cwe.mitre.org/

potential threats to network security. For this task, we utilize

the dataset that has been extracted from BigVul [33].

In Table II, we present the statistical information of the

dataset, including details on the types of vulnerabilities, their

corresponding names, the respective quantities of each vulner-

ability type, and their proportion relative to the overall dataset

size.

TABLE II: Description of vulnerability types used in vulner-

ability type detection tasks

Rank CWE-ID Name Numbers Type Ratio(%)

1 CWE-79 Cross-site Scripting 9 1.07

2 CWE-787 Out-of-bounds Write 44 5.28

3 CWE-20 Improper Input Validation 228 27.34

4 CWE-125 Out-of-bounds Read 107 12.83

5 CWE-119 Improper Restriction 446 53.48

B. Performance Measures

1) Vulnerability detection tasks: For vulnerability detection

tasks, similar to AMPLE [36], we use the following four

widely-used performance measures in our evaluation:

Accuracy. Accuracy is a common metric used in binary

classification tasks to measure the ability of the model to

identify vulnerable code. It is defined as the ratio of correctly

classified samples to the total number of samples in the dataset.

The formula is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP refers to the number of samples that the model

correctly predicts as having vulnerabilities among those that

actually have vulnerabilities, TN refers to the number of

samples that the model correctly predicts as not having vul-

nerabilities among those that do not have vulnerabilities, FP
refers to the number of samples that the model incorrectly

predicts as having vulnerabilities among those that do not have

vulnerabilities, FN refers to the number of samples that the

model incorrectly predicts as not having vulnerabilities among

those that actually have vulnerabilities.

Precision. Precision measures the proportion of actual

positive samples (i.e., containing vulnerabilities) among sam-

ples predicted by the model as positive. The formula is defined

as follows:

Precision =
TP

TP + FP
(4)

Recall. Recall measures the ability of a model to detect all

actual samples containing vulnerabilities, i.e., the proportion

of actual samples containing vulnerabilities that are correctly

predicted as positive by the model. The formula is defined as

follows:

Recall =
TP

TP + FN
(5)

418

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

F1 score. F1 score represents a balance between precision

and recall and is calculated as the harmonic mean of the two.

The formula is defined as follows:

F1 score = 2× Precision×Recall

Precision+Recall
(6)

2) Vulnerability type detection tasks: The categories for

multi-class classification in the dataset are imbalanced, with

the proportions shown in Table II, it does not imply that

less represented vulnerability types are less important. For

example, CWE-79, which has only nine instances in the

dataset, is ranked first on the CWE official website. Therefore,

for multi-class classification, we use accuracy, weighted F1

Score, and macro F1 Score as the evaluation metric.

Weighted F1 Score. Weighted F1 Score (w-F1) is calcu-

lated by taking a weighted average of the F1 Score for each

class, where the weights are based on the relative frequency

of each class in the dataset. The formula is defined as follows:

Weighted F1 score =
m∑

i=0

wi ∗ (F1 score)i (7)

where m is the number of classes, wi is the weight for class

i (calculated as the ratio of the number of samples in class i
to the total number of samples).

Macro F1 Score. Macro F1 Score (m-F1) is a metric

for evaluating the performance of multi-class classification

models. It calculates the F1 score for each class and takes the

average of all F1 scores. The formula is defined as follows:

Macro F1 score =
1

n
∗

n−1∑

i=0

(F1 score)i (8)

where n is the number of categories. In the vulnerability type

detection dataset used in our study, there are five types of

vulnerabilities, so n is set to 5.

C. Pre-trained Language Models

We choose three widely used PLMs: CodeBERT [6],

CodeT5 [7], and CodeGPT [24] which represent three different

Transformer-based architecture (i.e., Encoder-only, Encoder-

Decoder, and Decoder-only) since they have been trained on

large-scale code corpus and shown promising performance in

code-related downstream tasks [19]–[21]. We introduce them

as follows:

CodeBERT [6] is a PLM based on the BERT (Bidirectional

Encoder Representation from Transformers) [11] which is

an encoder-only Transformer architecture. CodeBERT is pre-

trained on CodeSearchNet corpus consisting of NL-PL (natural

language and programming language) information which has

125 million parameters.

CodeT5 [7] is a PLM based on the T5 (Text-to-Text

Transfer Transformer) [37] which is an encoder-decoder Trans-

former architecture, designed specifically for handling conver-

sion tasks between NL and PL. CodeT5-small has 60 million

parameters, and CodeT5-base has 220 million parameters.

CodeGPT [24] is an autoregressive PLM based on the

GPT-2 (Generative Pre-Trained Transformer) [38] which is a

decoder-only Transformer architecture. During the pre-training

process of the CodeGPT model, a large amount of code

corpus is used, enabling the model to adapt code-related tasks.

CodeGPT has 124 million parameters.

D. Implementation Details

To ensure the fairness of the experiments, we use the same

data split for all approaches. We randomly divide the dataset

into non-overlapping training, validation, and testing sets at a

ratio of 8:1:1. In the prompt tuning experiments, we utilize

OpenPrompt [39] to construct various prompt templates and

verbalizers. During the training process, we use a consistent

number of 20 epochs for both prompt tuning and fine-tuning.

In our empirical study, we utilize PLMs and their cor-

responding tokenizers which are loaded from HuggingFace4

repository. We set identical hyperparameters for fine-tuning

and prompt tuning, e.g., the optimizer is AdamW [40], the

learning rate is 5e-5, the lr scheduler type is linear, etc.

All of our investigations are conducted on a server equipped

with an NVIDIA GeForce RTX 4090.

V. RESULT ANALYSIS

A. RQ1: Effectiveness of prompt tuning in vulnerability detec-
tion tasks.

Method. To answer RQ1, we use the prompt tuning for

vulnerability detection on CodeBERT, CodeT5, and CodeGPT.

Our primary baseline is fine-tuning paradigm. For the CodeT5

model, we utilize the CodeT5-base and CodeT5-small to

explore the impact of PLM size on prompt tuning performance.

We conduct experiments on three commonly used vulnerability

datasets (i,e., Devign [32], BigVul [33], and Reveal [34]).

Result. Table III compares prompt tuning and fine-tuning

in different models. The results show that prompt tuning

consistently performs better than traditional fine-tuning. Tak-

ing CodeT5-base with the best performance on the Devign

dataset as an example, compared to fine-tuning, prompt tuning

improves the accuracy, precision, recall, and F1 score by

0.64%, 8.42%, 2.18%, and 5.12%, respectively. These results

indicate that PLMs can learn richer knowledge and have a

more vital ability to extract contextual semantic information

with input texts under prompt tuning.

Finding 1: In vulnerability detection tasks, prompt tuning

can outperform fine-tuning in most cases. Taking CodeT5-

small as an example, on average, compared to fine-tuning,

prompt tuning has achieved a 3.03% improvement in accuracy,

a 27.75% improvement in precision, a 5.63% improvement in

recall, and a 15.21% improvement in F1 score.

B. RQ2: Effectiveness of prompt tuning in vulnerability type
detection tasks.

Method. To answer RQ2, we conduct experiments on

prompt tuning and fine-tuning for vulnerability type detection

on three models. We select the top five most common vul-

nerability types in the CWE ranking (details can be found in

Table II).

4https://huggingface.co/models

419

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison results of prompt tuning and fine-tuning on three datasets. Notice the bold font indicates better

performance.

Model Methods
Devign BigVul Reveal

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

CodeBERT
Fine-tuning 61.71 56.70 50.29 53.30 94.24 47.90 31.99 38.36 88.21 40.63 33.75 36.87

Prompt tuning 62.99 61.08 52.27 56.33 97.98 91.55 70.50 79.66 89.05 43.13 34.31 38.21

CodeT5-small
Fine-tuning 62.13 57.45 54.54 55.95 95.13 55.13 68.98 61.29 85.22 40.91 34.16 37.23

Prompt tuning 63.35 62.41 55.30 58.64 98.13 93.13 74.77 82.94 89.46 43.20 36.08 39.32

CodeT5-base
Fine-tuning 63.56 58.55 54.97 56.70 96.01 50.94 84.65 63.60 85.92 41.13 36.19 38.50

Prompt tuning 63.97 63.48 56.17 59.60 98.20 93.39 76.45 84.07 87.11 43.75 36.46 39.77

CodeGPT
Fine-tuning 62.49 57.16 51.36 54.10 95.13 49.62 60.10 54.36 84.29 39.16 34.01 36.40

Prompt tuning 63.03 59.01 62.88 60.88 97.42 82.51 69.04 75.17 87.42 40.64 35.57 37.93

Result. Table IV presents the comparison results of two

paradigms on the vulnerability type detection test set using

three PLMs. We can find that prompt tuning performs better

than fine-tuning. Taking CodeT5, which has the best prompt

tuning performance, as an example, its w-F1 is 14.96% higher

than that of fine-tuning. This result demonstrates that prompt

tuning can extract knowledge from PLM more comprehen-

sively and effectively by converting the classification task into

the same cloze form as the pre-training stage.

TABLE IV: In vulnerability type detection tasks, performance

comparison results between prompt tuning and fine-tuning.

Model Methods Accuracy m-F1 w-F1

CodeBERT
Fine-tuning 53.12 44.19 56.13

Prompt tuning 63.40 55.77 65.26

CodeT5
Fine-tuning 60.29 46.54 65.18

Prompt tuning 73.80 52.22 74.93

CodeGPT
Fine-tuning 54.36 43.20 50.11

Prompt tuning 61.90 48.61 58.13

Finding 2: In vulnerability type detection tasks, compared

to fine-tuning, prompt tuning achieves 18.54%, 17.03%, and

15.74% improvement on average in accuracy, m-F1, and w-F1,

respectively.

C. RQ3: Impact of Different Prompts.

1) Hard Prompt vs. Soft Prompt: Method. To answer this

question, we establish seven distinct prompt template rules

based on the location of the prompt template, as shown in

Table V. The content within prompt can be replaced with a

corresponding, human-readable natural language description.

Table VI shows the seven distinct templates designed by us.

TABLE V: Prompt templates and their design rules

No. Prompt template design rules

1 [X] prompt [Z]
2 [X] [Z] prompt
3 prompt [X] [Z]
4 prompt [X] prompt [Z]
5 [X] prompt [Z] prompt
6 prompt [X] [Z] prompt
7 prompt [X] prompt [Z] prompt

Result. By comparing the performance of seven differ-

ent prompt templates in Table VI, we find that the design

of prompt templates does have a significant impact on the

performance of vulnerability detection models. For instance,

when using the first prompt template "[X] the code is [Z]",

the accuracy, precision, recall, and F1 score reached 62.59%,

60.13%, 62.24%, and 61.36%, respectively. However, when

using the second prompt template, these metrics increased to

64.86%, 61.31%, 62.88%, and 62.08%, respectively. More-

over, by comparing the first and fourth prompt templates,

which only differ in the order of tokens, we find that the fourth

template achieved an accuracy of 64.47%. There is a 1.88%

discrepancy between the two different prompt templates.

In addition, when using the same token order but different

types of prompts, such as hard prompts and soft prompts,

the results of vulnerability detection are also influenced. For

example, when using the first token order, the accuracy of

hard prompts and soft prompts reaches 62.59% and 62.22%,

respectively.

2) Different Verbalizers: Method. To answer this question,

we select labels associated with the vulnerability detection task

as verbalizers, as displayed in Table VII. We investigate the

impact of different verbalizers on the performance of prompt

tuning. To comprehensively study the impact of verbalizers,

we further varied the number of verbalizers. Specifically, we

studied the cases where the number of verbalizers was set to

1 and 2, respectively.

Result. The results are presented in Table VII, which show

that when setting the verbalizer to "vulnerable" and "non-

vulnerable", the model achieved accuracy, precision, recall,

and F1 score of 64.47%, 63.29%, 58.32%, and 60.69%,

respectively. However, when setting the verbalizer to "good"

and "bad", these metrics are 63.85%, 61.43%, 51.87%, and

56.24%, respectively. This indicates that different verbalizers

can have some impact on the performance of prompt tuning.

Moreover, we find that when the "+" and "-" signs of ver-

balizers are different, the effectiveness of prompt tuning is

also affected. For instance, when "+" and "-" are mapped to

"secure" and "insecure", respectively, the model achieved an

accuracy of 63.37%. However, when the signs are swapped,

but the verbalizers are the same, the accuracy increased to

65.47%. In addition, the results demonstrate that the number

420

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Comparison of the impact of different prompt templates on the performance of prompt tuning. The model is

fixed to CodeT5-base, the verbalizer is fixed to "vulnerable, non-vulnerable", and the dataset is fixed to Devign. The bold font

indicates better performance.

Hard prompt Soft prompt
Accuracy Precision Recall F1 score

hard soft hard soft hard soft hard soft

1. [X] The code is [Z] [X] [soft] [soft] [soft] [Z] 62.59 62.22 60.13 59.85 62.24 52.96 61.36 56.19
2. [X] [Z] is the result [X] [Z] [soft] [soft] [soft] 64.86 63.17 61.31 59.87 62.88 59.20 62.08 59.53
3. Code: [X] [Z] [soft] [soft] [X] [Z] 63.03 62.88 60.34 58.75 62.49 63.36 61.40 60.96
4. The code [X] is [Z] [soft] [soft] [X] [soft] [Z] 64.47 63.10 63.28 60.37 58.32 56.32 60.69 58.27
5. [X] It is a [Z] code [X] [soft] [soft] [soft] [Z] [soft] 64.12 64.05 64.21 60.50 48.80 61.76 55.45 61.12
6. Code: [X] [Z] is the result [soft] [soft] [X] [Z] [soft] [soft] [soft] 62.90 62.37 63.01 59.75 54.60 54.40 58.50 56.95
7. The [X] is a [Z] code [soft] [X] [soft] [soft] [Z] [soft] 64.34 63.32 63.72 59.62 61.90 61.44 62.79 60.52

TABLE VII: The impact of different verbalizers on the performance of prompt tuning. The prompt template is fixed to

"The code [X] is [Z]". The model is fixed to CodeT5-base, and the dataset is fixed to Devign. The bold font indicates better

performance.

Numbers
Verbalizer

Accuracy Precision Recall F1 score+ -

1

vulnerable non-vulnerable 64.47 63.29 58.32 60.69
secure insecure 63.37 61.57 53.53 57.26
good bad 63.85 61.43 51.87 56.24
bad good 65.06 63.39 52.59 57.49

insecure secure 65.47 63.28 56.30 59.59
non-vulnerable vulnerable 63.59 61.52 60.01 60.75

2
vulnerable/insecure non-vulnerable/secure 65.39 64.19 55.51 59.95

good/secure bad/insecure 65.10 65.13 55.26 59.79

of verbalizers also affects the performance of prompt tuning.

Finding 3: In different prompt types, we obtain 28 groups

of results. Among them, 26 groups show that hard prompts

outperformed soft prompts. Moreover, performance can be

improved by using verbalizers that are more relevant to down-

stream tasks (e.g., "vulnerable"), and using two verbalizers

instead of one can increase the accuracy and F1 score by

1.47% and 2.30%, respectively.

D. RQ4: Effectiveness of prompt tuning in data scarcity sce-
narios.

Method. To answer RQ4, we simulate zero-shot and few-

shot scenarios by controlling the size of the training set to

explore the ability of prompt tuning in these scenarios. To be

specific, we establish five different scenarios for training shots,

including 0 shot, 16 shots, 32 shots, 64 shots, and 128 shots.

In the case of 0 shot, no tuning data was involved. The fine-

tuning model directly generated target labels using the test

data, while the prompt-tuning model predicted label words.

To eliminate any randomness in the data selection process,

we generate each subset ten times using different seeds and

conduct four runs on each subset. The reported results are the

average of these runs.

Result. In Table VIII, we present the accuracy and F1

score for five different prompt tuning and fine-tuning settings.

Comparing these results with those in Table III, we observe

a significant drop in performance. This is reasonable since

PLMs require specific task data to perform well. In fact, for

the CodeT5 and CodeGPT models, even failed to converge in

the zero-shot scenario due to the lack of training data.

However, the experimental results demonstrate that prompt

tuning still outperforms fine-tuning in data scarcity scenarios.

For example, in the CodeBERT model, when the training set

sizes are zero-shot, 16 shots, 32 shots, 64 shots, and 128

shots, the F1 score of prompt tuning was improved by 18.27%,

20.35%, 4.77%, 0.45%, and 0.96%, respectively, compared to

fine-tuning. These findings suggest that prompt tuning can help

the model better learn domain knowledge, even in data scarcity

scenarios.

Finding 4: In data scarcity scenarios, prompt tuning out-

performs fine-tuning at most 8.40% in accuracy and 34.10%

in F1 score. Moreover, the extent of improvement provided

by prompt tuning increases as the size of the training set

decreases.

E. RQ5: Effectiveness of prompt tuning in cross-domain vul-
nerability detection tasks.

Method. To answer RQ5, we conduct cross-domain ex-

periments on three different datasets, resulting in six sets of

experiments comparing the performance of prompt tuning and

fine-tuning. The three datasets comprise different projects,

which can demonstrate the generalization ability of prompt

tuning. We introduce the item composition of the datasets

when describing them.

Result. Table IX shows that except for the case where the

source domain is BigVul and the target domain is Reveal,

prompt tuning outperforms fine-tuning in terms of both accu-

421

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Comparison results of the performance between prompt tuning and fine-tuning under low-resource settings. "-"

indicates that the model fails to converge due to extremely limited training data. The prompt template is fixed to "The code

[X] is [Z]". The verbalizer is fixed to "vulnerable, non-vulnerable", and the dataset is fixed to Devign. The bold font indicates

better performance.

Model Methods
Zero shot 16 shots 32 shots 64 shots 128 shots

Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

CodeBERT
Fine-tuning 47.63 30.10 49.91 34.83 51.13 47.92 52.59 50.83 52.96 51.26

Prompt tuning 50.64 35.62 51.81 41.92 52.01 50.20 53.09 51.06 53.54 51.75

CodeT5-small
Fine-tuning - - 47.26 43.81 48.16 48.95 50.01 53.19 52.78 53.49

Prompt tuning - - 49.30 46.99 50.76 51.26 51.34 53.78 53.43 54.77

CodeT5-base
Fine-tuning - - 50.90 47.56 51.40 51.70 51.62 53.20 53.93 54.18

Prompt tuning - - 52.86 49.09 52.17 52.63 52.56 54.01 54.18 55.60

CodeGPT
Fine-tuning - - 43.26 30.29 45.11 33.03 47.33 36.57 50.11 38.23

Prompt tuning - - 46.91 40.61 47.86 41.77 49.16 43.26 51.02 44.61

racy and F1 score. Notably, when the source domain is Devign

and the target domain is Reveal, prompt tuning achieves a

289.04% improvement in accuracy compared to fine-tuning.

TABLE IX: Comparison of the performance between prompt

tuning and fine-tuning in cross-domain settings. The bold font

indicates better performance.

Source->Target Methods Accuracy F1 score

Devign->Reveal
Fine-tuning 22.91 19.77

Prompt tuning 89.13 25.38

Devign->BigVul
Fine-tuning 21.89 11.74

Prompt tuning 25.72 11.88

Reveal->Devign
Fine-tuning 55.60 5.49

Prompt tuning 55.89 9.74

Reveal->BigVul
Fine-tuning 90.23 5.23

Prompt tuning 91.46 6.52

BigVul->Devign
Fine-tuning 56.40 4.33

Prompt tuning 56.55 2.15

BigVul->Reveal
Fine-tuning 86.93 18.63

Prompt tuning 88.20 24.72

Finding 5: In cross-domain vulnerability detection tasks, we

obtained 12 groups of results. Among them, 11 groups show

that prompt tuning outperformed fine-tuning. On average,

compared to fine-tuning, prompt tuning achieves a 57.53%

improvement in accuracy and a 36.14% improvement in F1

score.

VI. DISCUSSION

A. Implications of Our Empirical Study

1) Evaluating the Effectiveness of Prompt Tuning for Dif-
ferent PLMs: Based on our finding 1, 2, and 5, we observe that

the improvement in the effectiveness of prompt tuning varies

when using different PLMs. Currently, despite the availability

of a large number of PLMs [7], [20], [24], [41], there is

a lack of systematic comparison to evaluate the impact of

different PLMs on prompt tuning. Therefore, exploring how to

choose the appropriate PLM for prompt tuning is an important

direction for future research.

2) Application of Prompt Tuning to other Tasks related to
Software Vulnerability.: Based on our finding 1, 2, 4, and

5, we observe that prompt tuning outperforms fine-tuning in

all three vulnerability detection tasks, especially when data

resources are scarce. Therefore, comparing prompt tuning and

fine-tuning to other more comprehensive and specific tasks

related to software vulnerability is an important direction

for future research (such as vulnerability assessment and

prioritization [42]).

3) Incorporating Domain-Specific Knowledge to Prompt
Tuning: Based on our finding 3, we observe that incorporat-

ing domain-specific knowledge into prompt template design

can significantly improve model performance. Code structure

information has been demonstrated to be effective in many DL

models for code-related tasks [34], [43]. Therefore, consider-

ing incorporating code structure information into the design

of prompt tuning to improve the performance of vulnerability

detection is an important direction for future research.

B. Threats to Validity

Threats to the construct validity. Our experiments show

that prompt tuning can enhance the performance of PLMs on

vulnerability detection tasks. However, the prompt templates

used in this study may not represent the most effective

approach. To alleviate this threat, we develop a set of template

rules and examine the influence of hard prompts and soft

prompts on model performance.

Threats to the internal validity. During the evaluation of

our models, there may be a certain degree of variability in the

results of each run. For example, different runs of the same

prompt template in RQ3 may yield other metrics. To alleviate

this threat, we run each prompt template five times and average

the results.

Threats to the external validity. The results may only

apply to the specific models used and may not be generalizable

to other models. To alleviate this threat, we employ three

models: CodeBERT, CodeT5, and CodeGPT. These models

have different architectures: encoder-only, encoder-decoder,

and decoder-only, respectively.

Threats to the conclusion validity. The experimental

results in this study are based on a limited number of datasets,

422

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

and their labels may not be entirely accurate. This could

potentially introduce some bias into our results. To alleviate

this threat, we select several widely used and high-quality

datasets.

VII. RELATED WORK

A. DL-based Vulnerability Detection

Traditional DL-based vulnerability detection approaches re-

quire the manual and time-consuming collection of metrics

as features [44]. To address this issue, various deep learning-

based approaches have been proposed to automatically learn

vulnerability patterns from data [32], [34], [35].

Recurrent Neural Network-based (RNN-based) architectures

are used to learn the syntax and semantics of source code auto-

matically. For instance, Dam et al. [45] proposed a Long Short-

Term Memory-based (LSTM-based) architecture to learn the

syntax and semantics of source code automatically. However,

the RNN-based approaches typically assume that the source

code is a sequence of tokens and do not consider the graph

structure of the source code, which can lead to inaccurate

predictions.

Therefore, to better utilize the structure information of code,

many approaches have abstracted code as graphs and used

Graph Neural Networks (GNNs) to learn graph features [34],

[43]. For example, Reveal [34] used Gated Graph Neural Net-

work (GGNN) to process multiple directed graphs generated

from source code. Similarly, MVD [43] used Program De-

pendence Graph (PDG) to represent code, performed program

slices and used Flow-Sensitive Graph Neural Networks (FS-

GNN) to detect vulnerabilities.

Prompt tuning has recently emerged as a new paradigm

for enhancing downstream task performance by optimizing

prompts to better adapt the model to specific task requirements

and domains [12]. However, by analyzing existing work, we

find whether using prompt tuning can improve the performance

of vulnerability detection tasks has not been thoroughly inves-

tigated and our study wants to fill this gap.

B. Prompt Tuning

Jiang et al. [46] proposed a mining-based approach that

automatically found a template given a set of training inputs

x and outputs y. Yuan et al. [47] proposed a paraphrasing-

based approach that replaced it with phrases in a thesaurus,

returned a set of other candidate prompts, and then selected the

one that achieved the highest training accuracy on the target

task. Wallace et al. [48] applied a gradient-based search to

actual tokens to find short sequences that could trigger a PLM

to generate the desired target prediction.

Previous research has focused on applying prompt tuning

in NLP. Currently, some studies have applied prompt turning

to software engineering. Wang et al. [49] used prompt tuning

to three downstream tasks in the field of software engineer-

ing, demonstrating the effectiveness of prompt tuning in this

domain. Li et al. [50] used the prompt tuning to predict the

severity of vulnerabilities and exploitability features based on

vulnerability descriptions.

However, prompt tuning has not been applied to vulnera-

bility detection in existing research. In this study, we want to

perform a comprehensive analysis of prompt tuning for within-

domain vulnerability detection, cross-domain vulnerability de-

tection, and vulnerability type detection.

VIII. CONCLUSION AND FUTURE WORK

Fine-tuning the PLMs has become a widely-used technique

for vulnerability detection [8]. However, there is a natural gap

between model pre-training tasks and vulnerability detection

tasks due to differences in input formats, which can impact

downstream task performance [12]. Prompt tuning has been

shown to alleviate this issue and has demonstrated strong

performance in many NLP tasks [15], [18]. Inspired by this,

we conduct empirical evaluations to determine whether prompt

tuning is superior to fine-tuning for vulnerability detection

tasks. We perform large-scale studies on three PLMs (i.e.,

CodeBERT, CodeT5, and CodeGPT) across three vulnerability

datasets (i.e., Devign, BigVul, and ReVeal). Our experiments

indicate that prompt tuning outperforms fine-tuning in within-

domain vulnerability detection, cross-domain vulnerability de-

tection, and vulnerability type detection, particularly in data

scarcity scenarios. Furthermore, our results show that different

prompt types and verbalizers can have an impact on F1 score

at most 7.34%.

Our future plans involve developing more suitable prompt

templates that can enable the model to acquire domain-specific

knowledge in a more effective manner. Additionally, we aim

to expand our investigation of prompt tuning performance to

a wider range of vulnerability datasets and PLMs.

REFERENCES

[1] H. Gabriel, “Analỳza a demonstrace zranitelnosti proxylogon,” B.S.
thesis, České vysoké učení technické v Praze. Vypočetní a informační
centrum., 2022.

[2] P. Li and B. Cui, “A comparative study on software vulnerability static
analysis techniques and tools,” in 2010 IEEE international conference
on information theory and information security. IEEE, 2010, pp. 521–
524.

[3] A. Kaur and R. Nayyar, “A comparative study of static code analysis
tools for vulnerability detection in c/c++ and java source code,” Procedia
Computer Science, vol. 171, pp. 2023–2029, 2020.

[4] Z. Shen and S. Chen, “A survey of automatic software vulnerability
detection, program repair, and defect prediction techniques,” Security
and Communication Networks, vol. 2020, pp. 1–16, 2020.

[5] N. Ziems and S. Wu, “Security vulnerability detection using deep
learning natural language processing,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2021, pp. 1–6.

[6] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[7] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[8] H. Hanif and S. Maffeis, “Vulberta: Simplified source code pre-training
for vulnerability detection,” in 2022 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2022, pp. 1–8.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

423

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

[10] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[11] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[12] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[13] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying pre-
training and downstream tasks for graph neural networks,” in Proceed-
ings of the ACM Web Conference 2023, 2023, pp. 417–428.

[14] Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning
for few-shot learning,” in Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022, pp. 8410–8423.

[15] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun, “Ptr: Prompt tuning
with rules for text classification,” AI Open, vol. 3, pp. 182–192, 2022.

[16] T. Schick and H. Schütze, “Exploiting cloze-questions for few-shot
text classification and natural language inference,” in Proceedings of
the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021, pp. 255–269.

[17] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021, pp. 4582–
4597.

[18] R. Mao, Q. Liu, K. He, W. Li, and E. Cambria, “The biases of pre-trained
language models: An empirical study on prompt-based sentiment analy-
sis and emotion detection,” IEEE Transactions on Affective Computing,
2022.

[19] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen, “Exploit-
gen: Template-augmented exploit code generation based on codebert,”
Journal of Systems and Software, vol. 197, p. 111577, 2023.

[20] K. Liu, G. Yang, X. Chen, and Y. Zhou, “El-codebert: Better exploiting
codebert to support source code-related classification tasks,” in Proceed-
ings of the 13th Asia-Pacific Symposium on Internetware, 2022, pp. 147–
155.

[21] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-
tuned codebert,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 82–93.

[22] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang et al., “Exploring soft-
ware naturalness through neural language models,” arXiv preprint
arXiv:2006.12641, 2020.

[23] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and
N. B. Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Journal of
Network and Computer Applications, vol. 179, p. 103009, 2021.

[24] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

[25] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models
better few-shot learners,” arXiv preprint arXiv:2012.15723, 2020.

[26] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, “Auto-
prompt: Eliciting knowledge from language models with automatically
generated prompts,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 4222–
4235.

[27] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” in Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, 2021,
pp. 3045–3059.

[28] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software vulner-
ability detection using deep neural networks: a survey,” Proceedings of
the IEEE, vol. 108, no. 10, pp. 1825–1848, 2020.

[29] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “muvuldeepecker: A
deep learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224–2236, 2019.

[30] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 49–60.

[31] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spot-
tune: transfer learning through adaptive fine-tuning,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4805–4814.

[32] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[33] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[34] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[35] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[36] X. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and Q. Liao,
“Vulnerability detection with graph simplification and enhanced graph
representation learning,” arXiv preprint arXiv:2302.04675, 2023.

[37] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[38] P. Budzianowski and I. Vulic, “Hello, its gpt-2-how can i help you?
towards the use of pretrained language models for task-oriented dialogue
systems,” EMNLP-IJCNLP 2019, p. 15, 2019.

[39] N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H. Zheng, and M. Sun,
“Openprompt: An open-source framework for prompt-learning,” in Pro-
ceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, 2022, pp. 105–113.

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

[41] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained
language models for text generation: A survey,” Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, 2022.

[42] T. H. Le, H. Chen, and M. A. Babar, “A survey on data-driven software
vulnerability assessment and prioritization,” ACM Computing Surveys,
vol. 55, no. 5, pp. 1–39, 2022.

[43] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “Mvd: memory-
related vulnerability detection based on flow-sensitive graph neural
networks,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1456–1468.

[44] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement, 2008, pp. 315–317.

[45] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint
arXiv:1708.02368, 2017.

[46] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 423–438, 2020.

[47] W. Yuan, G. Neubig, and P. Liu, “Bartscore: Evaluating generated text
as text generation,” Advances in Neural Information Processing Systems,
vol. 34, pp. 27 263–27 277, 2021.

[48] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Universal
adversarial triggers for attacking and analyzing nlp,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

[49] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 382–394.

[50] X. Li, X. Ren, Y. Xue, Z. Xing, and J. Sun, “Prediction of vulnerability
characteristics based on vulnerability description and prompt learning,”
in 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2023, pp. 604–615.

424

Authorized licensed use limited to: Nan Tong University. Downloaded on October 30,2024 at 06:31:49 UTC from IEEE Xplore. Restrictions apply.

